中考复习全国通用版中考数学9:圆中的动点问题—解析版
2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)1.如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.(1)证明:∵AD=BD,∠DAE=∠DBC,AE=BC,∴△ADE≌△BDC(SAS),∴∠ADE=∠BDC,∴=.∴AB=BC.(2)解:S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF==.2.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:CG=3:2,AB=16.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=30°,将沿弦CE翻折,交CB于点F,求图中阴影部分的面积.解:(1)连接AO,如右图所示,∵CD为⊙O的直径,AB⊥CD,AB=16,∴AG==8,∵OG:CG=3:2,∴OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+82=(5k)2,解得,k=2或k=﹣2(舍去),∴5k=10,即⊙O的半径是10;(2)如图所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=30°,由对称性可知,∠DCM=60°,S阴影=S弓形CBM,连接OM,则∠MOD=120°,∴∠MOC=60°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=10×=5,∴S阴影=S扇形OMC﹣S△OMC=﹣×10×5=﹣25.3.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC==2,由①得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴=,∴=,∴FG=.4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.(1)当t=2时,△DPQ的面积为28 cm2;(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;(3)运动过程中,当A、P、Q、D四点恰好在同一个圆上时,求t的值;(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.解:(1)∵四边形ABCD是矩形,∴AD=BC=12,CD=AB=6,∠A=∠B=∠C=90°,由题意得:AP=t,BQ=2t,∴BP=AB﹣AP=6﹣t,CQ=BC﹣BQ=12﹣2t,当t=2时,AP=2,BQ=4,BP=AB﹣AP=4,CQ=BC﹣BQ=8,∴△DPQ的面积=12×6﹣×12×2﹣×4×4﹣×6×8=28(cm2),故答案为:28;(2)不能;理由如下:根据题意得:△DPQ的面积=,整理得:t2﹣6t+10=0,∵b2﹣4ac=﹣4<0,∴方程无实数根,∴△DPQ的面积不可能为26cm2;(3)∵∠A=90°,∴A、P、D三点在以DP为直径的圆上,若点Q也在圆上,则∠PQD=90°,∵PQ2=(6﹣t)2+(2t)2,DQ2=62+(12﹣2t)2,DP2=t2+122,PQ2+DQ2=DP2,∴(6﹣t)2+(2t)2+62+(12﹣2t)2=t2+122;解得t1=6,t2=,∴t=6或时A、P、Q、D四点恰好在同一个圆上.(4)如图1,⊙Q与边AD相切时,过点Q作QE⊥AD,∵⊙Q与边AD相切,∴QE=QP,由勾股定理得:62=(6﹣t)2+(2t)2;解得t1=0(舍去),t2=,如图2,⊙Q过点D时,则QD=QP,由勾股定理得:(6﹣t)2+(2t)2=62+(12﹣2t)2;解得:(舍去)∴当<t<时,⊙Q与矩形ABCD的边共有四个交点.5.如图,已知直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)若⊙O的半径为2,说明直线AB与⊙O的位置关系;(2)若△ABO的内切圆圆心是点M,外接圆圆心是点N,则MN的长度是;(直接填空)(3)设F是x轴上一动点,⊙P的半径为2,⊙P经过点B且与x轴相切于点F,求圆心P的坐标.解:(1)∵直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=3;当y=0时,x=4;∴A(﹣4,0),B(0,3),∴OB=3,OA=4,AB===5,过点O作OC⊥AB于C,如图1所示:∵sin∠BAO==,∴=,∴OC=>2,∴直线AB与⊙O的位置关系是相离;(2)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图2所示:则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD=(OA+OB﹣AB)=×(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2,∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BN=AB=,∴NE=BN﹣BE=﹣2=,在Rt△MEN中,MN===;故答案为:;(3)连接PB、PF,作PC⊥OB于C,如图3所示:则四边形OCPF是矩形,∴OC=PF=BP=2,BC=OB﹣OC=3﹣2=1,∴PC===,∴圆心P的坐标为:(,2).6.联想我们曾经学习过的三角形外心的概念,我们可引入准外心的定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.请回答下面的三个问题:(1)如图1,若PB=PC,则点P为△ABC的准外心,而且我们知道满足此条件的准外心有无数多个,你能否用尺规作出另外一个准外心Q呢?请尝试完成;(2)如图2,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长;(3)如图3,点B既是△EDC又是△ADC的准外心,BD=BA=BC=2AD,BD∥AC,CD=,求AD的值.解:(1)能用尺规作出另外一个准外心Q,作AB的垂直平分线MN,在MN上取点Q,如图1所示:则QA=QB,点Q为△ABC的准外心;(2)连接BP,如图2所示:∵△ABC为直角三角形,斜边BC=5,AB=3,∴AC===4,∵准外心P在AC边上,①当PB=PC时,设PB=PC=x,则PA=4﹣x,在Rt△ABP中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴PA=4﹣=;②当PA=PC时,PA=AC=2;③当PA=PB时,∵△ABC是直角三角形,此情况不存在;综上所述,准外心P在AC边上,PA的长为或2;(3)∵BD=BA=BC,∴∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,如图3所示:则∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,则DE=CE=CD=,DF=AF=AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,∵BD∥AC,∴∠ABD=∠BAC=∠BCA=2∠ACD=2∠DBF=2∠BCE,∴∠DBF=∠BCE,在△BDF和△CBE中,,∴△BDF≌△CBE(ASA),∴DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得:x2+()2=(4x)2,解得:x=,∴AD=2x=.7.如图,在平面直角坐标系中,AB=AC=10,线段BC在x轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.(1)当△BP E是等腰三角形时,求t的值;(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位.△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD 所在直线相切时,求t的值和此时点C的坐标.解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=6,∴AD===8,∵点B的坐标为(﹣3,0),∴OB=3,∴OD=BD﹣OB=6﹣3=3,∴A(3,8),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=x+4,∴E(0,4),∴OE=4,BE===5,当△BPE是等腰三角形有三种情况:①当BE=BP时,则3+3t=5,解得:t=;②当BE=EP时,则3t=3,解得:t=1;③当BP=PE时,∵BP=PE,AB=AC,∠ABC=∠PBE,∴∠PEB=∠ACB=∠ABC,∴△PBE∽△ABC,∴=,即=,解得:t=;综上所述,当△BPE是等腰三角形时,t的值为或1或;(2)由题意得:C(9+2t,0),∴BC=12+2t,BD=CD=6+t,OD=3+t,设F为EP的中点,连接OF,作FH⊥AD于H,FG⊥OP于G,如图所示:则四边形FGDH是矩形,FG∥EO,∴FG是△POE的中位线,∴PG=OG=OP=t,FG=OE=2,∴F(t,2),∵四边形FGDH是矩形,∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,∵以EP为直径的圆与动线段AD所在直线相切,∴FH=EP=3﹣t,在Rt△POE中,EP2=OP2+OE2,即:4(3﹣t)2=(3t)2+42,解得:t=1或t=﹣(不合题意舍去),∴C(11,0),∴以EP为直径的圆与动线段AD所在直线相切时,t的值为1,此时点C的坐标为(11,0).8.