第二章 随机过程的数字特征
第二章 随机过程总结

图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数
随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
2.2随机过程的分布律和数字特征

2.2随机过程的分布律和数字特征
任 意 有 限 个 时 刻 过 程 各个 状 态 的 联 合 概 率 分 布 : 给定随机过程 { X (t), t T }.
对任意n (1)个不同的时刻 t1, ,tn T , 相应
的状态可由 n维随机变量 X (t1), X (t2), , X (tn)
描述 .
a cost
,t
,
其中a
0,
且P1
2 3
,
P2
1 3
,
试求随机过程 X (t),t (,)
的数字特征。
解
mX
EX t a cos t 1 a cos t 2 1 cos t,
3
33
t (,)
RX s,t EX sX t
a coss a cost 1 a cossa cost 2
示一条固定的曲线。如图蓝色曲线
2.2随机过程的分布律和数字特征
2.称 BX(s,t) = E{[X(s) - mX(s)][X(t) - mX(t)]},s,t T
为 XT 的协方差函数;
3.称 DX (t) BX t,t E[X (t) mX (t)]2 ,t T 为 XT
的方差函数;
4.称 RX (s,t) E[X (s)X (t)],s,t T 为 XT
2019级研究生课程
彭晓华
辽宁工大基础部数学教研室
第2章 随机过程的基本概念
2.1随机过程的基本概念 2.2随机过程的分布律和数字特征 2.3 复随机过程 2.4几种重要的随机过程
本章小结 思考题与作业
复习2.1 1.怎样理解随机过程?它与函数及随机变量有何不同?
2.随机过程的五个要素都是什么?
随机过程的统计特性—数字特征

Q RX (t1 , t2 ) =
k1 , k2 ∈ ε X
∑
∑k ⋅k
1
2
⋅ P{ X (t1 ) = k1 , X (t2 ) = k2 }
一次结果中,决不会发生t1时刻的状态在ζ3上取值,而到t2时 刻的状态在ζ4上取值。k1,k2不在一条样本上,此情况发生的概率 为0。即P{X(t1)=k1,X(t2)=k2} =0。 由于一次试验结果只有一 个样本出现,若此次样本ζ3出现,则t1时刻的状态必在ζ3上取值, 且t2时刻的状态必还在ζ3上取值。 k1,k2必在一条样本上,此情况 发生的概率为1/4。 P{X(t1)=k1,X(t2)=k2} = 1/4。 ←样本ζi发生的概率。
∫
∞
−∞
x ⋅ f X ( x, t )d χ = mX (t )
mx(t) 描述了X(t)所有样本函数在各个时刻摆动的中心--即 在各个时刻摆动的中心 X(t)在各个时刻的状态(随机变量)的数学期望。
X (t ) 0
t1
m X (t1 )
m X (t i )
t m X (t )
ti
二、随机过程X(t)的均方值和方差 同理,把过程X (t)中的t视为固定时, X(t)为时刻t的状态(随机 变量)。其二阶原点矩:
例1、设随机过程X(t)=U·t,U在(0,1)上均匀分布,求E[X(t)], D[X(t)],Rx(t1,t2),Cx (t1,t2)。
⎧1, Q fU (u ) = ⎨ ⎩0,
解:
0 ≤ u ≤1 其它
∞ 1
t ∴ E[ X (t )] = E[U ⋅ t ] = t ⋅ E[U ] = t ⋅ ∫ ufU (u )du = t ⋅ ∫ udu = 0 -∞ 2 2 RX (t1 , t2 ) = E[ X (t1 ) X (t2 )] = E[U ⋅ t1 ⋅ U ⋅ t2 ] = t1 ⋅ t2 ⋅ E[U ] t1 ⋅ t2 = t1 ⋅ t2 ⋅ ∫ u ⋅ fU (u )du = t1 ⋅ t2 ⋅ ∫ u du = −∞ 0 3 t1 ⋅ t2 t1 t2 t1 ⋅ t2 − ⋅ = C X (t1 , t2 ) = RX (t1 , t2 ) − m(t1 ) ⋅ m(t2 ) = 2 2 12 3 2 t D[ X (t )] = C X (t , t ) = 12
随机过程课程第二章 随机过程的基本概念

