真空感应炉冶炼原理及工艺

合集下载

真空感应炉设备及冶炼工艺探讨

真空感应炉设备及冶炼工艺探讨

技术改造真空感应炉设备及冶炼工艺探讨龚玉哲 程兴达 关腾飞(凯美龙精密铜板带(河南)有限公司,河南 新乡 453000)摘 要:本次研究当中主要介绍了真空感应炉设备的主要构成以及开展冶炼时涉及到的一些具体的工艺程序。

希望可以为具体的冶炼工作开展和相关技术应用奠定理论方面的基础。

关键词:真空感应炉;设备;冶炼工艺在真空冶炼当中,所需要的必要设备之一就是真空冶炼炉。

了解真空冶炼炉设备的基本构成和涉及到的冶炼工艺,可以帮助我们在实际冶炼当中找到更优的冶炼方法,最大限度提高冶炼效率。

1.真空感应炉设备主要构成不管是无削成形还是有削成形,哪一种冶炼产品工艺都会出现真空烧结相关问题。

所谓烧结,指的就是需要把希望烧制成的坯块烧成热锻时所需要使用到的预成型件。

而且还必须要确保所得到的延性结构、可锻性都比较好。

这样才可以减少在热锻当中制品出现不必要的缺陷。

真空冶炼炉是冶炼高温材料、精密合金、电磁和高温材料的主要设备[1]。

可以分为半连续和间断式两种类型。

若容量低于150kg,一般会选择间断式;若容量处于150kg到300kg之间,这两种炉子类型都会使用;超过500kg的都选择使用半连续式。

在国外会经常使用到一些5吨到7吨左右的大型真空冶炼炉。

国内常用的还是一些规模比较小的真空感应炉,现在随着各项技术的不断发展也正在积极朝着大型方向发展。

但仍然面临着一个关键问题,即怎样获得真空。

真空感应炉当中所设定的温度大约为2000度。

此种温度下想要达到10Torr甚至更高的空间度都是存在着较大困难的。

而用户在实际生产活动开展当中是很希望能够得到更高的真空度。

真空感应炉包含炉体、真空泵系统、电源等几种关键的部分,炉体部分主要是完成冶炼的空间[2]。

主体部分有翻炉机构、取样装置、加料装置、坩埚、真空壳室体等。

真空系统则包含有真空阀、真空泵等,主要是在冶炼当中提供必须要的真空条件。

在处于相对封闭的真空室当中,坩埚密封在其中,其热源主要来自于电磁感应所产生的涡流电源。

真空感应炉冶炼原理及工艺

真空感应炉冶炼原理及工艺

2.3 罗茨泵
罗茨真空泵(简称罗茨泵)是一种旋转式变容真空泵。根据罗茨真空泵工作范围的 不同,又分为直排大气的低真空罗茨泵、中真空罗茨泵(又称机械增压泵)和高真空多 级罗茨泵。
图 5 罗茨真空泵结构示意图
4
罗茨泵的结构如图 5 所示。在泵腔内,有二个“8”字形的转子相互垂直地安装在一 对平行轴上,由传动比为 1 的一对齿轮带动作彼此反向的同步旋转运动。在转子之间, 转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。由于罗茨泵是一种无 内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除 取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空 度,可将罗茨泵串联使用。 实际设备中往往用多个泵的串联来组成真空泵组,获得真空室中符合要求的真空 度。
3.1 感应加热原理
感应熔炼是除电弧炉以外较重要的一种电炉熔炼方法。与电弧炉相比,其特点有: (1)电磁感应加热。由于加热方式不同,感应炉没有电弧加热所必须的石墨电极, 从而杜绝了电极增碳的可能,因而可以熔炼电弧炉很难熔炼的含碳量极低的钢和合金。 (2)熔池中存在一定强度的电磁搅拌,可促进钢水成分和温度均匀,钢中夹杂合 并、长大和上浮。 (3)熔池比表面积小。优点是熔炼过程中容易控制气氛,无电弧及电弧下高温区, 合金元素烧损少、吸气少,所以有利于成分控制、气体含量低和缩短熔炼时间;缺点是 渣钢界面面积小,再加上熔渣不能被感应加热,渣温低,流动性差,反应力低,不利于 渣钢界面冶金反应的进行,特别是脱硫、脱磷等,因而对原材料要求较为严格。 (4)烟尘少对环境污染小。熔炼过程中基本无火焰,也无燃烧产物。 感应加热原理主要依据两则电学基本定律。一是法拉第电磁感应定律: E B L v sin (v B)