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE 的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.9.【操作体验】如图①,已知线段AB和直线1,用直尺和圆规在1上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点(1)在图②中,连接P1A,P1B,说明∠AP1B=30°【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹);【深入探究】(3)已知矩形ABCD,BC=2,AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,求m的取值范围;(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=120°,若点P绕点A逆时针旋转60°到点Q,求PQ的最小值.解:(1)如图②,连接AP1,BP1,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=4,∴⊙O的半径为2,即OE=OG=2,∵OG⊥EF,∴EH=,∴OH=,∴GH=2﹣,∴BE≤AB<MB,∴3≤m<2+,故答案为:3≤m<2+;(4)如图⑤,构建⊙O,使∠COB=120°,在优弧上取一点H,则∠CHB=60°∴∠CPB=120°,由旋转得:△APQ是等边三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=,OF=3+1=4,∴AO==,∴AE=﹣2=AP,∴PQ=AP=﹣2.10.如图,线段AB是⊙O的直径,C、D是半圆的三等分点,过点C的直线与AD的延长线垂直,垂足为点E,与AB的延长线相交于点F,连接OE,交AC于点G.(1)求证:FC是⊙O的切线;(2)连接DC、CO,判断四边形ADCO的形状,并证明;(3)求OG与GE的比值.(1)证明:连接OC,∵C、D是半圆的三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AE,∴∠OCF=∠AEC=90°,∴OC⊥EF,∴FC是⊙O的切线;(2)解:四边形ADCO是菱形,理由如下:连接DC、DO,由(1)知==,∴∠AOD=∠DOC=COB=×180°=60°,又∵OA=OD=OC,∴△OAD与△OCD是等边三角形,∴OA=OD=AD,OD=OC=DC,∴OA=AD=DC=OC,∴四边形ADCO是菱形;(3)解:由(1)知,OC∥AE,∴△OCG∽△EAG,△FCO∽△FEA,∠COF=∠EAF=60°,∴=,=,∴=,在Rt△OCF中,∠F=30°,设OC=r,则OF=2r,∴==,∴=,∴OG与GE的比值为.11.已知:CD为△ABC的外角平分线,交△ABC的外接圆O于D.(1)如图1,连接0A,OD,求证:∠AOD=2∠BCD;(2)如图2.连接BC,若CB平分∠ACD,求证:AB=BD;(3)如图3,在(2)的条件下,在AB上取一点E,BD上取一点F.连接DE、AF交于点M,连接EF,若∠DMF=60°,AC=EF=7,CD=8(DF>BF),求AE的长.解:(1)如图1,连接BD,∵CD为△ABC的外角平分线,∴∠HCD=∠BCD,∵∠HCD=∠ABD,∴∠ABD=∠BCD,∵∠AOD=2∠ABD,∴∠AOD=2∠BCD;(2)∵CB平分∠ACD,∴∠ACB=∠DCB,∴=,∴AB=BD;(3)如图3,作FG⊥AB于G,EP⊥AF于P,CN⊥AC交AC的延长线于N.在Rt△CDN中,∵∠DCN=60°,CD=8,∴∠CDN=30°,∴CN=CD=4,DN=4,∴AD===13,∵AB=BD,∠B=60°,∴∠ABC是等边三角形,∴AD=DB=BD=13,∠DAB=60°,∵∠DMF=∠ADM+∠MAD=60°,∠MAE+∠MAD=60°,∴∠ADE=∠BAF,∵∠DAE=∠B,∴△ADE≌△BAF(ASA),∴AE=BF,设AE=BF=x,则BE=13﹣x,BG=x,EG=13﹣x,FG=x,在Rt△EFG中,72=(13﹣x)2+(x)2,解得x=5或8(舍弃),∴AE=BF=5.12.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长A0与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)证明:OA2=OD•OP;(3)若BC=6,tan∠F=,求cos∠ACB的值.(1)证明:连接OB,如图1所示:∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∵BA⊥PF,∴AD=BD,即OP垂直平分AB,∴PA=PB,∴∠PAB=∠PBA,∵OA=OB,∴∠OAB=∠OBA,∴∠PAB+∠OAB=∠PBA+∠OBA=90°,即∠OAP=90°,∴OA⊥PA,∴直线PA为⊙O的切线;(2)∵∠ADO=∠OAP=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,∴OA2=OD•OP;(3)解:连接AE,如图2所示:∵AC为直径,∴∠ABC=90°,∵OD垂直平分AB,∴OD∥BC,∴OD是△ABC的中位线,∴OD=BC=3,设DE=x,则OE=OA=OF=3+x,∵OD垂直平分AB,∴=,∴∠F=∠DAE,∴tan∠DAE=tan∠F=,∴AD=2DE=2x,在Rt△ADF中,tan∠F==,∴=,解得:x=2,∴AD=4,BC=6,OA=OE=5,在Rt△ABC中,AC=2OA=10,∴cos∠ACB===.13.如图1,在矩形ABCD中,AB=18cm,BC=24cm.在Rt△GEF中,∠GFE=90°.EF =12cm,GF=16cm.E,F两点在BC边上,GE,GF两边分别与矩形ABCD对角线BD交于M,N两点.现矩形ABCD固定不动,△GEF从点F与点B重合的位置出发,沿BC以2cm/s的速度向点C运动,点P从点F出发,在折线FG﹣GE上以4cm/s的速度向点E运动.⊙G是以G为圆心.GP的长为半径的圆.△GEF与点P同时出发,当点E到达点C 时,△GEF和点P同时停止运动.设运动的时间是t(单位:s).(1)当t=2s时,PN= 5 cm,GM=cm;(2)当△PGE为等腰三角形时,求t的值;(3)当⊙G与BD相切时,求t的值.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.14.如图1,已知AB是⊙O的直径,AM和BN是⊙O的两条切线,∠是⊙O的半圆弧上一动点(不与A,B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.(1)求证:CD为⊙O的切线;(2)求证:AB2=4AD•BC;(3)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.(1)证明:如图1,连接OE,OC,在△BCO与△ECO中,,∴△BCO≌△ECO(SSS),∴∠OEC=∠OBC,∵BN是⊙O的切线,∴AB是⊙O的直径,∴AB⊥BN,∴∠ABC=90°,∴∠OEC=90°,∴CD为⊙O的切线;(2)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.15.如图,A(﹣5,0),B(﹣3,0)点C在y的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°,点P从点A出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.(1)当时t=1,求PC的长;(2)当∠BCP=15°时,求t的值;(3)以线段PC为直径的⊙Q随点P的运动而变化,当⊙Q与四边形ABCD的边(或边所在的直线)相切时,求t的值.解:(1)A(﹣5,0),B(﹣3,0),∴OA=5,OB=3,当t=1时,AP=1,∴OP=OA﹣AP=4,∵∠CBO=45°,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠OCB=45°,OC=OB=3,∴PC===5;(2)分两种情况:如图1所示:①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∴∠OPC=30°,∴OP=OC=3,∴AP=OA﹣OP=5﹣3,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣3,②当P在点B的右侧时,∵∠OCB=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∴OP=OC=,∴AP=OA﹣OP=5﹣,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣;综上所述,当∠BCP=15°时,t的值为(5﹣3)秒或(5﹣)秒;(3)如图2中,由题意知,若该圆与四边形ABCD的边相切,有以下三种情况:①当该圆与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP1=OC=3,此时AP1Q=5+3=8,∴t=8;②当该圆与CD相切于点C时,有P2C⊥CD,即点P2与点O重合,此时AP2=5,∴t=5;③当该圆与AD相切时,设P3(5﹣t,0),则Q(,),半径r2=()2+()2,作QH⊥AD于点H,则QH=,∵QH2=r2,∴()2=()2+()2,解得t=,综上所述,t的值为8秒或5秒或秒.。
2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。
