鲁教版(五四制)八年级下册数学课第六章 特殊平行四边形 (共29

合集下载

鲁教版五四制八年级下册数学第六章 特殊平行四边形 矩形及其性质

鲁教版五四制八年级下册数学第六章 特殊平行四边形 矩形及其性质
LJ版八年级下
第六章 特殊平行四边形
6.2 矩形的性质与判定 第1课时 矩形及其性质
提示:点击 进入习题
1B 2B 3D 4C
5C 6C 7A 8B
答案显示
提示:点击 进入习题
9B
10 3 或 3 3或 3 7
11 见习题 12 见习题
13 见习题 14 见习题
答案显示
1.下列说法不正确的是( B ) A.矩形是平行四边形 B.矩形不一定是平行四边形 C.有一个角是直角的平行四边形是矩形 D.平行四边形具有的性质矩形都具有
7.【中考·宜宾】如图,点P是矩形ABCD的边AD上 的一动点,矩形的两条边AB,BC的长分别是6和8, 则点P到矩形的两条对角线AC和BD的距离之和是 () A.4.8 B.5 C.6 D.7.2
【点拨】如图,作பைடு நூலகம்E⊥AC,PF⊥BD,垂足分别为E, F,连接PO.因为AB,BC的长分别是6和8,所以矩形的 对角线AC=BD=10.所以AO=OD=5.
因为 S△PAO+S△POD=S△AOD,所以12AO·PE+12OD·PF= 14×6×8.所以 PE+PF=254=4.8.故选 A.
【答案】 A
8.【2020·黄石】如图,在Rt△ABC中,∠ACB=90°, 点H,E,F分别是边AB,BC,CA的中点,若EF+CH =8,则CH的值为( ) A.3 B.4 C.5 DB.6
2.【中考·菏泽】在▱ABCD中,AB=3,BC=4,连接AC, BD,当▱ABCD的面积最大时,下列结论正确的有( ) B ①AC=5; ②∠BAD+∠BCD=180°; ③AC⊥BD; ④AC=BD. A.①②③ B.①②④ C.②③④ D.①③④
【点拨】当▱ABCD的面积最大时,四边形ABCD为矩 形,得出∠BAD=∠ABC=∠BCD=90°,AC=BD, 根据勾股定理求出AC,即可得出答案.

鲁教八年级下册第六章特殊平行四边形单元备课

鲁教八年级下册第六章特殊平行四边形单元备课

特殊平行四边形单元备课西张庄镇初级中学课时备课课题 6.1 菱形的性质与判定 课型新授课时 1 时间教学目标1.理解菱形概念,了解它与平行四边形之间的关系。

2.经历菱形性质定理和判定定理的探索过程,进一步发展合情推理能力。

3.能够用综合法证明菱形性质定理和判定定理的探索过程,进一步发展演绎推理能力。

4.体会探索与证明过程过程中所蕴含的抽象、推理等数学思想。

教学重、难点利用菱形的性质进行计算和证明。

教学过程二次备课一、自主预习:学习过程(一)课前准备: 1、平行四边形的性质: 。

2、如图 ,在ABCD 中, AB=5,AD=7, BC 边上的高AE=2,则CD 边上的高AF= .(二)课堂导学:的平行四边形是菱形 探究活动:菱形的性质做一做:用菱形的纸片折一折猜想菱形的性质。

总结菱形的性质:边:_________________________________ 角:_________________________________对角线:___________________________________________________ 性质1、菱形的四条边________。

几何语言:∵四边形ABCD 为菱形∴______________________性质2、菱形的对角线互相____,且每一条 对角线_________一组对角。

几何语言:∵四边形ABCD 为菱形∴_____________________探究活动:菱形的性质的应用1、阅读教材P3例1注意解题的依据2、完成教材P4随堂练习二、课堂探究(小组合作)在菱形ABCD 中,BC=5,AC=6,BD=8,求菱形ABCD 的周长、面积和高。

