计算方法 第一章

合集下载

计算方法-刘师少版第一章课后习题完整答案

计算方法-刘师少版第一章课后习题完整答案
1
9000 m=1
9000.00
解 (1)∵ 2.0004=0.20004×10 ,
x − x ∗ = x − 0.20004 ≤ 0.000049 ≤ 0.5 × 10 −4
m-n=-4,m=1 则 n=5,故 x=2.0004 有 5 位有效数字
x1 =2,相对误差限 ε r =
1 1 × 10 −( n −1) = × 101−5 = 0.000025 2 × x1 2× 2
-2
(2)∵ -0.00200= -0.2×10 ,
m=-2
x − x ∗ = x − (−0.00200) ≤ 0.0000049 ≤ 0.5 × 10 −5
m-n=-5, m=-2 则 n=3,故 x=-0.00200 有 3 位有效数字
x1 =2,相对误差限 ε r =
4
1 × 101−3 =0.0025 2× 2
4 3 4 πR − π ( R * ) 3 3 ε r* (V ) = 3 4 3 πR 3 R 3 − (R* )3 ( R − R * )( R 2 + RR * + R * ) = = R3 R3 R − R * R 2 + RR * + R * R − R * R 2 + RR * + RR * = ⋅ ≈ ⋅ R R R2 R2
可以得到计算积分的递推公式:
I n = 1 − nI n −1
1 0
n = 1,2, L
1 0
I 0 = ∫ e x −1 dx = e x −1
则准确的理论递推式 实际运算的递推式 两式相减有
* *
= 1 − e −1
I n = 1 − nI n −1
* * In = 1 − nI n −1 * * * In − In = −n( I n −1 − I n −1 ) = − ne( I n −1 ) *

计算方法

计算方法

计算方法第一章绪论1.1计算方法的任务与特点计算方法(又称数值计算方法,数值方法)定义:研究数学问题数值解法及其理论的一门学科1.2误差知识误差来源:模型误差、观测误差、截断误差、舍入误差绝对误差:|e(x*)|=|x-x*|相对误差:e r=e(x*)/x*x*=±10m(a1×10-1+a2×10-2+…+an×10-n)n为有效数字|x-x*|≤(1/2)×10m-n1.3选用算法时应遵循的原则要尽量简化计算步骤以减少运算次数、要防止大数“吃掉”小数、尽量避免相近的数相减、除法运算中应尽量避免除数的绝对值远远小于被除数的绝对值选用数值稳定性好的公式,以控制舍入误差的传播第二章方程的近似解法方程f(x)=a0+a1x+…+a m-1x m-1+a m的根的模小于u+1大于1/|1+v| (u=max{|a m-1|,…,|a1|,|a0|}v=1/|a0|max{1,||a m-1|,…,|a1|})2.1二分法解法步骤:第一步利用(b-a)/2n+1≤1/2×10-m解得n+1≥~得最小对分次数2.2迭代法解法步骤:第一步画图求的隔根区间第二步建立迭代公示并判别收敛性第三步令初始值计算2.3牛顿迭代法迭代公式:x n+1= x n -f(x n)/f’(x n)解法步骤:第一步列出迭代公式第二步判断收敛性3.1解线性方程组的直接法高斯消去法、列主元素消去法、总体选主元素消去法暂不介绍矩阵三角分解法Ly=b Ux=y以三行三列为例介绍u11=a11u12=a12u13=a13l21=a21/u11l31=a31/u11u22=a22-l21×u12u23=a23-l21×u13l32=(a32-l31u12)/u22u33=a33-l31×u13-l32×u233.2解线性方程组的迭代法简单迭代法(雅可比迭代法)x=Bx+g收敛性判断|E入-B T B|=0 max入<1赛德尔迭代法x(k+1)=B1x(k+1)+B2x(k)+g收敛性判断|E入-C T C|=0 max入<1 C=(E-B1)-1B2第五章插值法余项R n(x)=f(n+1)(~)∏(x-x i)5.1拉格朗日插值法l k(x)=[(x-x0)…(x-x k-1)(x-x k+1)…(x-x n)]/[(x k-x0)…(x k-x k-1)(x k-x k+1)…(x k-x n)] L n(x)=∑l k(x)y k第六章最小二乘法与曲线拟合A T Ax=A T b第七章数值积分与数值微分梯形公式∫f(x)dx=(b-a)/2[f(a)+f(b)]Rn=-(b-a)3/12f’’(m) (m∈(a,b))复化梯形公式Rn=-(b-a)h2/12f’’(m) (m∈(a,b))辛浦生公式∫f(x)dx=(b-a)/6[f(a)+f((a+b)/2)+f(b)]Rn=- (b-a)5/2880f’(4)(m) (m∈(a,b))Rn=- (b-a)h4/2880f’(4)(m) (m∈(a,b))柯特斯公式∫f(x)dx=(b-a)/90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]Rn=-8(b-a)/945((b-a)/4)7f(6)(m) (m∈(a,b))Rn=-2(b-a)(h/4)6/945((b-a)/4)7f(6)(m) (m∈(a,b))龙贝格求积公式S N=(4T2N-T N)/(4-1)C N=(42S2N-S N)/(42-1)R N=(43C2N-C N)/(43-1)T梯形S辛浦生C柯特斯第八章常微分方程初值问题的数值解法欧拉法y n+1=y n+hf(x n,y n)梯形法y n+1=y n+h/2[f(x n,y n)+f(x n+1,y n+1)]欧拉预估-校正公式y n(0)=y n+hf(x n,y n) y n+1=h/2[f(x n,y n)+f(x n+1,y n+1(0))]。