九年级数学九上通关宝典18——《圆》中的动点问题

九上通关宝典18——《圆》中的动点问题一、解答题(共6小题;共100分)1. 如图(),线段,以线段为直径画,为上的动点,连接,过点作的切线与的延长线交于点,为的中点,连接.(1)求证:是的切线;(2)填空:①当时,四边形为正方形;②如图(),当时,为等边三角形.2. 如图所示,中,,,,是的外接圆,是延长线上一点,且,连接,点是射线上的动点.(1)求证是的切线;(2)的长度为多少时,的度数最大,最大度数是多少?请说明理由;(3)运动的过程中,的值能否达到最小,若能,求出这个最小值,若不能,说明理由.3. 如图,在半径为的扇形中,,点是弧上的一个动点(不与点,重合),,垂足分别为点,.(1)当时,求线段的长;(2)在中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.4. 如图1,线段,以线段为直径画,为上的动点,连接,过点作的切线与的延长线交于点,为的中点,连接.(1)求证:是的切线;(2)点在线段的哪个位置时,四边形为正方形?要求说明理由,并求出此时的长;(3)如图 2,当为等边三角形时,求的长.5. 如图,,是上的两个定点,是上的动点(不与,重合),我们称是上关于,的滑动角.(1)已知是上关于,的滑动角.①若是的直径,则;②若的半径是,,求的度数.(2)已知是外一点,以为圆心做一个圆与相交于,两点,是关于,的滑动角,直线,分别交于点,(点与点,点与点均不重合),连接,试探索与,之间的数量关系.6. 已知四边形是边长为的正方形,以为直径在正方形内作半圆,是半圆上的动点(不与点、重合),连接、、、.(1)如图①,当的长度等于时,;当的长度等于时,是等腰三角形;(2)如图②,以边所在直线为轴、边所在直线为轴,建立如图所示的直角坐标系(点即为原点),把、、的面积分别记为、、.点坐标为,试求的最大值,并求出此时,的值.答案第一部分1. (1)连接,,如图,为直径,,为直角三角形,又为的中点,,在和中,,,,是的切线.(2)①;②2. (1)如图,连接,,,,是等边三角形,,,,,,是的切线.(2)如图,当点运动到处时,即时,的度数达到最大,为.理由如下:若点不在处时,不妨设点在的延长线上时,连接,与交于一点,记为点,连接,则.(3)如图,作点关于射线的对称点,则,当点,,三点共线时,的值达到最小,最小值为.过点作的垂线,垂足记为点,连接,在中,,为等边三角形,故为的中点,,,在中,根据勾股定理得,.的最小值为.3. (1)如图,,,,,,,即线段的长为.(2)存在,保持不变.理由:连接,如图,,,,,,和分别是线段和的中点,,保持不变.4. (1)如图,连接,连接.为直径,是直角,为直角三角形.又为的中点,.又,,,于,是的切线.(2)在线段的中点时,四边形为正方形.在边的中点时,由为的中点,,且.又,四边形是平行四边形.又是切线,,平行四边形是矩形.又,矩形是正方形,.(3)如图,连接.为等边三角形,,,从而.由,并根据勾股定理,可求得.5. (1)①;②半径是,,是等腰直角三角形..当在劣弧上时(2)根据点在上的位置分为以下四种情况.第一种情况:点在外,且点在点与点之间,点在点与点之间,如图①.,.第二种情况:点在外,且点在点与点之间,点在点与点之间,如图②.,.第三种情况:点在外,且点在点与点之间,点在点与点之间,如图③.,.第四种情况:点在内,如图④,.6. (1);或【解析】为等腰三角形分为两种情况,如图.当点为正方形的中心时,此时..设半圆的圆心为,当与相切,且与不重合时,此时.,是圆的切线,,且平分.,,..(2)如图,过点分别作,,垂足分别为、,延长交于点,则.点坐标为,,,.在、及中,,,,为直径,,即..当时,,有最大值.。
中考数学频考点突破--圆的动点问题

中考数学频考点突破--圆的动点问题1.如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB⌢上异于A、B 的动点,过点C作CD∠OA于点D,作CE∠OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.(1)求证:四边形OGCH是平行四边形;⌢上运动时,在CD、CG、DG中,是否存在长度不变的线段?(2)当点C在AB若存在,请求出该线段的长度;(3)若CD=x,直接写出CD2+3CH2的结果.2.如图,在每个小正方形的边长为1的网格中,△ABO的顶点A,B,O均落在格点上,OB为∠O的半径.(1)∠AOB的大小等于(度);(2)将△ABO绕点O顺时针旋转,得△A′B′O,点A,B旋转后的对应点为A′,B′.连接AB′,设线段AB′的中点为M,连接A′M.当A′M取得最大值时,请在如图所示的网格中,用无刻度的直尺画出点B′,并简要说明点B′的位置是如何找到的(不要求证明).3.如图,AB是⊙O的直径,CD是⊙O的切线,切点为C,过B作BE⊥CD,垂足为点E,直线BE交⊙O于点F.(1)判断∠ABC与∠EBC的数量关系,并说明理由.(2)若点C在直径AB上方半圆弧上运动,⊙O的半径为4,则①当CB的长为时,以B、O、E、C为顶点的四边形是正方形;②当BE的长为时,以B、O、F、C为顶点的四边形是菱形.4.一块含有30°角的三角板ABC如图所示,其中∠C=90°,∠A=30°,BC=3cm.将此三角板在平面内绕顶点A旋转一周.(1)画出边BC旋转一周所形成的图形;(2)求出该图形的面积.5.如图AB为∠O的直径,C为∠O上半圆的一个动点,CE∠AB于点E,∠OCE的角平分线交∠O于D点.(1)当C点在∠O上半圆移动时,D点位置会变吗?请说明理由;(2)若∠O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.6.如图,在ΔABC中,∠ACB=90°,∠ABC=45°,BC=12cm,半圆O的直径DE=12cm.点E与点C重合,半圆O以2cm/s的速度从左向右移动,在运动过程中,点D、E始终在BC所在的直线上.设运动时间为x(s),半圆O与ΔABC的重叠部分的面积为S(cm2).(1)当x=0时,设点M是半圆O上一点,点N是线段AB上一点,则MN的最大值为;MN的最小值为.(2)在平移过程中,当点O与BC的中点重合时,求半圆O与ΔABC重叠部分的面积S;(3)当x为何值时,半圆O与ΔABC的边所在的直线相切?7.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”。
中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
中考数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)

中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)1.(2021•益阳)如图,已知▱ABCD的面积为4,点P在AB边上从左向右运动(不含端点),设△APD的面积为x,△BPC的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解答】解:∵▱ABCD的面积为4,x+y是平行四边形面积的一半,∴x+y=2,∴y=2﹣x,∴y是x的一次函数,且当x=0时,y=2;x=2时,y=0;故只有选项B符合题意.2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.7【答案】C【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到PA﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴BC=2BE=2t=2×3=6.故选:C.3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】B【解答】解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE =2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N 是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A.B.2C.D.【答案】 A【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.∵四边形ABCD是正方形,∴O是BD的中点,∵点M是AB的中点,∴N′是△ABC的重心,∴N′O=BO,∴N′D=BD,∵A、C关于BD对称,∴NA=NC,∴AN+MN=NC+MN,∵当M、N、C共线时,y的值最小,∴y的值最小就是MC的长,∴MC=2,设正方形的边长为m,则BM=m,在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,∴20=m2+(m)2,∴m=4,∴BD=4,∴a=N′D=BD=×4=,故选:A.6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA 方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【解答】解:如图1中,当点N′落在AB上时,取CN的中点T,连接MT.∵CM=t(cm),CN=2t(cm),CT=TN,∴CT=TN=t(cm),∵△ABC是等边三角形,∴∠C=∠A=60°,∴△MCT是等边三角形,∴TM=TC=TN,∴∠CMN=90°,∵MP∥AC,∴∠BPM=∠A=∠MPN=60°,∠BMP=∠C=60°,∠C+∠CMP=180°,∴∠CMP=120°,△BMP是等边三角形,∴BM=MP,∵∠CMP+∠MPN=180°,∴CM∥PN,∵MP∥CN,∴四边形CMPN是平行四边形,∴PM=CN=BM=2t,∴3t=6,∴t=2,如图2中,当0<t≤2时,过点M作MK⊥AC于K,则MK=CM•sin60°=t,∴S=•(6﹣t)•t=﹣t2+t.