第一节 随机过程的定义及其分类 第二节 随机过程的分布及其数字特征 第三节 复随机过程 第四节 几种重要的随机过程简介
第一节 随机过程的定义及其分类
一、直观背景及例
例1 电话站在时刻t时以前接到的呼叫次数 一般情况下它是一个随机变数X ,并且依赖 时间t,即随机变数X(t),t[0,24]。
首页
(4)平稳随机过程
平稳过程的统计特性与马氏过程不同,它不 随时间的推移而变化,过程的“过去”可以对 “未来”有不可忽视的影响。
首页
返回
第二节 随机过程的分布及其数字特征
一、随机过程的分布函数
设{ X (t) ,t T }是一个随机过程,
一维
分布 对于固定的t1 T ,X (t1) 是一个随机变量,
F (t1,t2;x1, x2 ) =
x1
x2
f (t1, t2;y1, y2 )dy1dy2
则称 f (t1,t2;x1, x2 ) 为 X (t) 的二维概率密度
n维
n 维随机向量(X (t1 ) ,X (t2 ) ,…, X (tn ) )
分布 函数
联合分布函数
F (t1,t2 , ,tn;x1, x2 , , xn )
分布函数
FXY (t1, ,tn ;t1, ,tm ;x1, , xn ; y1, , ym )
P{X (t1) x1, , X (tn ) xn;Y(t1) y1, ,Y(tm ) ym }
称为随机过程和的n + m维联合分布函数
首页
相互 设 X (t) 和Y (t) ,t1,t2 , ,tn ,t1,t2 , ,tm T
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩
第二章 随机数据的数字特征

2.1. 随机过程的描述1. 随机过程的概念随机过程:考察各测量样本固定时刻0t t =在0t 时刻的值)(01t x ,)(02t x ,……,)(0t x n 构成随机变量,具有自身的概率特性,记为)(0t X 。
在数学上把所有已经得到的和未得到的而可能发生的样本总体)}({0t x i (t=1,2,3,……)称为随机过程,记为)(t X 。
随机过程具有双向无穷特征,即在时间轴上无穷,又在样本数上无穷。
2. 随机过程的统计规律(1). 一维概率分布特征设一随机变量)(t X 在某一时刻i t 的随机变量)(i t X 的取值小于等于给定值x ()(t X x ∈),这一事件发生的概率定义为:])([Pr );(1x t X ob t x F i i ≤=,)(t X x ∈)(t X 的一维概率密度函数);(1i t x f 定义为);(1i t x F 对x 的一阶偏导数,即:xt x F t x f i i ∂∂=);();(11 (2). 多维概率分布特征 二维概率分布特征随机过程)(t X 在i t 时刻的随机变量i i x t X ≤)(;而且在j t 时刻的随机变量j j x t X ≤)(,这两件事同时发生的概率定义为二维概率分布特征:])(,)([Pr ),;,(2j j i i j i j i x t X x t X ob t t x x F ≤≤=二维概率密度函数为对j i x x ,的二阶偏导数,即:j i j i j i j i j i x x t t x x F t t x x f ∂∂∂=),;,(),;,(222三维、四维,……直至n 维可以以此类推实际应用中,要确定随机过程的各维概率分布函数及密度函数非常困难3. 随机过程的统计特征量(1). 均值)(t m x也就是随机过程的数学期望吗,度量过程随机变动的平均值dx t x xf t X E t m i x ⎰∞∞-==);()]([)(1 由于)(t X 在不同时刻的一维概率密度函数);(1t x f 是对时间t 的函数,故均值)(t m x 亦随时间而变。
概率论与随机过程第2章(15)

2015年10月15日3时9分
概率论与随机过程
统计平均描述法:
统计平均描述法所关心的是: 随机过程在某时刻或不同时刻的平均特 征—均值; 偏离均值的程度—方差, 不同时刻随机变量之间的相关程度 —相 关函数,等数字特征。 总之,统计平均描述法是从统计平均的意 义上研究随机过程的宏观特性。
X (t , 2 ) x2 ( kt s )
t1
经过判别电路, 大于门限 电压为 “1”,小于门限电 压为“0”
X (t , 1 ) x1 ( kt s )
t1
t
2015年10月15日3时9分
概率论与随机过程
按样本函数形式分类
类别 不确定随机过程 确定随机过程
过去观测值与未来值的关系 结果不可预测(不能描述成t的函数) 可预测(可描述成t的函数)
随机过程的分类
按时间和状态分类 类别 连续随机过程 离散随机过程 连续随机序列 离散随机序列
电压噪声 X ( t 1 , )
X( t )
状态 连续 离散 连续 离散 X( t )
时间 连续 连续 离散 离散
X ( t 1 , )
t
t1
X( t )
经过采样 X ( t 1 , )
样本函数
X (t , 3 ) x3 ( kt s )
2 X
2015年10月15日3时9分
概率论与随机过程
2. 均方值与方差
2 X (t ) [ X 2 (t )]
原点矩:
方差:
2
x p X ( x, t )dx
2
2 X ( t ) D X ( t ) E X ( t ) m X ( t )
第2章 随机过程概述