总结:菱形的周长C=面积S= =三、巩固练习1、已知菱形两条对角线长分别为12cm 、8cm ,则菱形的面积是 ,周长是2、如图,四边形ABCD 是菱形。

点O 是两条对角线的交点,AB=5cm ,AO=3cm , (1)求AC 与BD 的长。

最新鲁教版八年级数学下册(五四制)全册完整课件

最新鲁教版八年级数学下册(五四制)全册完整课件

3 正方形的性质与判定
最新鲁教版八年级数学下册(五四 制)全册完整课件
最新鲁教版八年级数学下册(五四 制)全册完整课件目录
0002页 0071页 0105页 0128页 0150页 0194页 0240页 0284页 0336页 0338页 0375页 0394页 0427页
第六章 特殊平行四边形 2 矩形的性质与判定 第七章 二次根式 2 二次根式的性质 4 二次根式的乘除 1 一元二次方程 3 用公式法解一元二次方程 5 一元二次方程根与系数的关系 第九章 图形的相似 2 平行线分线段成比例 4 探索三角形相似的条件 6 黄金分割 8 相似三角形的性质
第六章 特殊平行四边形
最新鲁教版八年级质与判定
最新鲁教版八年级数学下册(五四 制)全册完整课件
2 矩形的性质与判定
最新鲁教版八年级数学下册(五四 制)全册完整课件

鲁教版(五四制)数学八年级下册第六章《特殊平行四边形》单元整体设计课件

鲁教版(五四制)数学八年级下册第六章《特殊平行四边形》单元整体设计课件

1.菱形具有而平行四边形不一定有的性质是( )
A.对角线互相平分 B.四条边都相等
C.对角相等
D.邻角互补
2.已知菱形的周长是12cm,那么它的边长是_____;
3.如下图:菱形ABCD中∠BAD=600,则∠ABD=
_____.
4.已知,如图,在菱形ABCD中∠BAD=2∠B. 求证:△ABC是等边三角形.
已知:如图,在菱形ABCD中,AB=AD,对角线 AC与BD相交于点O. 求证:(1)AB=BC=CD=AD;(2)AC⊥BD.
探究归纳
菱形的性质 定理 菱形的两条对角线互相垂直. 定理 菱形的四条边都相等.
例1 如图,在菱形ABCD中,对角线AC与BD相交 于点O,∠BAD=60°,BD=6, 求菱形的边长AB和对角线AC的长.
4.已知:如图,四边形ABCD是边长为13cm 的菱形,其中对角线BD长10cm. 求:(1)对角线AC的长度;
(2)菱形ABCD的面积.
必做:课本习题6.1 1、2、3 生活作业:观察家中的哪些物件是菱形?
几种特殊四边形的性质:
对边 角
对角线
对称性

对角相等 平行且相等
邻角互补
互相平分
中心对称图形
二级任务为基于大任务和教材具体知识,划分为三个学习 任务,如下:
边特 形殊
的 平 行 四
任务一:菱形的性质与判定 任务二:矩形的性质与判定 任务三:正方形的性质与判定
课时分配: 1、菱形的性质与判定 2、矩形的性质与判定 3、正方形的性质与判定
3课时 3课时 2课时
问 探 典学 体 课课 题 究 例以 验 时后 情 新 探致 收 评巩 境 知 析用 获 价固
第六章 特殊的平行四边形 单元整体设计

鲁教版(五四制)数学八年级下册第六章《特殊平行四边形》课件

鲁教版(五四制)数学八年级下册第六章《特殊平行四边形》课件

1.矩形、菱形、正方形的定义?
2.平行四边形具有哪些性质?从几方面进行概述? 3.菱形有怎样的性质?是否具有平行四边形的所有性质?又具有怎样的特 有性质?
4.矩形有怎样的性质?是否具有平行四边形的所有性质?又具有怎样的特 有性质?
5.正方形具有哪些性质? 6.单独从边或角或对角线位置与数量关系入手,能否把一个平行四边形转 化为菱形? 能否把一个四边形转化为菱形? 如何判断一个四边形或者 平行四边形是菱形?
有一组邻边相等的平行四边形叫做菱形.
A
D
符号语言
B
C
四边形ABCD是平行四边形,且AB AD ABCD是菱形.
让学生在探索知识之间的相互联系及应用的过程中,体验 推理的方法和技巧,获取推理的经验;
通过观察、猜想、分析、推理、归纳、培养提高学生分析 问题,解决问题的能力.
1.理解平行四边形、矩形、菱形、正方形的概念,以及他们之间的关系
2.探索并证明矩形、菱形、正方形的性质定理:菱形的四条边相等,对角线 互相垂直;矩形的四个角都是直角,对角线相等;正方形具有矩形和菱形的 一切性质. 3.探索并证明矩形、菱形、正方形的判定定理:三个角是直角的四边形是矩 形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。 四边相等的四边形是菱形;邻边相等的平行四边形是菱形;对角线互相垂直 的平行四边形是菱形.
菱形、矩形、正方形作为特殊的平行四边 形,不仅具有平行四边形的所有性质,而且还具有其特有 的性质;
特殊平行四边形的性质和判定,并能应用 于相关的推理与证明,以及进行边、角、对角线、周长、 面积的数量计算;
通过对知识的综合应用,初步 学生的逻辑思维能 力.
过程与方法:
通过探索、归纳几类特殊四边形的性质和判定,了解它们 之间的包含关系;