如图3中,当2<t≤6时,S=•MQ•PQ=×(6﹣t)×(6﹣t)=×(6﹣t)2,观察图象可知,选项A符合题意,故选:A.7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s 的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】A【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=DA=2cm,∠B=∠D=60°.∴△ABC、△ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1所示,当0≤x≤1时,AQ=2xcm,AP=xcm,作PE⊥AB于E,∴PE=sin∠PAE×AP=(cm),∴y=AQ•PE=×2x×=,故D选项不正确;如图2,当1<x≤2时,AP=xcm,CQ=(4﹣2x)cm,作QF⊥AC于点F,∴QF=sin∠ACB•CQ=(cm),∴y===,故B选项不正确;如图3,当2<x≤3时,CQ=(2x﹣4)cm,CP=(x﹣2)cm,∴PQ=CQ﹣CP=2x﹣4﹣x+2=(x﹣2)cm,作AG⊥DC于点G,∴AG=sin∠ACD•AC=×2=(cm),∴y===.故C选项不正确,故选:A.8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是()A.B.C.D.【答案】D【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,此时阴影部分为等腰直角三角形,∴y=,该函数是二次函数,且开口向上,排除B,C选项;当点Q在弧BD上时,补全图形如图所示,阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,设∠QOB=θ,则∠QOF=2θ,∴,S弓形QBF=﹣S△QOF,当θ=45°时,AP=x=1+≈1.7,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.14,当θ=30°时,AP=x≈1.87,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.24,当θ=60°时,AP=x≈1.5,y≈0.98,在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.故选:D.法二、当1<x<2时,即P在OB之间时,设∠QOD=θ,则θ∈(0,),则PQ=cosθ,OP=sinθ,则弧QD的长为θπ,此时S阴影=+θπ+sinθcosθ=+θ+sin2θ,∴y随x的增大而增大,而且增加的速度越来越慢,分析四个选项中的图象,只有选项D符合.故选:D.9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN 的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【答案】B【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=x=x,∴△AMN的面积S=×x×x=x2,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵AB=10,AC=BD=1,∴CD=10﹣1﹣1=8,∵PC=t,∴AP=t+1,PB=8﹣t+1=9﹣t,设围成的两个圆锥底面圆半径分别为r和R则:2πr=;.解得:r=,R=,∴两个圆锥的底面面积之和为S===,根据函数关系式可以发现该函数图象是一个开口向上的二次函数.故选:D.11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3B.6C.8D.9【答案】B【解答】解:由图2知,AB+BC=2,∵AB=BC,∴AB=,∵AB=BC,BD⊥AC,∴AC=2AD,∠ADB=90°,在Rt△ABD中,AD²+BD²=AB²=13①,设点M到AC的距离为h,∴S△ADM=AD•h,∵动点M从A点出发,沿折线AB→BC方向运动,∴当点M运动到点B时,△ADM的面积最大,即h=BD,由图2知,△ADM的面积最大为3,∴AD•BD=3,∴AD•BD=6②,①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,∴(AD+BD)²=25,∴AD+BD=5(负值舍去),∴BD=5﹣AD③,将③代入②得,AD(5﹣AD)=6,∴AD=3或AD=2,∵AD>BD,∴AD=3,∴AC=2AD=6,故选:B.12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A.B.C.D.【答案】D【解答】解:①当M点运动在AE段,此时S=S△HAE+S△GHD﹣S△EOM﹣S△GPS,∵四边形ABCD是矩形,直线l⊥AB,H、E、F、G为AD、AB、BC、CD的中点,∴AH=AD==1,AE=AB=,S△HAE=S△GHD,S△EOM=S△GPS,∴S=2S△HAE﹣2S△EOM,∴S△HAE=AE•AH=;∵直线l⊥AB,∴∠OME=∠A=90°,∠HEA=∠OEM,∴△HAE∽△OME,∴,∴OM=,又∵ME=AE﹣AM=﹣x,∴OM=ME=,∴S△EOM=,∴S=2S△HAE﹣2S△EOM=,此时,对应抛物线开口向下;②当M点运动到在BE段,此时,S=S△HAE+S△GHD+S△EO1M1+S△GP1S1,即S=2S△HAE+2S△EO1M1,与①同理,O1M1=,又∵M1E=AM1﹣AE=x﹣,∴O1M1=M1E=,∴S△EO1M1=,∴S=2S△HAE+2S△EO1M1=,此时,对应抛物线开口向上,故选:D.13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M 从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB 运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是()①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6 cm.∵当t=6s时,S=9cm2,∴×AB×BC=9.∴BC=3cm.∵当6≤t≤9时,S=且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,∴HC=3 cm,即点H为CD的中点.∴BH=cm.∴AB=AH=BH=6cm,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=,∴ME=AM•sin60°=tcm,∴S=AN×ME=cm2.∴③正确;④当t=9+时,CM=cm,如图,由①知:BC=3cm,∴MB=BC﹣CM=2cm.∵AB=6cm,∴tan∠MAB=,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°﹣60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3时,此时点M在边BC上,如图,此时MB=9+3﹣t,∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是()A.B.C.D.【答案】C【解答】解:当0≤x≤3时,在Rt△APQ中,∠QAP=90°,AP=AQ=x,∴PQ2=2x2.∴y=PQ2=2x2;当3≤x≤4时,DQ=x﹣3,AP=x,∴y=PQ2=32+32=18;当4≤x≤7时,CP=7﹣x,CQ=7﹣x,∴y=PQ2=CP2+CQ2=2x2﹣28x+98.故选:C.15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵BC∥AD,∴∠ACB=∠DAC,∵∠PEC=∠D=90°,∴△PCE∽△CAD,∴==,∵AD=3,CD=4,∴AC==5,∴当P在CA上时,即当0<x≤5时,PE==x,CE==x,∴y=PE•CE==x2,当P在AD上运动时,即当5<x≤8时,PE=CD=4,CE=8﹣x,∴y=PE•CE=×4×(8﹣x)=16﹣2x,综上,当0<x≤5时,函数图象为二次函数图象,且y随x增大而增大,当5<x≤8时,函数图象为一次函数图象,且y随x增大而减小,故选:D.16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q 两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案】(2+3)【解答】解:由图分析易知:当点P从O→A运动时,点Q从O→C运动时,y不断增大,当点P运动到A点,点Q运动到C点时,由图象知此时y=PQ=2cm,∴AC=2cm,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC==cm,当点P运动到D点,Q运动到B点,结合图象,易知此时,y=BD=2cm,∴OD=OB=BD=1cm,在Rt△ADO中,AD===2(cm),∴AD=AB=BC=DC=2cm,如图,当点P在A﹣D段上运动,点P运动到点E处,点Q在C﹣B段上运动,点Q运动到点F处时,P、Q两点的距离最短,此时,OE=OF==,AE=CF===,∴当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为:(cm),故答案为:(2+3).17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y 关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是.【答案】﹣1【解答】解:∵图象过点(0,2),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC•sin45°=,\又∵∠BEN=∠FEA,∠=∠AFE∴△NBE∽△AFE∴,即,解得:x=,∴图象最低点的横坐标为:﹣1.故答案为:.18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【答案】【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,在Rt△APF中,AP=x,∠PAF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.。