真空感应悬浮熔炼实验

真空感应悬浮熔炼实验

一、实验目的1、了解真空感应悬浮熔炼实验的基本原理;2、掌握真空感应悬浮熔炼的操作方法。

二、真空感应熔炼的特点真空感应熔炼作为一个高温冶金过程有很大的优越性,因为它有坚实的热力学基础。

咋非真空感应熔炼过程中,只有控制金属液的温度,而在真空过程中,温度和压力两者都可以控制。

与大气熔炼相比真空感应熔炼有以下优缺点:1、能够比较彻底地清除钢液中的气体根据物理化学中的气体熔解定律,对于双原子气体(H2,N2)来说,它们在钢液中的溶解量是炉气 中该种气体的分压力的平方根成正比的,其间的关系可用下式表示:(H)=k1PH1/2(N)=k2PN1/2式中:(H )(N )为氢和氮在钢液中的溶解量;PH 、PN 为炉气中氢和氮的分压力;k1、k2为平衡常数。

由上式可见,当降低炉气中氢气和氮气的分压力时,钢液中的气体含量就会随之减少。

如果炉气中的真空度很高(即pH ≈0,pN ≈0)时,则钢液中的含气就可以降低到很低的程度。

例如,实验结果表明,只要真空度达到10μm 汞柱时,钢中氢的含量可以降低至1ppm 以下。

2、钢液可以充分脱氧和降碳由于钢液的熔化过程是在真空条件下进行,钢液中元素的氧化程度很轻微。

因此,只要炉料很干净,所练出的钢,氧化夹杂物就会很少。

另一方面,在真空条件下,碳的脱氧能力比常压下大为提高。

这是因为碳的氧化反应:C+Fe →CO+Fe 所生成的一氧化碳被抽走,因而使得反应进行得很彻底,钢液脱氧良好。

3、金属元素的蒸发液态合金中每种元素都有一定的蒸气压,当蒸气压超过外界压力时,元素就会蒸发。

在大气熔炼的条件下,只要极少数金属元素会发生显著的蒸发现象。

但在真空条件下熔炼时,钢中蒸汽压较高的元素就会发生显著的蒸发现象,结果会造成钢液化学成分控制的困难。

4、坩埚材料的沾污在真空熔炼条件下,炉衬耐火材料会被钢液所侵蚀,这种侵蚀主要表现为钢液中的碳被还原,其结果是,还原产物进入钢液,使钢液的化学成分发生变化。

真空感应熔炼原理及工艺

真空感应熔炼原理及工艺

真空感应熔炼原理及工艺一、引言真空感应熔炼是一种常用的金属熔炼技术,它利用感应加热和真空环境来实现金属的高温熔化和精细处理。

本文将介绍真空感应熔炼的原理和工艺,并探讨其在金属加工领域的应用。

二、真空感应熔炼的原理1. 感应加热原理真空感应熔炼是基于感应加热原理进行的。

感应加热是利用电磁感应现象,通过变化的磁场在导体内感应出涡流,从而产生热量。

在真空感应熔炼中,通过感应线圈产生的高频交变磁场作用下,金属料块内部产生涡流,并迅速升温,最终达到熔化温度。

2. 真空环境的作用真空环境对于真空感应熔炼至关重要。

首先,真空环境可以减少金属与氧、氮等气体的接触,避免金属被氧化或气体吸收,从而提高金属的纯度和质量。

其次,真空环境可以降低金属的气化温度,使金属在较低温度下熔化,减少能源消耗和金属蒸发损失。

最后,真空环境还可以减少金属与炉膛内壁的接触,避免污染和杂质的产生。

三、真空感应熔炼的工艺1. 准备工作在进行真空感应熔炼之前,需要对金属料块进行预处理,包括清洗、切割和称重等。

同时,还需要准备好感应线圈、感应炉膛和真空系统等设备,并进行检查和调试,确保正常运行。

2. 熔炼过程将预处理好的金属料块放入感应炉膛内,然后启动感应线圈,产生高频交变磁场。

金属料块受到磁场的作用,内部涡流产生,温度迅速升高,最终达到熔化温度。

同时,开启真空系统,将炉膛内的气体抽出,形成真空环境。

在熔炼过程中,可以根据需要进行金属的合金化和成分调整。

3. 精细处理在金属熔化后,可以进行一系列的精细处理,包括脱气、去杂、调温等。