鲁教版初二(下)数学第55讲:特殊的平行四边形(学生版)

鲁教版初二(下)数学第55讲:特殊的平行四边形(学生版)

特殊的平行四边形____________________________________________________________________________________________________________________________________________________________________1、能用综合法来证明特殊的平行四边形的相关结论;2、运用特殊的平行四边形的性质定理和判定定理解决计算问题;3、通过学生进行推理过程的活动,培养学生抽象概况、合理推理以及严谨的思考、学习习惯.1.平行四边形的性质(1)平行四边形的概念:有两组对边分别____的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.2.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.3.矩形的判定(1)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相_____且_____的四边形是矩形”)(2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.4.矩形的性质(1)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是____;③边:邻边垂直;④对角线:矩形的对角线____;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(2)由矩形的性质,可以得到直角三角线的一个重要性质,直角三角形斜边上的中线等于斜边的___.5.菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(平行四边形+一组邻边相等=菱形)(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有___条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度)6.菱形的判定(1)四条边都_____的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;(2)对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是_____;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.8.正方形的判定正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.9.等腰梯形的性质(1)性质:①等腰梯形是轴对称图形,它的对称轴是经过上下底的_____的直线;②等腰梯形同一底上的两个角相等;③等腰梯形的两条对角线相等.(2)由等腰梯形的性质可知,如果过上底的两个顶点分别作下底的两条高,可把等腰梯形分成矩形和两个全等的直角三角形,因此可知等腰梯形是轴对称图形,而一般的梯形不具备这个性质.10.等腰梯形的判定(1)利用定义:两腰相等的梯形叫做等腰梯形;(2)定理:同一底上两个角相等的梯形是等腰梯形.(3)对角线:对角线相等的梯形是等腰梯形.判定一个梯形是否为等腰梯形,主要判断梯形的同一底上的两个角是否相等,可以通过添加辅助线把梯形底上的两个角平移到同一个三角形中,利用三角形来证明角的关系.注意:对角线相等的梯形是等腰梯形这个判定方法不可以直接应用.1.菱形的性质;平行四边形的性质.【例1】(2014•泸州第一中学期末)菱形具有而平行四边形不具有的性质是()A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直练1.(2014•吕梁孝义中学月考)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=°.练2.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形 B.矩形 C.菱形 D.正方形2.菱形的性质;坐标与图形性质.【例2】(2014•武汉华中师大附中月考)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.练3.菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.3. 矩形的性质;菱形的判定.【例3】(2014•新疆石河子中学一模)如图,在矩形ABCD中,E,F分别是AD,BC中点,连接AF,BE,CE,DF分别交于点M,N,四边形EMFN是()A.正方形 B.菱形 C.矩形 D.无法确定练4.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直练5.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF与CE交于H.求证:四边形EGFH为菱形.4.正方形的判定;矩形的性质.【例4】(2014•山东淄博一中期末)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是.练6.下列说法中,错误的是()A.菱形的四条边都相等B.对角线互相垂直的平行四边形是正方形C.四个角都相等的四边形是矩形D.等腰梯形的对角线相等5.直角梯形;平行四边形的性质;等腰梯形的性质.【例5】(2014秋•张家港市校级期末)如图所示,在直角梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边向D以1cm/s的速度运动,动点Q从C点开始沿CB边向B以3cm/s的速度运动.P,Q分别从A,C同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s),t分别为何值时,四边形PQCD是平行四边形?等腰梯形?练7.已知:如图,等腰梯形ABCD中,AD∥BC,AB=DC,点P是腰DC上的一个动点(P与D、C不重合),点E、F、G分别是线段BC、PC、BP的中点.(1)试探索四边形EFPG的形状,并说明理由;(2)若∠A=120°,AD=2,DC=4,当PC为何值时,四边形EFPG是矩形并加以证明.1.菱形具有而平行四边形不具有的性质是()A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直2.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于()A.10 B. C.6 D.53.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.64.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.5.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.__________________________________________________________________________________________________________________________________________________________________1.已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是.2.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.3.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.4.如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.5.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形DEGF是菱形.6.如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE,(1)求证:四边形BECF是菱形;(2)若四边形BECF为正方形,求∠A的度数.7.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF 与CE交于H.求证:四边形EGFH为菱形.8.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.课程顾问签字: 教学主管签字:。