专题十 圆的综合问题-2023年中考二轮专题复习(原卷版)(全国适用)

专题十圆的综合问题一、非动态问题例题1如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作EF AC ⊥于点E ,交AB 的延长线于点F ,连接AD .(1)求证:EF 是O 的切线.(2)求证:FBD FDA △△∽.(3)若4DF =,2BF =,求O 的半径长.练习题1.在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D .(1)如图①,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若∠ABC =66°,求∠ACM ;(2)如图②,过点D 作⊙O 的切线DE 交AC 于点E ,求证:AE =EC ;(3)如图③,在(1)(2)的条件下,若tanA =34,求S △ADE :S △ACM 的值.2.如图1,在Rt △ABC 中,90C ∠=︒,以BC 为直径的O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为O 的切线.(2)若32MH =,34AC BC =,求O 的半径.(3)如图2,在(2)的条件下分别过点A 、B 作O 的切线,两切线交于点D ,AD 与O 相切于点N ,过N 点作NQ BC ⊥,垂足为E ,且交O 于Q 点,求线段AO 、CN 、NQ 的长度.3.如图,点P 在y 轴的正半轴上,P 交x 轴于B 、C 两点,以AC 为直角边作等腰Rt △ACD ,BD 分别交y 轴和P 于E 、F 两点,连接AC 、FC ,AC 与BD 相交于点G .(1)求证:ACF ADB =∠∠;(2)求证:CF DF =;(3)DBC ∠=______°;(4)若3OB =,6OA =,则△GDC 的面积为______.4.如图,四边形ABCD 内接于半圆O ,BC 是半圆O 的直径,CE 是半圆O 的切线,CE AD ⊥交AD 的延长线于点E ,14DE BC =,OE 与CD 相交于点F ,连接BF 并延长交AE 的延长线于点G ,连接CG .(1)求证:AD BC ∥.(2)探究OF 与BF 的数量关系.(3)求tan GBC ∠的值.5.【概念提出】圆心到弦的距离叫做该弦的弦心距.【数学理解】如图①,在O 中,AB 是弦,OP AB ⊥,垂足为P ,则OP 的长是弦AB 的弦心距.(1)若O 的半径为5,OP 的长为AB 的长为______.(2)若O 的半径确定,下列关于AB 的长随着OP 的长的变化而变化的结论:①AB 的长随着OP 的长的增大而增大;②AB 的长随着OP 的长的增大而减小;③AB 的长与OP 的长无关.其中所有正确结论的序号是______.(3)【问题解决】若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为______°.(4)已知如图②给定的线段EF 和O ,点Q 是O 内一定点.过点Q 作弦AB ,满足AB EF =,请问这样的弦可以作______条.6.已知O 为ACD ∆的外接圆,AD CD =.(1)如图1,延长AD 至点B ,使BD AD =,连接CB .①求证:ABC ∆为直角三角形;②若O 的半径为4,5AD =,求BC 的值;(2)如图2,若90ADC ∠=︒,E 为O 上的一点,且点D ,E 位于AC 两侧,作ADE ∆关于AD 对称的图形ADQ ∆,连接QC ,试猜想QA ,QC ,QD 三者之间的数量关系并给予证明.7.定义:两个角对应互余,且这两个角的夹边对应相等的两个三角形叫做余等三角形.如图1,在△ABC 和△DEF 中,若∠A +∠E =∠B +∠D =90°,且AB =DE ,则△ABC 和△DEF 是余等三角形.(1)图2,等腰直角△ABC ,其中∠ACB =90°,AC =BC ,点D 是AB 上任意一点(不与点A ,B 重合),则图中△________和△________是余等三角形,并求证:AD 2+BD 2=2CD 2.(2)图3,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为5,且AD 2+BC 2=100,①求证:△ABC 和△ADC 是余等三角形.②图4,连接BD 交AC 于点I ,连接OI ,E 为AI 上一点,连接EO 并延长交BI 于点F ,若∠ADB =67.5°,IE =IF ,设OI =x ,S △y 关于x 的函数关系式.8.如图1,在等腰ABC 中,AB AC ==120BAC ∠=︒,点D 是线段BC 上一点,以DC 为直径作O ,O 经过点A .(1)求证:AB 是O 的切线;(2)如图2,过点A 作AE BC ⊥垂足为E ,点F 是O 上任意一点,连结EF .①如图2,当点F 是DC 的中点时,求EF BF的值;②如图3,当点F 是O 上的任意一点时,EF BF 的值是否发生变化?请说明理由.(3)在(2)的基础上,若射线BF 与O 的另一交点G ,连结EG ,当90GEF ∠=︒时,直接写出EF EG -的值.9.【证明体验】(1)如图1,过圆上一点A 作O 切线AD ,AC 是弦(不是直径),若AB 是直径,连接BC ,求证:DAC ABC ∠=∠;(2)如图2,若AB 不是直径,DAC ∠______ABC ∠(填“>”、“<”或“=”);(3)如图3,(1)、(2)的结论是否成立,说明理由;【归纳结论】(4)由以上证明可知:切线与弦的夹角等于它所夹的弧对的______;【结论应用】(5)如图4,ABC 内接圆于O ,弦BE AB ⊥,交AC 于F ,过点A 作O 的切线AD ,交EB 的延长线于点D .若6AD =,2sin 3ACB ∠=,求线段BE 的长.10.定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形(1)如图①,半圆O的直径为BC,OA⊥OB,点E在过点A的切线上,且BE=BA,点D 是AC 上的动点(不在点A、C上),求证:四边形AEBD为准平行四边形.(2)如图②,准平行四边形ABCD内接于⊙O,∠B≠∠D,若⊙O的半径为5,AB=AD,则①准平行四边形ABCD的面积S是线段AC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;②准平行四边形ABCD的面积S有最大值吗?如果有求出最大值,如果没有,说明理由.二、动点问题例题2(2021·浙江温州·三模)如图,在⊙O中,AB是直径,点D在圆内,点C在圆上,CD⊥半径OA于点E,延长AD交⊙O于F点,连结BF.当点M从点C匀速运动到点D 时,点N恰好从点B匀速运动到点A,且M,N同时到达点E.(1)请判断四边形ACBF 的形状,并说明理由.(2)连结AM 并延长交⊙O 于点G ,连结OG ,DN .记CM =x ,AN =y ,已知y =12.①求出AE 和BF 的长度.②当M 从C 到E 的运动过程中,若直线OG 与四边形BFDN 的某一边所在的直线垂直时,求所有满足条件的x 的值.练习题1.(2021·浙江温州·一模)如图,在矩形ABCD 中,AB =8,BC =6,E 是线段AB 上的一个动点,经过A ,D ,E 三点的⊙O 交线段AC 于点K ,交线段CD 于点H ,连接DE 交线段AC 于点F .(1)求证:AE =DH ;(2)连接DK ,当DE 平分∠ADK 时,求线段DE 的长;(3)连接HK ,KE ,在点E 的运动过程中,当线段DH ,HK ,KE 中满足某两条线段相等时,求出所有满足条件的AE 的长.2.(2022·河北·石家庄外国语教育集团一模)已知,在半圆O 中,直径AB =6,点C ,D 在半圆AB 上运动,(点C ,D 可以与A ,B 两点重合),弦CD =3.(1)如图1,当∠DAB=∠CBA 时,求证:△CAB ≌△DBA ;(2)如图2,若∠DAB =15°时,求图中阴影部分(弦AD 、直径AB 、弧BD 围成的图形)的面积;(3)如图3,取CD 的中点M ,点C 从点A 开始运动到点D 与点B 重合时结束,在整个运动过程中:①点M 到AB 的距离的最小值是___________;②直接写出点M 的运动路径长___________.3.(2022·湖南长沙·九年级期中)已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧 AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S .①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .4.