计算方法 第1章 预备知识与误差分析

计算方法 第1章 预备知识与误差分析

1. 误差的来源及误差类型 一般使用计算机解决实际问题须经过如下几个过程: 实际问题 数学模型 数值算法 程序设计 计算结果
根据实际问题建立数学模型的过程中通常会忽略某些次要因素而对问题进行简化, 由此 产生的误差称为模型误差; 很多数学模型都含有若干个参数, 而有些参数往往又是观测得到 的近似值, 如此取得的近似参数与真实参数值之间的误差称为参数误差或观测误差。 例如自 由落体运动规律的公式
nn
(1.2)
其矩阵形式可以表示为 Ax b, A R
, x, b R n ,由线性代数知识我们知道,当其系数
授课对象:北京工业大学计算机学院本科生
杨中华
2
编者:杨中华
计算方法讲稿
第一章 预备知识与误差分析
矩阵对应的行列式不等于零时,即 D 法则,有:
A 0 ,该线性方程组有唯一一组解,根据克莱姆
这个耗时数还不包括求解过程中的加减运算以及更耗时的读写内存数据操作所需要的时间。 但是如果用 Gauss 消去法求解此规模的线性方程组,其乘除法次数约仅为:
n3 n n 2 3060 3 3
(1.4)
从(1.3)与(1.4)式的巨大差距可以看出求解线性方程组用 Gauss 消去法非常有效, 因此对于稍 微大一点规模的线性方程组没有任何理由选择克莱姆法则解决此类问题。 对程序员的忠告:千万不要以为计算机的速度不是问题,选择数学方法不当可能让你 永远等不到最后的计算结果! 我们再看一个实例, 从中可以发现, 有时直接使用高等数学中给出的很简单明了的数学 表达式进行计算并不一定能够得到我们预期的结果。 例1.2 考虑导数的近似计算问题,根据导数的定义
计算方法讲稿
第一章 预备知识与误差分析