通过控制真空度和温度,可以实现金属的脱气和杂质的去除,提高金属纯度和质量。

同时,还可以根据需要调整金属的温度,以满足后续工艺的要求。

四、真空感应熔炼的应用真空感应熔炼广泛应用于金属材料的制备和加工领域。

首先,它可以用于高纯度金属的制备,如高纯铜、高纯铝等。

其次,它可以用于合金的制备,如钢、铜合金等。

此外,真空感应熔炼还可以用于金属粉末的制备、金属材料的再生利用等方面。

真空感应炉原理

真空感应炉原理

真空感应炉原理
真空感应炉是一种利用感应加热原理,在真空环境下进行材料加热和熔化的设备。

其工作原理如下:
1. 真空环境:真空感应炉在加热过程中采用真空环境,主要是为了消除氧气和其他气体对材料的氧化和污染,同时也提高了加热效率和材料的熔化温度。

2. 感应加热:真空感应炉利用电磁感应原理进行加热。

它通过将高频电流通入线圈中,产生一个强大的交变磁场。

当感应炉中放置有导电材料时,材料内部会产生涡流。

由于材料的电阻,涡流会产生热量,使材料加热。

3. 感应线圈:感应炉中的感应线圈通常由铜制成,其形状可以是螺旋状或环形。

感应线圈中通入高频电流,产生的交变磁场穿过感应线圈和材料,导致材料加热。

4. 材料加热:当材料处于感应炉中时,感应线圈中的交变磁场会穿过材料,产生涡流。

涡流通过材料的电阻产生热量,使材料加热。

由于真空环境中没有传热介质,材料的加热效率较高,热量能够均匀分布在整个材料中。

5. 熔化和炼化:通过控制感应炉中的加热温度和时间,可以使材料达到熔化点并保持在一定温度下进行炼化。

真空环境下的加热可以更好地控制材料的熔化和炼化过程,提高产品质量。

真空感应炉广泛应用于金属材料的熔炼、铸造和热处理过程中。

其具有加热速度快、温度均匀性好、能耗低、环境污染小等优点。

同时,通过调整感应炉中的加热参数,可以实现对不同材料的加热和熔化,满足不同工艺要求。

3.真空感应炉熔炼-西安建筑科技大学

3.真空感应炉熔炼-西安建筑科技大学

3[Ca]+2[P]=Ca 3P2
参与反应的钙可以 是金属钙也可以是 钙的合金(硅钙合 金)或钙的化合物 (CaC2)
31
3.6 新技术在感应炉冶炼中的应用
反应产物Ca3P2不溶于钢液,在炼钢温度下会以液态上浮而进入 渣中,在炼钢条件下不稳定,是一种强的还原剂,当炉内气氛氧 势偏高和渣中存在易还原的氧化物时,会发生如下反应:
镁特定的物化性质决定着,在镁的加入操作中,镁的加入 方式回收率的控制都是难以完善解决的工艺问题,使用镁合金 如:Ni-Mg、Ni-Mg-Me以降低镁的蒸汽压,提高熔点和沸点。 镁处理的操作过程为: 精炼期结束后,若要求添加B、Ce,在B、Ce加入后,调节 熔池温度,使温度低于出钢温度20℃; 真空室内充高纯氩气至13-27kPa; 镁以块状的含镁中间合金加入金属熔池; 镁加入后立即大功率搅拌,时间不宜过长,为减少镁的 损失,加镁后,通常1-5min内出钢;
22
3.3真空感应炉冶炼工艺过程
3.3.4 出钢和浇注
合金化结束后,坩埚中的金属液达到预定的成分 和温度,真空度也符合要求,则可出钢; 采用真空浇注,小型炉用上注,大型炉也可以下 注。
23
3.4元素的挥发与控制
所有金属都存在一个平衡的蒸汽压pi*,它取决于该金属的物 性、气态的存在形式(单原子、双原子还是多原子组成气态分 子)以及温度。i物质的蒸汽压pi*,与温度的关系式为:
40CrNiMo(SAE4340),(C:0.42%;Mn:0.76%;Cr:0.77%;
Ni:1.67%;Mo:0.20%)
14
3.1.3 真空感应炉熔炼的特点
不同熔炼方法生产的钢与合金中夹杂物含量
钢与合金
Cr20 Cr16Ni25W5AlTi2 氧化物夹杂/%