(2022·广东·深圳中学一模)(1)【基础巩固】如图1,△ABC 内接于⊙O ,若∠C =60°,弦AB =r =______;(2)【问题探究】如图2,四边形ABCD 内接于⊙O ,若∠ADC =60°,AD =DC ,点B 为弧AC 上一动点(不与点A ,点C 重合)求证:AB +BC =BD(3)【解决问题】如图3,一块空地由三条直路(线段AD 、AB 、BC )和一条道路劣弧 CD围成,已知CM DM =千米,∠DMC =60°, CD的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M 另外三个入口分别在点C 、D 、P 处,其中点P 在 CD 上,并在公园中修四条慢跑道,即图中的线段DM 、MC 、CP 、PD ,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.5.(2022·四川·绵阳市桑枣中学一模)在矩形ABCD 中,5AB cm =,BC 10cm =,点P 从点A 出发,沿AB 边向点B 以每秒1cm 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以每秒2cm 的速度移动,P 、Q 两点在分别到达B 、C 两点时就停止移动,设两点移动的时间为t 秒,解答下列问题:(1)如图1,当t 为几秒时,PBQ △的面积等于24cm ?(2)如图2,以Q 为圆心,PQ 为半径作Q .在运动过程中,是否存在这样的t 值,使Q 正好与四边形DPQC 的一边(或边所在的直线)相切?若存在,求出t 值;若不存在,请说明理由.6.(2022·广东深圳·一模)在O 中,弦CD 平分圆周角ACB ∠,连接AB ,过点D 作DE //AB 交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若1tan3CAB ∠=,且B 是CE 的中点,O ,求DE 的长.(3)P 是弦AB 下方圆上的一个动点,连接AP 和BP ,过点D 作DH BP ⊥于点H ,请探究点P 在运动的过程中,BH AP BP +的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.7.(2021·四川德阳·二模)如图,在△ABC 中,AB =AC ,AO ⊥BC 于点O ,OE ⊥AB 于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .(1)求证:AC 是⊙O 的切线;(2)若点F 是OA 的中点,OE =3,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE +PF 取最小值时,直接写出BP 的长.8.(2022·湖南永州·一模)如图,在ABC ∆中,AB AC =,以AB 为直径的O 交BC 于D ,过D 点作O 的切线DE 交AC 于E .(1)求证:DE AC ⊥;(2)若10AB =,3cos 5ABC ∠=,求DE 的长;(3)在(2)的条件下,若P 为线段BD 上一动点,过P 点作BC 的垂线交AB 于N ,交CA 的延长线于M ,求证:PN PM +是定值,并求出定值是多少?9.(2022·江苏·南通市海门区东洲国际学校一模)[问题提出](1)如图1,已知线段AB =4,点C 是一个动点,且点C 到点B 的距离为2,则线段AC 长度的最大值是________;[问题探究](2)如图2,以正方形ABCD 的边CD 为直径作半圆O ,E 为半圆O 上一动点,若正方形的边长为2,求AE 长度的最大值;[问题解决](3)如图3,某植物园有一块三角形花地ABC,经测量,AC=BC=120米,∠ACB =30°,BC下方有一块空地(空地足够大),为了增加绿化面积,管理员计划在BC下方找一点P,将该花地扩建为四边形ABPC,扩建后沿AP修一条小路,以便游客观赏.考虑植物园的整体布局,扩建部分 BPC需满足∠BPC=60°.为容纳更多游客,要求小路AP的长度尽可能长,问修建的观赏小路AP的长度是否存在最大值?若存在,求出AP的最大长度;若不存在,请说明理由.10.(2021·江苏南京·九年级期末)如图,在平行四边形ABCD中,AB=BC=6,∠B=45°,点E为CD上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE CD⊥处,利用直尺与圆规作出点E与F.(保留作图痕迹)(2)在(1)的条件下,证明AF ABAE AD=.(3)【探索与证明】点E运动到任何一个位置时,求证AF AB AE AD=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值______.三、动圆问题例题3(2021·山东威海·一模)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,点O 在射线AC 上(点O 不与点A 重合),过点O 作OD ⊥AB ,垂足为D ,以点O 为圆心,OD 为半径画半圆O ,分别交射线AC 于E ,F 两点,设OD =x .(1)如图1,当点O 为AC 边的中点时,则x =;(2)如图2,当点O 与点C 重合时,连接DF ,求弦DF 的长;(3)若半圆O 与BC 无交点,则x 的取值范围是.练习题1.(2022·江苏·常州市武进区前黄实验学校一模)如图,在平面直角坐标系中,矩形ABCD 的边BC 落在x 轴上,点B 的坐标为()1,0-,3AB =,6BC =,边AD 与y 轴交于点E .(1)直接写出点A 、C 、D 的坐标;(2)在x 轴上取点()3,0F ,直线()0y kx b k =+≠经过点E ,与x 轴交于点M ,连接EF .①当15MEF ∠=︒时,求直线()0y kx b k =+≠的函数表达式;②当以线段EM 为直径的圆与矩形ABCD 的边所在直线相切时,求点M 的坐标.9.(2021·江苏镇江·一模)如图1,ABC 中,5AB =,AC =7BC =,半径为r 的O 经过点A 且与BC 相切,切点M 在线段BC 上(包含点M 与点B 、C 重合的情况).(1)半径r 的最小值等于__________.(2)设BM =x ,求半径r 关于x 的函数表达式;(3)当BM =1时,请在图2中作点M 及满足条件的O .(要求:尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗)10.(2022·浙江温州·一模)如图,在矩形ABCD 中,AB =4,BC =6,点E ,F 分别在边AD ,CD 上,且∠ABE =∠CBF ,延长BE 交CD 的延长线于点G ,H 为BG 中点,连结CH 分别交BF ,AD 于点M ,N .(1)求证:BF CH ⊥.(2)当FG =9时.①求tan FBG ∠的值.②在线段CH 上取点P ,以E 为圆心,EP 为半径作E (如图),当E 与四边形ABMN 某一边所在直线相切时,求所有满足条件的HP 的长.11.(2022·江苏镇江·九年级期末)如图:已知线段5AM =,射线AS 垂直于AM ,点N 在射线AS 上,设AN n =,点P 在经过点N 且平行于AM 的直线上运动,PAM ∠的平分线交直线NP 于点Q ,过点Q 作QB AP ∥,交线段AM 于点B ,连接PB 交AQ 于点C ,以Q 为圆心,QC 为半径作圆.(1)求证:PB 与Q 相切;(2)已知Q 的半径为3,当AM 所求直线与Q 相切时,求n 的值及PA 的长;(3)当2n 时,若Q 与线段AM 只有一个公共点,则Q 的半径的取值范围是______.四、圆的图形变换问题例题4平面上,矩形ABCD 与直径为QP 的半圆K 如图摆放,分别延长DA 和QP 交于点O ,且∠DOQ =60°,OQ =OD =3,OP =2,OA =AB =1.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB 上.(填“在”或“不在”)求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中.简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值:(3)如图,当点P 恰好落在BC 边上时.求α及S 阴影.拓展如图.当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设BM =x (x >0),用含x 的代数式表示BN 的长,并求x 的取值范围.探究当半圆K 与矩形ABCD 的边相切时,求sin α的值.练习题1.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O 的半径.2.如图,已知AB 为O 的直径,CD 为弦.CD =AB 与CD 交于点E ,将CD沿CD 翻折后,点A 与圆心O 重合,延长BA 至P ,使AP OA =,连接PC .(1)求O 的半径;(2)求证:PC 是O 的切线;(3)点N 为 ADB 的中点,在PC 延长线上有一动点M ,连接MN 交AB 于点G .交 BC 于点F的值.(F与B、C不重合).求NG NF3.如图1,在Rt△ABC中,∠C=90°,AB=10,BC=6,O是AC的中点,以点O为圆心在AC的右侧作半径为3的半圆O,分别交AC于点D、E,交AB于点G、F.(1)思考:连接OF,若OF⊥AC,求AF的长度;(2)探究:如图2,将线段CD连同半圆O绕点C旋转.①在旋转过程中,求点O到AB距离的最小值;②若半圆O与Rt△ABC的直角边相切,设切点为K,连接AK,求AK的长.4.如图,点B在数轴上对应的数是﹣2,以原点O为圆心、OB的长为半径作优弧AB,使C为OB的中点,点D在数轴上对应的数为4.点A点的左上方,且tan∠AOB(1)S扇形AOB=;(2)点P是优弧AB上任意一点,则∠PDB的最大值为;(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,顺时针旋转a(0°≤a≤360°),①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.5.