计算方法的课后答案

计算方法的课后答案

《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。

2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。

解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。

5.叙述误差的种类及来源。

答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。

(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。

(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。

(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。

这样引起的误差称为舍入误差。

6.掌握绝对误差(限)和相对误差(限)的定义公式。

南航《计算方法》第1章-绪论

南航《计算方法》第1章-绪论
绪论
南京航空航天大学数学系
内容提要
1. 科学计算的地位与应用 2. 科学计算在美国 3. 科学计算的基本内容 4. 科学计算主要进展 5. 相容性与稳定性
一. 科学计算的地位与应用
科学计算的地位
科学研究/工程技术
理论 研究
科学 计算
科学 实验
科学工程计算
建模 计算
应用 问题
数学 计算 模型 方法
二. 科学计算在美国
2
美国从1942年8月13日开始曼哈顿 计划,到1945年制造出三颗原子 弹:代号为:“三一”,用于试 验(7月16日),“瘦子”投于广 岛(8月6日),“胖子”投于长崎(8 月9日)。历时三年,涉及到理论 物理、爆轰物理、中子物理、金
属物理、弹体弹道等大量的数值 计算。
1983年一个由美国著名数学家拉 克斯(P. Lax)为首的不同学科的专 家委员会向美国政府提出的报告 之中,强调“科学计算是关系到 国家安全、经济发展和科技进步 的关键性环节,是事关国家命脉 的大事。”
有限差分法的基本思想是用离散的、 只含有限个未知数的差分方程去代 替连续变量的微分方程和定解条件。 求出差分方程的解作为求偏微分方 程的近似解。
3.5 微分方程(组)数值解
有限元法是近代才发展起来的, 它是以变分原理和剖分差值作为 基础的方法。在解决椭圆形方程 边值问题上得到了广泛的应用。 有许多人正在研究用有限元素法 来解双曲形和抛物形的方程。
1 en1 n en

故得 | en
|
1 n1
1 n
2
1 N
| eN
| (n

N)
计算稳定。
x * ---数学模型精确解 x ---计算格式理论解 x ---计算格式近似解

计算方法_课后习题答案

计算方法_课后习题答案

L3 x 的最高次项系数是 6,试确定 y1 。
解: l0 (x)

x x1 x0 x1

x x2 x0 x2

x x3 x0 x3

x 0.5 0 0.5
x 1 0 1
x2 02
= x3

7 2
x2

7 2
x 1
l1 ( x)

x x0 x1 x0
(2 2e1 4e0.5 )x2 (4e0.5 e1 3)x 1
2)根据Lagrange余项定理,其误差为
| R2 (x) ||
f
(3) ( 3!
)
21
(
x)
||
1 6
e
x(
x

1)(
x

0.5)
|
1 max | x(x 1)(x 0.5) |, (0,1) 6 0x1
x2 02
x4= 04
x3
7x2 14x 8 8
l1 ( x)

x x0 x1 x0

x x2 x1 x2

x x3 x1 x3

x0 1 0

x2 1 2
x4 1 4
=
x3
6x2 3
8x
l2 (x)

x x0 x2 x0

i j
而当 k 1时有
n
x jl j
j0
x

n

n
j0 i0 i j
x xi x j xi


x
j

西安交通大学《计算方法》课件-第一章

西安交通大学《计算方法》课件-第一章

浮点运算原则
(1)避免产生大结果的运算,尤其是避免小数作为除数 参加运算 (2)避免“大”“小”数相加减 (3)避免相近数相减,防止大量有效数字损失 (4)尽可能简化运算步骤,减少运算次数
第1章 绪论
定义 数据相对小的变化引起解的相对大的变化的问题 称为病态问题,否则称为良态问题。
问题的性态就是指问题的解对原始数据扰动的敏感性
第1章 绪论
浮点数系运算误差
(2)计算结果的尾数多于t位数字
在F (2,3,1,2)中
(0.100 20 ) (0.111 20 ) 0.1101 21 (0.100 22 ) (0.111 21 ) 0.1000111 22
需要对结果进行舍入处理,产生的差称为舍入误差
记为F ( , t , L,U )
l
将计算机中所能表示的全体数的集合称为计算机的浮点数系
浮点数系中的数的个数是有限的,其个数为
2( 1) t 1 (U L 1) 1
第1章 绪论
浮点数系的误差
在计算机的浮点数系中,四则运算是非封闭的 为使经过算术运算产生的结果仍然要用浮点数系中的数 表示,因此必须用一个比较接近的数来代替 因此产生误差 称此误差称为舍入误差
第1章 绪论
第1章 绪论
什么是计算方法
《计算方法》介绍基本的数学问题中的主要数值方法, 介绍方法的思想、结构、条件、对输入数据的要求、生成 数据的意义、应注意的事项等 介绍数值计算中的一些最基本的概念 设计常见应用问题的数值处理方法 对数值方法的数值特性进行研究 分析方法的可靠性 分析方法的效率
第1章 绪论
问题的性态
已知问题f ( x)的输入数据只有一个 ,用x来表示 若有两个输入数据x和~ x , 则可以得到两个不同的结果f ( x)和f ( ~ x)