真空感应熔炼炉原理

真空感应熔炼炉原理

真空感应熔炼炉原理
真空感应熔炼炉是一种利用感应加热和真空环境进行金属熔炼和精炼的设备。

其原理可以归纳如下:
1. 感应加热原理:感应加热是利用变化磁场在金属导体中产生涡流并产生热量的过程。

当通电线圈中通过交流电时,会产生变化的磁场,这个磁场会穿透到工作线圈中的金属导体。

金属导体由于交变磁场的作用,导致其内部产生涡流。

涡流通过电阻热效应产生热量,使金属导体迅速升温。

2. 真空环境:真空状况下,可以有效地减少氧气、水蒸气等气体对金属的污染和氧化。

同时,真空环境可以避免金属表面的气体泡沫和熔渣的形成,提高金属的纯度和质量。

真空感应熔炼炉的工作过程如下:
1. 在感应熔炼炉中,先将金属材料放入感应线圈中,在外部供电的作用下,感应线圈中产生变化的磁场。

2. 由于金属导体的存在,感应线圈中的变化磁场会产生涡流,并在金属导体内部产生热量。

3. 金属材料在涡流的作用下,迅速升温,最终达到熔点,开始熔化。

4. 在金属熔化的同时,真空泵将炉腔中的气体抽除,使腔内形成高真空环境。

5. 在高真空环境下进行熔炼和精炼过程,可以避免污染、氧化以及气泡和熔渣的形成,提高金属的纯度和质量。

6. 当金属熔化、纯化达到要求后,通过倾炉或其他方式,将熔融金属倒出。

通过上述原理和工作过程,真空感应熔炼炉可以实现对金属材料的高温融化和精炼,具有较高的熔炼效率和精度。

同时,利用真空环境可以提高金属材料的纯度和质量,适用于各种金属的熔炼和冶炼工艺。

感应炉熔炼的原理及工艺

感应炉熔炼的原理及工艺
所炼钢种不同,脱氧程度也有所区别。 例如,为了得到致密的镇静钢,钢锭模中钢液的含氧量应该很小, 少到结晶时CO不能析出,实现平静的结晶凝固成锭,要求脱氧尽可 能彻底。
13
4.2 感应熔炼过程中元素的氧化与脱氧
4.2.2各种脱氧方法的基本特点
4.2.2.1 沉淀脱氧
1)沉淀脱氧的原理。沉淀脱氧是指向钢液中加入对氧亲合力大于铁的元 素,以期与钢液中的溶解氧发生化合,形成不溶于钢液的氧化物,该氧 化物借助于浮力自钢液中排出,从而使钢液的含氧量降低的方法。
12
4.2 感应熔炼过程中元素的氧化与脱氧
4.2.1.1 脱氧的基本任务
去除钢中的过剩氧,同时完成调整钢的成分和合金化的任务。
一次脱氧产物:钢液中加入脱氧剂进行脱氧时,产生的1-40μm的细 小夹杂物,以弥散方式存在与钢液中。
危害:一次脱氧产物的夹杂物在之后的铸锭过程中,由于脱氧反应 继续进行,会继续长大,必然影响钢的质量。
中频感应炉的成套设备包括:电源及电器控制部分、炉体部分、传动 装置及水冷系统
7
4.1 感应炉熔炼的特点
序号 1
2 3 4
比较内容 供热方法
造渣条件
金属液 搅拌条件 冶金功能
电弧炉
感应炉
金属炉料在石墨电极高 温电弧直接作用下被加 热、熔化、精炼,元素 有挥发、氧化损失及增 碳
金属炉料在感应磁场作用下,产生 涡流,靠电阻热实现加热、熔化、 精炼(无直接加热),温度易控制, 元素挥发、氧化损失很小,合金回 收率高
(3)熔池的比表面积小。 这对减少金属熔池中易氧化元素的损失和减少 吸气是有利的,所以感应炉为熔炼高合金钢和合金,特别是含钛、铝或硼 等元素的品种,创造了较为良好的条件。但是容易形成流动性差,反应力 低,不利于渣钢界面冶金反应的进行的“冷渣”。为此,感应炉熔炼对原 材料的要求较为严格。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空感应炉冶炼原理及工艺1 真空感应炉的基本构成真空感应炉是真空冶炼中的一个重要设备。