如图1,在正方形ABCD中,AB=10,点O,E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.(1)AG =;(2)如图2,将半圆O 绕点E 逆时针旋转α(0°<α<180°),点O 的对应点为O ′,点F 的对应点为F ′,设M 为半圆O ′上一点.①当点F ′落在AD 边上时,求点M 与线段BC 之间的最短距离;②当半圆O ′交BC 于P ,R 两点时,若PR 的长为53π,求此时半圆O ′与正方形ABCD 重叠部分的面积;③当半圆O ′与正方形ABCD 的边相切时,设切点为N ,直接写出tan ∠END 的值.6.如图,已知⊙O 的半径为2,AB 为直径,CD 为弦,AB 与CD 交于点M ,将弧CD 沿着CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP =OA ,链接PC .(1)求证:PC 是⊙O 的切线;(2)点G 为弧ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E ,交弧BC 于点F (F 与B 、C 不重合).问GE ▪GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.7.如图,在ABE △中,BE AE >,延长BE 到点D ,使DE BE =,延长AE 到点C ,使CE AE =.以点E 为圆心,分别以BE 、AE 为半径作大小两个半圆,连结CD .(1)求证:AB CD =;(2)设小半圆与BD 相交于点M ,24BE AE ==.①当ABE S 取得最大值时,求其最大值以及CD 的长;②当AB 恰好与小半圆相切时,求弧AM 的长.8.在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP ' .(1)如图1,若75O ∠=︒,且BO '与 AB 所在的圆相切于点B .①求APO ∠'的度数.②求AP 的长.(2)如图2,BO '与 AB 相交于点D ,若点D 为 AB 的中点,且//PD OB ,求 AB 的长.9.如图,矩形ABCD 中,4=AD ,AB m =(4m >),点P 是DC 上一点(不与点D ,C 重合),连接AP ,APQ 与APD △关于AP 对称,PM 是过点A ,P ,Q 的半圆O 的切线,且PM 交射线AB 于点M .(1)当AP PM =时,半圆O 与AB 所围成的封闭图形的面积为___________;(2)当Q 在矩形ABCD 内部时,①判断PAQ ∠与AMP ∠是否相等,并说明理由;②若3tan 4PAQ ∠=,求AM 的长;(3)当14DP DC =时,若点Q 落在矩形ABCD 的对称轴上,求m 的值及此时半圆O 落在矩形ABCD 内部的弧长.10.如图1,在正方形ABCD 中,10AB =,点O 、E 在边CD 上,且2CE =,3DO =,以点O 为圆心,OE 为半径在其左侧作半圆O ,分别交AD 于点G ,交CD 延长线于点F .(1)AG =________.(2)如图2,将半圆O 绕点E 逆时针旋转()0180αα︒<<︒,点O 的对应点为O ',点F 对应点为F ',当半圆O '交BC 于P 、R 两点时,若弧PR 的长为5π3,求此时半圆O '与正方形ABCD 重叠部分的面积.(3)当半圆O '与正方形ABCD 相切时,设切点为N ,直接写出tan END ∠的值.11.如图⊙O 中直径AB =2,点E 是AB 的中点,点C 是AE 上的一个动点,将CB 沿线段BC 折叠交AB 于点D .(1)如图1,当∠ABC =20°时,求此时 AC 的长.(2)如图2,连结AC ,当点D 与点О重合时,求此时AC 的长.(3)设AC =x ,DO =y ,请直接写出y 关于x 的函数表达式及自变量x 的取值范围.12.如图,在平行四边形ABCD 中,AB =10,AD =15,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小.(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号).(3)若点Q 恰好落在平行四边形ABCD 的边所在直线上时,直接写出PB 旋转到PQ 时点B 经过的路径的长(结果保留π).13.如图1,四边形ABCD 是正方形,且AB =8,点O 与B 重合,以O 为圆心,作半径长为5的半圆O ,交BC 于E ,交AB 于F ,交AB 延长线于G 点,M 是半圆O 上任一点;发现:AM 的最大值为,S 阴影=.如图2,将半圆O 绕点F 逆时针旋转,旋转角为α(0°<α<180°).思考:(1)若点C 落在半圆O 的直径GF 上,求圆心O 到AB 的距离;(2)若α=90°,求半圆O 落在正方形内部的弧长;探究:在旋转过程中,若半圆O 与正方形的边相切,求点A 到切点的距离.【注:sin37°=35,sin53°=45,tan37°=34】14.如图,在矩形ABCD 中,6AB =,8BC =,O 是AD 的中点,以O 为圆心,在AD 的下方作半径为3的半圆O ,交AD 于点E ,F .(1)思考:连接BD ,交半圆O 于点G 、H ,求GH 的长;(2)探究:将线段AP 连带半圆O 绕点A 顺时针旋转,得到半圆O ',设其直径为E F '',旋转角为α(0180α<<︒);①设F '到直线AD 的距离为m ,当72m >时,求α的取值范围.②若半圆O '与线段AB 相切,或半圆O '与线段BC 相切,设切点为R ,直接写出 F R '的长.(3sin 494︒=,3cos 414︒=,3tan 374︒=,结果保留π)15.如图1,在Rt ABC 中,90C ∠=︒,10AB =,6BC =,O 是AC 的中点,以点O 为圆心在AC 的右侧作半径为3的半圆O ,分别交AC 于点D 、E ,交AB 于点G 、F .思考:连接OF ,若OF AC ⊥,求AF 的长度;探究:如图2,将线段CD 连同半圆O 绕点C 旋转.(1)在旋转过程中,求点O 到距离的最小值;(2)若半圆O 与Rt ABC 的直角边相切,设切点为K ,连接AK ,求AK 的长.16.如图,在矩形ABCD 中,4=AD ,30BAC ∠=︒,点O 为对角线AC 上的动点(不与A 、C 重合),以点O 为圆心在AC 下方作半径为2的半圆O ,交AC 于点E 、F .(1)当半圆O 过点A 时,求半圆O 被AB 边所截得的弓形的面积;(2)若M 为 EF的中点,在半圆O 移动的过程中,求BM 的最小值;(3)当半圆O 与矩形ABCD 的边相切时,求AE 的长.17.如图1,扇形OAB 的半径为4,∠AOB =90°,P 是半径OB 上一动点,Q 是 AB 上一动点.(1)连接AQ 、BQ 、PQ ,则∠AQB 的度数为;(2)当P 是OB 中点,且PQ ∥OA 时,求 AQ的长;(3)如图2,将扇形OAB 沿PQ 对折,使折叠后的 QB'恰好与半径OA 相切于点C .若OP =3,求点O 到折痕PQ 的距离.18.如图1,在Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,以MN 为直径的半圆O 按如图所示位置摆放,点M 与点A 重合,点N 在边AC 的中点处,点N 从现在的位置出发沿AC CB -方向以每秒2个单位长度的速度运动,点M 随之沿AC CB -下滑,并带动半圆O 在平面内滑动,设运动时间为t 秒(0t ≥),点N 运动到点B 处停止,点P 为半圆中点.(1)如图2,当点M 与点A 重合时,连接OP 交边AB 于E ,则EP 为____________;(2)如图3,当半圆的圆心O 落在了Rt ABC ∆的斜边AB 的中线时,求此时的t ,并求出此时CMN ∆的面积;(3)在整个运动的过程中,当半圆与边AB 有两个公共点时,求出t 的取值范围;(4)请直接写出在整个运动过程中点P 的运动路径长.19.如图1,矩形ABCD 中,3AB =,4=AD ,以AD 为直径在矩形ABCD 内作半圆O .(1)若点M 是半圆O 上一点,则点M 到BC 的最小距离为________;(2)如图2,保持矩形ABCD 固定不动,将半圆O 绕点A 顺时针旋转α()090α︒<<︒度,得到半圆O',则当半圆O'与BC相切时,求旋转角α的度数;AD'与边BC有交点时,求tanα的取值范围.(3)在旋转过程中,当20.如图,半圆O的直径4AB=,以长为2的弦PQ为直径,向点O方向作半圆M,其中P 点在AQ(弧)上且不与A点重合,但Q点可与B点重合.发现 AP的长与 QB的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求 AP的长.(注:结果保留π,cos35= ,cos55=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020武汉市中考专题1:圆中的动点问题1. 如图,已知⊙O 的半径为10,A 、B 是⊙O 上的两点,∠AOB =90°,C 是OB 上一个动点,连结AC 并延长交⊙O 于点D ,过点D 作DE ⊥OD 交OB 的延长线于点E .当∠A 从30°增大到60°时,弦AD 在圆内扫过的面积是( )A .1002533π-B .503πC .641633π-D .502533π- 【答案】B【解析】过点D 作AO 的垂线,交AO 的延长于F .当30A ∠=︒时,60DOF ∠=︒,sin 60453DF OD =︒==,2120101100105325336023ABD S ππ⋅=-⨯⨯=-弓形, 当60A ∠=︒时,60DOF ∠=︒,53DF =, 26010150105325336023ABD S ππ⋅⋅=-⨯⨯=-弓形, 1005050253(253)333S πππ∴=---=. 2. 如图,点D 在半圆O 上,AB=2AD ,点C 在弧BD 上移动,连接AC ,H 是AC 上一点,∠DHC =90°,若点C 运动2π长度,则点H 运动的路径长度为( )A.2πB.1.5πC.