2021年春季鲁教版五四制八年级数学下学期第六章特殊平行四边形

2021年春季鲁教版五四制八年级数学下学期第六章特殊平行四边形

2021年春季鲁教版五四制八年级数学下学期第六章特殊平行四边形----8b2cc330-6ea2-11ec-81e2-7cb59b590d7d2021年春季鲁教版五四制八年级数学下学期第六章、特殊平行四边形2022春季《山东教育版第八版》中的“特殊四边形”试题班级姓名分数一、选择题(每小题5分,共50分)1.平行四边形两个相邻角的角平分线形成的角为()a.锐角b.直角c.钝角d.不能确定2、下列说法正确的是()a、一组具有相等对边的四边形是平行四边形b.一组对边平行,另一组对边相等的四边形是平行四边形c.一组对角相等,一组对边平行的四边形是平行四边形d.对角线互相垂直的四边形是平行四边形3.在菱形ABCD中,∠ ABC=60°,AC=4,则BD的长度为()a.83b 43c。

23d。

八4、正方形具有而菱形不一定具有的性质()a、四条边相等B.对角线相互垂直C.对角线被分成一组对角线D.对角线相等5、四边形abcd的对角线ac,bd相交于点o,能判定它为正方形的题设是()(a)ao=co,bo=do;(b)ao=co=bo=do;(c) ao=co,bo=do,ac⊥bd;(d) ao=bo=co=do,ac⊥屋宇署6、已知四边形的两条对角线相等,那么顺次连结四边形各边中点得到得四边形是()a.梯形b.矩形c.菱形d.正方形7.如果等腰梯形的两个底部之间的差值等于一根腰部的长度,则等腰梯形的锐角等于()a.60°b.30°c.45°d.15°8、如图(1)abcd中,∠c=108°,be平分∠abc,则∠aeb等于()a.18°b.36°c.72°d.108°9、如图(2),o为平行四边形abcd对角线ac、bd的交点,ef经过点o,且与边cd、ab分别交于点e、f,则图中的全等三角形有()a.2对b.3对c.5对d.6对10、如图(3),在梯形abcd中ad∥bc,对角线ac⊥bd,且ac=12,bd=9,则ad+bc=()a.20b.21c.15d.24aedecaddObbbccaf图表(2)图表(1)图表(3)II。

鲁教版五四制八年级下册数学第六章 特殊平行四边形 矩形的判定

鲁教版五四制八年级下册数学第六章 特殊平行四边形 矩形的判定
矩形,需要添加的条件是( D ) A.AB=CD B.AD=BC
C.AB=BC D.AC=BD
2.【中考·攀枝花】下列关于矩形的说法中正确的是( B ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分
3.如图,要使▱ABCD成为矩形,需添加的条件是( B ) A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD
4.【中考·上海】已知▱ABCD,AC,BD是它的两 条对角线,那么下列条件中,能判定这个平行 四边形为矩形的是( ) A.∠BAC=∠DCA BC.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB
5.【中考·黑龙江】如图,在▱ABCD中,延长AD到点E,使 DE=AD,连接EB,EC,DB,请你添加一个条件 _______________________,使四边形DBCE是矩形. EB=DC(答案不唯一)