无论是有削成型或无削成形的产品冶炼的工艺流程均存在真空烧结的问题。

烧结的目的在于将所望成型的坯块烧成热锻时用的预成型件,并要保证获得良好的可锻性和延性结构,以避免制品在热锻时形成缺陷。

真空冶炼炉主要用于冶炼精密合金、电磁材料、合金钢与高温材料。

真空感应炉分间断式和半连续式两种,容量小于150kg的炉子多用向断式,容量为150-300kg的炉子两者皆有。

500kg以上的均采用半连续式。

5-7t的大型真空感应炉在国外较多。

国内用于冶炼工业中的真空感应炉主要还是中小型,现正向大型方向发展。

在真空感应炉的设计和使用中,真空获得仍是关键问题。

因为在真空感应炉中的温度为2000?左右,在此温度下,要达10-8Torr或更高的真空度是有困难的。

根据国内外有关资料的介绍,冶炼质量的提高与真空度是有明显关系的。

为此,用户希望设计的真空感应炉能达到10-8Torr或更高的真空度,目前达到10-5Torr的真空度还是较为容易的。

真空感应熔炼炉的结构如图1所示。

它是由炉体、真空泵系统、电源电控等几大部分组成。

炉体部分构成真空感应熔炼炉进行冶炼生产的场所和空间。

它由以下单元组成:合金加料装置、观察装置、取样装置、测温装置、翻炉机构、铸锭机构、坩埚、感应器及进电装置、真空室壳体等。

真空系统部分包括各种真空泵、真空阀、检测仪器等,它的职能是提供冶炼生产过程中,真空室里所必需的真空条件,如极限真空度、工作真空度、抽气时间、升压率等。

电源电控部分(图中未画出来)负责供给冶炼生产过程中所必需的电能,亦即实现电流、电压、功率、电流频率等电器参数的控制。

坩埚封闭在真空室中,利用电磁感应产生的涡旋电流做为热源,在真空状态下进行金属与合金的冶炼并浇注。

从而得到高质量的材料,这种工艺方法叫真空感应熔炼法,实施此种熔炼法的设备叫做真空感应熔炼炉,简称真空感应炉,这是一种新型冶金设备。

除此之外,电磁感应法也用于加热,在焊接、烧结、透热等方面也得到广泛应用,但当今真空感应炉主要用于冶炼,除特殊指明外,以下所述真空感应炉均指真空感应熔炼炉。

其主要产品是铸锭、精密铸件及双联熔炼用的电极母材。

2 常用真空获得设备-3-5真空感应炉的真空系统可由机械泵增压泵或机械泵扩散泵组成,以达到10,10Torr的真空度,有时还要加上罗茨泵。

2.1 机械泵机械真空泵是通常用来获得低真空的设备。

图2是常用的一种旋片式机械真空泵的结构简图。

泵壳内有一圆柱形内腔,其中装有一圆柱形转子,可由马达带着转动。

转子的中心轴线位置偏上,使转子与泵壳内腔在图中顶点处密合相切。

转子中嵌有两片刮板,中阅用弹簧撑住,使刮板两端紧贴泵壳内壁。

机械真空泵的抽气过程如图3所示。

设转子逆时针转动,开始时处于图中(a)的位置,转子和刮板把壳内腔体分为三个空腔,空腔1与排气口相通,腔内的气体正在被压缩,空腔2内刚隔离了一定量的被抽气体,并向排气口方向输送,空腔3刚形成,体积将扩大,从被抽容器内吸入气体,起抽气作用。

当转子逆时针转动时,空气由被抽容器通过进气管被吸入,旋片随着转子的转动使与进气管相连的区域不断扩大,而气体就不断地被吸入。

当转子达到一定位置时,另一旋片把被吸入气体的区域与被抽容器隔开,并将气体压缩,直到压强增大到可以顶开出气口的活塞阀门而被排出泵外,转子的不断转动使气体不断地从被抽容器中抽出。