πD.2【答案】B3. 如图,在矩形ABCD 中,AD =80cm ,AB =40cm ,半径为8cm 的⊙O 在矩形内且与AB 、AD均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切,此时⊙O 移动了( )cm .A .56B .72C .56或72D .不存在【答案】B【解析】 存在这种情况,设点P 移动速度为1/v cm s ,2O 移动的速度为2/v cm s ,由题意,得128024052(8016)4v v +⨯==-, 如图②:设直线1OO 与AB 交于E 点,与CD 交于F 点,1O 与AD 相切于G 点,若PD 与1O 相切,切点为H ,则11O G O H =.易得△1DO G ≅△1DO H ,ADB BDP ∴∠=∠.//BC AD ,ADB CBD ∴∠=∠,BDP CBD ∴∠=∠,BP DP ∴=.设BP xcm =,则DP xcm =,(80)PC x cm =-,在Rt PCD ∆中,由勾股定理,得222PC CD PD +=,即222(80)40x x -+=,解得50x =,此时点P 移动的距离为405090()cm +=,//EF AD ,1BEO BAD ∴∆∆∽,∴1EO BE AD BA =,即1328040EO =,164EO cm =,156OO cm =. ①当O 首次到达1O 的位置时,O 移动的距离为40cm ,此时点P 与O 移动的速度比为121804511228v v ==, 455284≠,∴此时PD 与1O 不能相切; ②当O 在返回途中到达1O 位置时,O 移动的距离为2(8016)5672()cm --=,∴此时点P 与O 移动的速度比为1218051444v v ==, 此时PD 与1O 恰好相切.此时O 移动了72cm ,4. 【鲁老师原创题】如图,等边三角形ADC 外接于⊙O ,点B 是弧AC 上的动点(不与A 、C重合),∠ACB 的平分线交BD 于点G ,设点B 运动的速度为m ,点G 运动的速度为n ,则nm 的值为( ) A.1 B.332 C.3 D.2G C A B【答案】B5. 如图,线段AB=63cm ,过点B 作射线l ⊥AB ,点P 从B 出发以1cm/s 的速度在l 上运动,以BP 为直径的圆交AP 于点Q ,点P 从6s 运动到第18s 的过程中,点Q 运动的轨迹长度是( )cm 。
l Q BA PA.6B.33C.π3D.2π3【答案】C6. 如图,AB 是⊙O 的直径,M 、N 是(异于A 、B )上两点,C 是上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A 2B .2πC .32D 5 【答案】A【解答】如图,连接EB .设OA r =.AB 是直径,90ACB ∴∠=︒,E 是ACB ∆的内心,135AEB ∴∠=︒,作等腰Rt ADB ∆,AD DB =,90ADB ∠=︒,则点E 在以D 为圆心DA 为半径的弧上运动,运动轨迹是GF ,点C 的运动轨迹是MN ,2MON GDF ∠=∠,设GDF α∠=,则2MON α∠=∴218022180r MN r GF απαπ⋅⋅==⋅⋅的长的长. 7. 如图,等腰ABC ∆中,5AB AC cm ==,8BC cm =.动点D 从点C 出发,沿线段CB 以2/cm s的速度向点B 运动,同时动点O 从点B 出发,沿线段BA 以1/cm s 的速度向点A 运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为()t s ,以点O 为圆心,OB 长为半径的O 与BA 交于另一点E ,连接ED .当直线DE 与O 相切时,t 的取值是( )A .169B .32C .43D .3【答案】A【解析】解:作AH BC ⊥于H ,如图,2BE t =,82BD t =-,5AB AC ==,142BH CH BC ∴===, 当BE DE ⊥,直线DE 与O 相切,则90BED ∠=︒, EBD ABH ∠=∠,BED BHA ∴∆∆∽,∴BE BD BH BA =,即28245t t -=,解得169t =.8. 如图,⊙O 中的弦BC 等于⊙O 的半径,延长BC 到D ,使BC=CD ,点A 为优弧BC 上的一个动点,连接AD ,AB ,AC ,过点D 作DE ⊥AB ,交直线AB 于点E ,当点A 在优弧BC 上从点C 运动到点B 时,则DE+AC 的值的变化情况是( )A .不变B .先变大再变小C .先变小再变大D .无法确定【答案】B【解析】如图,连接OA ,OC ,OB ,EC ,作OF ⊥AC 于F .∵DE ⊥AB ,∴∠DEB=90°,∵DC=BC ,∴EC=CD=CB ,∵BC=OC=OB=OA ,CD=BC ,∴OA=OC=CD=CE=CB ,∵OF ⊥AC ,∠CBE=∠CEB∴∠AOF=∠COF ,∵∠AOC=2∠ABC ,∠DCE=∠CEB+∠CBE=2∠CBE ,∴∠AOC=∠DCE ,∴△AOC ≌△DCE (SAS ),∴AC=DE ,∴AC+DE=2AC , 观察图象可知AC 的值先变大再变小,故AC+DE 的值先变大再变小,9. 如图,四边形ABCD 是边长为1的菱形,∠ABC=60°.动点P 第1次从点A 处开始,沿以B为圆心,AB 为半径的圆弧运动到CB 延长线,记为点P 1;第2次从点P 1开始,沿以C 为圆心,CP 1为半径的圆弧运动到DC 的延长线,记为点P 2;第3次从P 2开始,沿以D 为圆心,DP 2为半径的圆弧运动到AD 的延长线,记为点P 3;第4次从点P 3开始,沿以A 为圆心,AP 3为半径的圆弧运动到BA 的延长线,记为点P 4;…..如此运动下去,当点P 运动到P 20时,点P 所运动的路程为( )A .3430π B .3310π C .3210π D .3105π 【解析】由题意:,点P 所运动的路程=180206018046018031201802601801120⋅++⋅+⋅+⋅+⋅πππππ =3310π, 10. 如图,在△ABC 中,∠ACB=90°.P 是BC 边上一动点,以PC 为直径作⊙O ,连结AP 交⊙O于点Q ,连结BQ ,点P 从点B 出发,沿BC 方向运动,当点P 到达点C 时,点P 停止运动.在整个运动过程中,线段BQ 的大小变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大【答案】D【解析】如图,取AC 的中点E ,连接QE ,连接BE ,CQ .∵PC 是直径,∴∠PQC=∠CQA=90°,∵CE=AE ,∴QE=21AC , ∵BQ≥BE -EQ ,又BE ,EQ 是定值,∴当点Q 落在BE 上时,BQ 的值最小,∴点P 从点B 出发,沿BC 方向运动,当点P 到达点C 时,BQ 的值先减小后增大,11. 如图所示,已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着x 轴的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B .C 点都在第一象限内,且AO=AC ,又以P (0,43)为圆心,PC 为半径的圆恰好与OC 所在的直线相切,则t=( )A .23-1B .23+1C .5D .7【答案】C【解析】∵已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着x 轴的正方向运动,∴经过t 秒后,∴OA=1+t ,∵四边形OABC 是菱形,∴OC=1+t ,∵⊙P 恰好与OC 所在的直线相切,∴PC ⊥OC ,∵AO=AC=OC ,∴∠AOC=60°,∠COP=30°,在Rt △OPC 中,OC=OP•cos30°=43×23=6,∴1+t=6,∴t=5.12. 如图,在△ABC 中,∠ACB=90°,∠A=30°,BA=6,P 为AB 上一动点,以P 为圆心,2为半径画⊙P .点P 从点A 运动到点B ,运动速度为1个单位长度/秒,设运动时间为t 秒,则在运动过程中,⊙P 与△ABC 的边相切时的最短时间t 的值为( )A.2 B.3 C.4 D.6-334【答案】D【解析】①当⊙P与AC相切时,如图1所示:设切点为D,连接PD,则PD⊥AC,PD=2,∵∠A=30°,∴PA=2OD=4,∴t=4;②当⊙P与BC相切时,如图2所示:设切点为E,连接PE,则PE⊥BC,PE=2,∵∠A=30°,∴PE=3BE,PB=2BE,∴PB=334,∴AP=AB-PB=6-334,∴t=6-334;∵4>6-334,∴⊙P与△ABC的边相切时的最短时间t的值为6-334;13.如图,射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从Q出发,沿射线QN以每秒1cm 的速度向右移动,经过t秒,以点P为圆心,3cm为半径与△ABC的边相切(切点在边上),则t(单位:秒)可以取的一切值为()A.t=2 B.3≤t≤7C.t=8 D.t=2或3≤t≤7或t=8【答案】D【解析】⊙Q以每秒2cm的速度向左移动,△ABC也沿射线PN以每秒1cm的速度向左移动,相当于△ABC静止,Q以每秒1cm的速度向左移动,①当⊙Q与AC相切时,因为半径为3,所以QF=2,则PQ=2,即t=2,②作CD ⊥PN ,BH ⊥PN ,∵BE=2,∴BH=3,HE=1,同理CD=3,DF=1,∴当⊙Q 在由D 到H 的过程中与BC 相切,此时3≤t≤7,③当⊙Q 与AB 相切时,因为半径为3,所以GE=2,即t=8,综上所述,t=2或3≤t≤7或t=8.14. 如图,AB 为⊙O 的直径,点C 、D 分别是半圆AB 的三等分点,AB=4,点P 自A 点出发,沿弧ABC 向C 点运动,T 为△PAC 的内心.当点P 运动到使BT 最短时就停止运动,点T 运动的路径长为__________。