平分∠BAD,其中能说明平行四边形ABCD是矩形
的是( )
A.①B
B.②
C.③
D.④
8.【中考·临沂】如图,在△ABC中,点D是边BC上的点
(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分
别交AB,AC于E,F两点,下列说法正确的是( )
A.若AD⊥BC,则四边形AEDF是矩形
D
B.若AD垂直平分BC,则四边形AEDF是矩形
∴OE=OF=12EF. ∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°. 在 Rt△CEF 中,由勾股定理得 EF= CE2+CF2=10, ∴OC=OE=12EF=5.
(2)连接AE,AF.问:当点O在边AC上运动到什么位置时, 四边形AECF是矩形?并说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CE交AB于点F,求AF的长.
点拨:对于折叠 D
C
问题,可以从折叠
前后的两个图形是 全等图形入手进行
A
B
分析.
F
E
2、现将一张矩形的纸对折后再对折,然后沿着图中的虚 线剪下,打开,得到的是( ) A、平行四边形 B、菱形 C、矩形 D、正方形
变式:如上图,把一个长方形纸片对折两次,然后剪 下一个角,为了得到一个正方形,剪刀与折痕所成的 角的度数为: A、60° B、30° C、45° D、90°
_4_3_.
A O
DA O D
B 1题 C B 2题 C
抢 答3:
我说我所想
要使 ABCD成为矩形,需增加的条件是______ 要使 ABCD成为菱形,需增加的条件是______ 要使矩形ABCD成为正方形,需增加的条件是____ 要使菱形ABCD成为正方形,需增加的条件是____ 要使四边形ABCD成为正方形,需增加的条件是 ______
的面积最大?
(1)求证OE=OF
(2)如图2所示,若点E在AC的延长线上,AM⊥EB
的延长线于点M,交DB的延长线于点F,其他条件都
不变,则结论“OE=OF”还成立吗?如果成立,请给
出证明;如果不成立,请说明理由
A
A
D
D
O
O
FE M
M
C
B
C
FB
E
A P
Q
已知:△ABC中 AB=AC=a,M为底边BC 上任意一点,过点M分别 作AB、AC的平行线交 AC于P,交AB于Q.
示意图.
A
D
B
C
A
D
(1)若按圆形设计, 请画出你设计的
O
示意图,并求出圆
形鱼塘的面积;
B
C
A
D
(2)若按正
方形设计,
请画出你
设计的示
意图.
B
C
(3)你在(2)所设计的正方形鱼塘中, 有无最大面积?为什么?
你知道吗?
C DE
当直角三角
形的斜边一定 A 时,两直角边