转子每转动一周,就有图3(a)空腔2中两倍的被隔离气体被排出泵外。

实用中可把两个机械泵单元串联或并联起来。

串联情况下可提高被抽空间的真空度,并联情况下可提高排气量。

整个泵体需浸在机械泵油中,油除了起润滑和密封作用外,还可起充填排气口与顶部之间“死角”的作用。

机械真空泵可直接向大气排气,它还常用作隔离真空系统的前级泵。

机械真空泵和其它真空泵一样有两个重要参量:一是极限真空,一是抽气速率。

(1)极限真空:在被抽容器的漏气及容器内壁放气可忽略的情况下,真空泵能抽得的最高真空度称为极限真空。

旋片式机械泵的极限真空度可达l0-5托,但在一般实验室情况下只能抽到10-2托。

(2)抽气速率:在某一给定压强下,单位时间内从泵的进气口处抽入泵内的气休体积,称为泵在该压强下的抽气速率。

单位一般为升/秒。

旋片式机械泵的抽气速率主要决定于转子的尺寸和转速。

在 160托到儿托的压强范围内,机械泵的抽气速率变化很小,在几托压强以下,抽气速率迅速下降,到极限真空时降为零。

下降的原因主要是:漏气、油放气和油本身的汽化造成了抽气过程的不完善。

一般旋片式机械真空泵给出的抽气速率是指泵在进气口处压强为760托时的抽气速率。

使用旋片式真空泵时应注意:(1)使用前检查油箱中油量是否适当,即油面是否达到规定的刻线。

(2)带动泵转子旋转的电动机的转动方向是否与标明的箭头相符。

否则会喷油或损坏刮板。

(3)停泵后进气口必须通大气,否则大气会通过缝隙把泵内的油缓慢地从进气口倒压进被抽容器,造成返油,严重影响真空系统的正常工作。

2.2 扩散泵扩散泵是广泛使用的获得高真空的主泵,它是动量传递式真空泵。

结构示意图如图4所示:泵的底部—是装有真空泵油的蒸发器,真空泵油经电炉加热沸腾后,产生一定的油蒸汽,蒸汽沿着蒸汽导流管传输到上部,经由三级伞形喷口向下喷出。

喷口外面的压强较油蒸汽压低,于是便形成一股向出口方向运动的高速蒸汽流,使之具有很好的运载气体分子的能力。

油分子与气体分子碰撞,由于油分子的分子量大,碰撞的结果是油分子把动量交给气体分子自己慢下来,而气体分子获得向下运动的动量后便迅速往下飞去。

并且,在射流的界面内,气体分子不可能长期滞留,因而界面内气体分子浓度较小。

由于这个浓度差,使被抽气体分得以源源不断地扩散进入蒸汽流而被逐级带至出口,并被前级泵抽走。

慢下来的蒸汽流在向下运动的过程中碰到水冷的泵壁,油分子就被冷凝下来,沿着泵壁流回蒸发器继续循环使用。

冷阱的作用是减少油蒸汽分子进入被抽容器。

2.3 罗茨泵罗茨真空泵(简称罗茨泵)是一种旋转式变容真空泵。

根据罗茨真空泵工作范围的不同,又分为直排大气的低真空罗茨泵、中真空罗茨泵(又称机械增压泵)和高真空多级罗茨泵。

罗茨泵的结构如图5所示。

在泵腔内,有二个“8”字形的转子相互垂直地安装在一对平行轴上,由传动比为1的一对齿轮带动作彼此反向的同步旋转运动。

在转子之间,转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。

由于罗茨泵是一种无内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。

罗茨泵的极限真空除取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。

为了提高泵的极限真空度,可将罗茨泵串联使用。

实际设备中往往用多个泵的串联来组成真空泵组,获得真空室中符合要求的真空度。

3 真空感应炉原理真空感应熔炼(VIM)是在真空条件下,利用电磁感应在金属导体内产生涡流加热炉料进行熔炼的方法。

具有熔炼室体积小、抽真空时间和熔炼周期短、便于温度压力控制、可回收易挥发元素、准确控制合金成分等特点。