(功率有限),且
2
则称
R(t1 , t2 ) E[ X (t ) X (t )] R( )
(t ), t T X为广义平稳随机过程。
t1 t2
用高阶矩来判断广义平稳随机过程是否是狭义平稳随机过程
二者没有关系,但如果狭义平稳随机过程且功率有限,则必为广义平稳的
RX (t1 , t2 ) E[ X (t1 ) X (t2 )]
x1 x2 f ( x1 , x2 ; t1 , t2 )dx1dx2
RXY (t1 , t2 ) E[ X (t1 )Y (t2 )]
xyf ( x, t1; y, t2 )dxdy
一、随机过程的概念
1、随机过程的定义 随机过程 样本函数
X (t ) X (t , e)
X i (t ) X (t , ei ) X (ti ) X (ti , e)
X i (t j ) X (t j , ei )
随机变量
标量
一、随机过程的概念
1、随机过程的定义
随机过程一般表示为{ X (t), t T }。
自相关函数各态历经
T
lim P{| X (t ) X (t ) RX ( ) | } 1
各态历经性-----同时满足以上两条!
平稳随机过程均值各态历经的充要条件
C (0) R(0) m2 2
自相关函数连续的充要条件
R( )在 0点处连续
二、平稳随机过程
4、平稳随机过程自相关函数的性质 非负定性
i , j 1
R(
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 给定一随机过程X(t)和常数a,试以X(t)的相 关函数表示随机过程的自相关函数
Y (t) X (t a) X (t)
3. 已知随机过程X(t)的均值M x t和协方差函数 CX (i1,t2) , (t)是普通函数,试求随机过程 Y (t) X (t) (t) 是普通函数,试求随机过程
(t1,
t2
)
0,又称X(t),Y(t)互不相
RXY (t1,t2 ) MY (t1)MY (t2 )
推论:若两个随机独立,则它们必不相关。反之, 两 个随机过程不相关,还不能断言它们的相互独立。(除 非是正态过程)。
注:自相关函数、互相关函数、协议差函数其结果是数, 而不再是一个过程。
习题二
性质2.2
CXY (t1,t2 ) RXY (t1,t2 ) M X (t1)MY (t2 )
在上式中,若对任意 t1,t2 都有
RXY (t1,t2 ) 0
则称X(t),Y(t)为正交过程,此时
CXY (t1,t2 ) M X (t1)MY (t2 )
在上式中,若 关;此时
CXY
怎么办呢?事实上,在许多实际应用中,当 随机过程的“函数关系”不好确定时,我们 往往可以退而求其次,像引入随机变量的数 字特征一样,引入随机过程的数字特征。
用这些数字特征我们认为基本上能刻划随机 过程变化的重要统计规律,而且用随机过程 的X(t)的数字特征,又便于运算和实际测量。
显然,对于随机变量X,它的的数字特征我们 主要介绍了数学期望、方差、相关函数来描 述随机过程X(t)的主要统计特性。
Y (t) X (t) (t) 的均值和协方差函数。
4. 设 X (t) Acos at Bsin at ,其中A,B是相互独 立且服从同一高斯(正态)分布 N(0, 2) 的随 机变量,a为常数,试求X(t)的值与相关函数。
∴ E[A B] E(A) E(B) 0
当取定t时,X(t)为随机变量
E [X (t)] E [Acost] E [B sint]
costE [A] sintE [B] 0
RX (t1,t2 ) E [X (t1)X (t2 )]
E [( Acost1 B sin t1) ( Acost2 cos t2 )] E [ A2 cos t1 cost2 AB cos t2 ]
显然由图2.1可看出,随机过程 X(t) 就在 E[X (t)附] 近起伏变 化,图中细线表示样本函数,粗线表示均值函数。如果我们 计论的随机过程是接收机输出端的一条噪声电压,这个E[X (t)] 就是噪声电压在某一瞬时t的统计平均值(又称集平均值)。
§2.2 随机过程的均匀方值与方差
对于某一固定的时刻,随机过程X(t)就成为一个随 机变量,由此可给出随机过程均方值定义。定义随 机过程X(t)的均方值:
有时为了描述随机过程在任意两个不同时刻t1、t2间 内在联系,我们还可以用协方差函数中心化自相关函 数来定义。
定义协方差函数:称
Cx t1,t2 EX (t1) M X (t1)X (t2 ) M X (t2 )
x1 M X (t1 ) x2 M X (t2 ) PX (x1, x2 ;t1, t2 )d X1 d X2
定义互协方差函数:称
CXY (t1,t2 ) E {[X (t1) M X (t1) ][Y (t2) MY (t2)]}
[x M X (t1)] [ y MY (t2 )]
PXY (x, y,t1,t2 )dxdy
为两个随机过程的互协方差函数。
性质2.1 CX (t1,t2 ) RX (t1,t2 ) M X (t1)M X (t2 )