O
B
满足什么条件
时直角三角形
D
O C
6.如图,菱形ABCD的边长为8㎝,∠BAD=120°,你可以求什么?
我想到:菱形的面积等于它的两条对角线乘积的一半. 我发现:当矩形对角线夹角为60°时,以等边三角形为突破口;
当菱形有一个内角为60°时,以等边三角形为突破口.
注:如果四边形的两条对角线互相垂直,则该四 边形的面积等于两对角线乘积的一半。
4、在正方形ABCD中,E在BC上, BE=2,CE=1,P在BD上,则PE和 PC的长度之和最小可达到
_____________
A
D
P
F
G
B
EC
5.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=2∠BOC, 若 对角线 AC=6cm,则你能求什么?角? 边?周长?面积?
D
C
O
A
B
A B
连结CP,试判断四边形CODP的形状.
D
B
O C
如果题目中的矩形变为菱形(图一),结论P
应变为什么?
如果题目中的矩形变为正方形(图二),结论又
应变为什么?
A
B
A
B
O
O
D
C
P
图一
D
C
P
图二
3.以△ABC的边AB、AC为边的等边三角形ABD和等边三角形ACE,四 边形ADFE是平行四边形.
(1)当∠BAC等于 60° 时,平行四边形ADFE不存在; (2)当∠BAC等于 150°时,四边形ADFE是矩形;
(3)当△ABC分别满足什么条件时,平行四边形是菱形、正方形.
解:(3) AB=AC时,平行四边形ADFE时菱形。
AB=AC且∠BAC=150°时,平行四边形ADFE是正方形。
F D
A
E
60°
60°
B
C
如图1:正方形ABCD的对角线AC、BD相交于点O,E 是AC上的一点,连接EB,过点A作AM⊥BE,垂足M, AM交BD于点F
我发现:
顺次连接任意的四边形各边中点得 平行四边形;
顺次连接对角线相等的四边形各边中点得 菱形;
顺次连接对角线互相垂直四边形各边中点得 矩形; 顺次连接对角线相等且互相垂直的四边形各边 中点得 正方形.
思考1 折叠问题
1、在矩形ABCD中,AB=16,BC=8.
将矩形 沿AC折叠,点D落在点E处,且
C
如何设计花坛?
在一块正方形花坛上,欲修建两条直的小 路,使得两条直的小路将花坛分成全等的四 部分(不考虑道路宽度),你有几种方法? (至少说出三种)
课堂小结
通过本 节课的学习,你
有哪些收获 ?
课堂小结
1、请理解并熟记特殊平行四边形的性质和 判定.
2、在解题时,首先,应有战胜困难的决心 和信心;其次,抓住图形中的位置关系 与条件中的数量关系;再次,注意每一 个判断都应有充分的理由 和依据. 送给同学们一句话:
(1)线段QM、PM、AB 之间有什么关系?
(2)图中的三角形之间有 什么关系?
BM
C
A Q
B
M
已知:△ABC中
AB=AC=a,M为底边BC
上任意一点,过点M分别
作AB、AC的平行线交AC
于P,交AB于Q.
探究:当M位于BC的什么
位置时, 四边形AQMP是
P
菱形?并说明你的理由.
当△ABC满足什么条件菱 形AQMP是正方形?
中点四边形考点
1、如图,在四边形ABCD中,E、F、G、H分别是
边AB、BC、CD、DA的中点,请判断四边形EFGH
的形状,并说明理由。
A H
D
(1)添加条件__A_C_=_B__D,则 E 四边形EFGH为菱形;
O
G
(2)添加条件_A_C_⊥__B_D_,则 B
F
C
四边形EFGH为矩形;
(3)添加条件_A_C__⊥_B__D_且__A_C_=_B_D_,则四边 形EFGH为正方形。
1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形 3、对角线互相垂直的平行四边形 1、定义:一组邻边相等且有一个角是直角的平行四边形 2、有一组邻边相等的矩形 3、有一个角是直角的菱形
试一试
一、选择:
1、正方形具有而菱形不一定具有的性质( C )
A、四边都相等 B、对角线互相垂直且平分
小试牛刀
1.如图,矩形ABCD的对角线AC、BD交于点O,过点D作
DP∥OC,且 DP=OC,连结CP,试判断四边形CODP的形
状.
解:四边形CODP是菱形
A
∵ DP∥OC, DP=OC
∴ 四边形CODP是平行四边形 D
∵四边形ABCD是矩形
B O
C
P
∴CO=DO
∴四边形CODP是菱形
2.如图,矩形ABCD的对角线AC、BD交 A 于点O,过点D作DP∥OC,且 DP=OC,
平行且相等 平行
且四边相等 平行
且四边相等
对角相等 邻角互补
互相平分
中心对称图形
四个角 都是直角
互相平分且相等
中心对称图形 轴对称图形
对角相等 互相垂直平分,且每一 中心对称图形
邻角互补 条对角线平分一组对角 轴对称图形
四个角 互相垂直平分且相等,每 中心对称图形
都是直角 一条对角线平分一组对角 轴对称图形
C、对角线相等
D、对角线平分一组对角
2、下列命题中( B )是假命题.
A、对角线互相平分的四边形是平行四边形.
B、两条对角线相等的四边形是矩形. C、两条对角线互相垂直的矩形是正方形. D、两条对角线相等的菱形是正方形.
考考你
3、检查一个门框是矩形的方法是( B)
A、测量两条对角线是否相等. B、测量有三个角是直角.
相信自己,学好数 学并不难!
合作探究
李大爷有一个边长为a的正方形鱼塘,鱼塘四
个角的顶点A、B、C、D上各有一棵大树,现在李
大爷想把鱼塘扩建成一个圆形或正方形鱼塘(原鱼
塘周围的面积足够大).又不想把树挖掉(四棵大
树要在新建鱼塘的边沿上).
(1)若按圆形设计,请画出你设计的示意图,并求出圆
形鱼塘的面积;(2)若按正方形设计,请画出你设计的
1、理解矩形、菱形、正方形与 平行四边形的关系。
2、掌握特殊平行四边形的有关 性质及判定方法,并能应用所 学知识解决相关问题。
四边形知识结构(定义)图
矩形
两组对边平行
四边形
平行四边形
一角为直角且一组邻边相等
正方形
菱形
关系 图
菱形
矩形


攀 勇
二、几种特殊四边形的性质:
对边 角
对角线
对称性ቤተ መጻሕፍቲ ባይዱ
平行且相等
它们的周长和面积怎样?你能说说吗?
三、几种特殊四边形的常用判定方法:
四边形
条件
平行 四边形
1、定义:两组对边分别平行 3、一组对边平行且相等 5、两组对角分别相等
2、两组对边分别相等 4、对角线互相平分
矩形 菱形 正方形
1、定义:有一角是直角的平行四边形 2、三个角是直角的四边形 3、对角线相等的平行四边形
C、 测量两条对角线是否互相平分. D、 测量两条对角线是否互相垂直.
4、顺次连接矩形各边中点所得的四边形是( B)
A、矩形 B、菱形 C、梯形 D、正方形
二、填空:
你准行
1、菱形的对角线长为6和8,则菱形的边
相关文档
最新文档