由于以上特点,现在已发展为特殊钢、精密合金、电热合金、高温合金及耐蚀合金等特殊合金生产的重要工序之一。

真空感应熔炼的两个基本原理应用是:感应加热和真空环境。

3.1 感应加热原理感应熔炼是除电弧炉以外较重要的一种电炉熔炼方法。

与电弧炉相比,其特点有:(1)电磁感应加热。

由于加热方式不同,感应炉没有电弧加热所必须的石墨电极,从而杜绝了电极增碳的可能,因而可以熔炼电弧炉很难熔炼的含碳量极低的钢和合金。

(2)熔池中存在一定强度的电磁搅拌,可促进钢水成分和温度均匀,钢中夹杂合并、长大和上浮。

(3)熔池比表面积小。

优点是熔炼过程中容易控制气氛,无电弧及电弧下高温区,合金元素烧损少、吸气少,所以有利于成分控制、气体含量低和缩短熔炼时间;缺点是渣钢界面面积小,再加上熔渣不能被感应加热,渣温低,流动性差,反应力低,不利于渣钢界面冶金反应的进行,特别是脱硫、脱磷等,因而对原材料要求较为严格。

(4)烟尘少对环境污染小。

熔炼过程中基本无火焰,也无燃烧产物。

感应加热原理主要依据两则电学基本定律。

一是法拉第电磁感应定律:当一座无芯感应炉的感应线圈中通有频率为f的交变电流时,则在感应圈所包围的空间和四周产生一个交变磁场,该交变磁场的极性、磁感应强度与交变频率随着产生该交变磁场的交变电流而变化。

若感应线圈内砌有坩埚并装满金属炉料,则交变磁场的一部分磁力线将穿过金属炉料,磁力线的交变就相当于金属炉料与磁力线之间产生了切割磁力线的相对运动。

因此,在金属炉料中将产生感应电动势(E),其大小通常以下式确定:二是焦耳楞茨定律,又称为电流热效应原理。

当电流在导体内流动时,定向流动的电子要克服各种阻力,这种阻力用导体的电阻来描述,电流克服电阻所消耗的能量将以热能的形式放出。

这就是电流的热效应:当感应炉通以交流电后,在感应线圈内坩埚里的金属炉料由一法拉第电磁感应定律产生感应电动势,由于金属炉料本身形成一闭合回路,所以在金属炉料中产生感应电流:I=4.44Ф?f/R ,(R:金属炉料的有效电阻,Ω)。

该感应电流又依照二焦耳-楞茨定律在炉料中放出热量,使炉料被加热。

3.2真空冶金的原理影响一个化学反应的外部因素主要是:温度、浓度和压力。

真空冶金就是通过改变外界压力对冶金过程中诸多化学反应中有气相参加的反应产生影响,当反应生成物中的气体摩尔数大于反应物中的气体摩尔数,减小系统的压力(即增加真空度)则可以使平衡反应向着增加气态物质的方向移动,促使反应进行的更完全。

以下几类反应器中发生的反应属于此类:1)在真空环境下,碳的行为很有意思。

在常压下,碳的脱氧能力较弱,因此常用金属脱氧剂(如硅、铝等)来进行沉淀脱氧,但硅、铝脱氧后形成的氧化物夹杂会部分残留在钢中,降低钢的纯洁度。

在一般条件下,当钢中〔C〕=0.20%,与之平衡的〔O〕=0.01%,当钢中〔C〕降低时,与之平衡的〔O〕还要升高,而现今有些特殊用途的钢和合金中的氧含量要求又远低于0.01%,因而在一般条件下仅用碳来脱氧是达不到脱氧要求的。

由于K值在某一温度下是一常数,当将炉内CO不断抽走,即降低炉内的PCO,〔%C〕?〔%O 〕的数值也会同时降低,即在真空条件下,碳氧反应会进行的更完全。

当气相压力降至0.1atm 时,碳的脱氧能力可超过硅;若气相压力降至133.322Pa时,碳的脱氧能力可超过铝。

但碳的脱氧能力并不会随着真空度的提高而无限制的提高,因为只有液气分界面的碳氧反应仅只遵循上述热力学原理,金属液体内部的碳氧反应不仅遵循上述热力学原理,还要受到动力学条件的约束。

金属液体内部如果要形成CO气泡,那么CO的生成压必须大于炉气压力、气泡产生处金属液柱的静压力和表面张力造成的压力之和。

相关文档
最新文档