证∵
CX (t1,t2 ) E{[X (t1) M X (t1)] [X (t2 ) M X (t2 )]}
E [ X (t1) X (t2 ) X (t1)M X (t2 )] M X (t1) X (t2 ) M X (t1)M X (t2 )
从上式分析可知,随机过程的协方差函数 CX (t1,t2) 与 其自相关函数 RX (t1,t2) 只差一个统计平均值,特别 当随机过程的任意时刻数学期望 E [X (t)] 0 时,二者 完全相同。
§2.4 两个随机过程之间的互相关函数
随机过程的自相关函数描述了一个随机过程本身的
内在联系,而要描述两个过程在不同时刻 t1, t2 之
定义随机过程的自相关函数:
RX (t1, t2 ) E[x(t1) X (t2 )]
x1x2PX (x1, x2;t1, t2 )dx1dx2
这就是随机过程X(t)在两个不同时刻 t1,t2 的状态
X (t1), X (t2) 之间的混合原点矩,自相关函数就反映了 X(t)在两个不同时刻的状态之间的相关程度。若在 定义式中取 t t1 t2 ,则有
E[ X (t)] M X (t) xPX (x ;t)dx
式中,PX (x;t) 是X(t)的一维概率密度函数。E[X (t)] 又 可称为X(t)的均值,这个均值函数可以理解为在某 一给定时刻t随机过程的所有样本函数的平均值。如 图2.1所示。
图2.1 随机过程的数学期望mX(t)
X (5)
2 X
(t)
D[X (t)]
注:随机过程的标准差是表示了随机过程在t时刻偏 离均值的程度大小,如图2.2所示。
图2.2
§2.3 随机过程的自相关函数
随机过程的数学期望、方差描述了随机过程在各个 孤立时刻的重要数字特征值,但它们不能反映随机 过程的内在联系,这一点可以通过下图的两个随机 过程X(t)、Y(t)来说明。
0
2
有
E[X (t)] M X (t)
0
2
2
a cos(t )
1
d 0
0
2
RX (t1,t2 ) E[x(t1) X (t2)]
E [a cos ( t1) ] a cos ( t2 )
a2E [cos ( t1 ) cos ( t2 )]
RX
(t , t )
M
2 X
(t)
a2 2
例2.3 给定随机过程 X (t) Acos t B sin t,式中
是常数,A和B是两个独立的正态随机变量,而
且 E(A) E(B) 0, E(A2) E(B2) 2 ,试求X(t)的均值 和自相关函数。
解 ∵ X (t) Acost Bsin,t 且A,B独立
a2
2 0
cos
(
t1
) cos
(
t2
)
1
2
d
a2 2
cos
a2 2
cos , (t2
t1)
又∵ CX (t1,t2 ) RX (t1,t2 ) M X (t1)M X (t2 )
当令 t1 t2 t
CX (t,t) E{[ X (t) M X (t)]2} D [ X (t)]
对于这两个随机过程,从直观上讲,它们都具有大 致相同的数学期望和方差,但两个过程的内部结构 却有着非常明显的差别,其中X(t)随机时间变化缓 慢,这个过程在两个不同的时刻的状态之间有着较 强的相关性,而过程Y(t)的变化要急剧得多,其不 同时刻的状态之间的相关性,显然很弱。怎样去研 究和反映一个随机过程在不同时刻的内在联系呢? 为此我们引入自相关函数(简称相关函数)来描述 随机过程在两个不同时刻状态之间的内在联系。
1
0
∴
E(X 2 )
0
x(1 x)dx
1 x(1 x)dx 1
1
0
6
∴
D(x) E(X 2) [E(x)2] 1
6
注意:随机变量的数字特征计算结果是一个确定的数。而
随机过程的数字特征不是数,是一个关于时间的确定函数。
§2.1 随机过程X(t)的数学期望
对于某个给定时刻t,随机过程成为一个随机变量, 因此可按通常随机变量的数学期望方法来定义随机 过程的数学期望。 定义X(t)的数学期望
间的相互关系,我们引入了互相关函数的定义。
定义互相关函数:称
RXY (t1,t2 ) E [ X (t1) Y (t2 )]
xyPXY (x, y ;t1, t2 ) dxdy
为两个随机过程的互相关函数。式中: PXY (x, y ; t1,t2)
为在两个不同时刻随机变量 X (t1) 、Y (t2 ) 的联合概率 密度函数。
例2.1 设随机变量X具有概率密度
f (x)
1 x, 1≤x≤0 1x, 0≤x≤1
求
E(x), D(x)
解:∵
E(x) xf (x)dx
D(X ) E(X 2 ) [E(X )]2
0
1
E(X ) x(1 x)dx x(1 x) 0
RX (t1,t2 ) RX (t,t) E[Xt)X (t)] E[X 2(t)]
此时自相关函数即为均方值。
式中,PX (x1, x2;t1,t2) 为过程X(t)的二维概率密度函数。
例2.2 求随机相位正弦波过程 X (t) a cos(t )
的均值、方差和自相关函数,其中 的概率密