计算方法第一章绪论(32学时)-2014.2

计算方法第一章绪论(32学时)-2014.2

教材聂玉峰、王振海等《数值方法简明教程》,高等教育出版社,2011作业计算方法作业集(A、B)参考书¾封建湖,车刚明计算方法典型题分析解集(第三版)西北工业大学出版社,2001¾封建湖,聂玉峰,王振海数值分析导教导学导考(第二版)西北工业大学出版社,2006¾车刚明,聂玉峰,封建湖,欧阳洁数值分析典型题解析及自测试题(第二版)西北工业大学出版社,2003西北工业大学理学院欧阳洁2第一章绪论§1 引言§2 误差的度量与传播§3 选用算法时应遵循的原则西北工业大学理学院欧阳洁3§1 引言科学与工程领域中运用计算机求解问题的一般过程:1 实际问题的提出2 建立数学模型3 设计可靠、高效的数值方法4 程序设计5 上机实践计算结果6 数据处理及结果分析西北工业大学理学院欧阳洁4学习算法的意义科学计算(数值模拟)已经被公认为与理论分析、实验分析并列的科学研究三大基本手段之一。

计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica 等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。

但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容至关重要。

西北工业大学理学院欧阳洁5鉴于实际问题的复杂性,通常将其具体地分解为一系列子问题进行研究,本课程主要涉及如下几个方面问题的求解算法:¾非线性方程求根¾线性代数方程组求解¾函数插值¾曲线拟合¾数值积分与数值微分¾常微分方程初值问题的数值解法¾矩阵特征值与特征向量计算西北工业大学理学院欧阳洁6§2 误差的度量与传播一误差的来源与分类模型误差:数学模型与实际问题的误差观测误差:观测结果与实际问题的误差截断误差:数学模型的理论解与数值计算问题的精确解之间的误差舍入误差:对超过某有限位数的数据进行舍入所产生的误差西北工业大学理学院欧阳洁75 使用数值稳定性好的公式一个算法,如果初始数据微小的误差仅使最终结果产生微小的误差,或在运算过程中舍入误差在一定条件下能够得到控制,则称该算法(数值)稳定,否则称其为(数值)不稳定.西北工业大学理学院欧阳洁26总结1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.数值运算中应遵循的若干原则西北工业大学理学院欧阳洁30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
计算过 程中产 生的舍 入误差
例如用级数
sin x ? x ? 1 x3 ? 1 x5 ? 1 x7 ? ? 3! 5! 7!
的前三项计算 sinx 的近似值 , 即取
对于两个数值 x1=100±2, x2=10±1
近似值x1*=100的绝对误差限 ?*(x1*)=2是近似值 x2*=10的绝对误差限 ?*(x2*)=1的两倍. 但是,近似值100
的偏差不超过 2, 而近似值10的偏差不超过 1. 哪个近似 值的精度好呢?
一个近似值的精度不仅与绝对误差的大小有关 , 还与精确值的大小有关 . 为此我们需要引入相对误差 的概念.
? 1 ? nIn?1(n ? 1,2,? ).
n=1,2,4,6, 8,10,15
如果取 I0 = 1–e–1 = 0.63212056 ( 八位有效数字 ).
利用递推公式进行计算得 :
n In 近似值 0 0.63212056
n In 近似值 6 0.12680320
n In 近似值 12 0.63289603
满足不等式 |e(x*)| = | x–x*| ? ?*的正数?*称为近
似值 x*的绝对误差限 , 简称为误差限. 在工程技术中常记作 x=x*±?*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限 , 即 | V–V*| ? 2(V)
二、相对误差与相对误差限
通常将
er* ( x*) ?
e( x*) ? x*
x? x* x*
作为近似值 x*的相对误差 .
满足不等式
|
er?
(
x*)
|? |
e( x*) x*
|? |
x
? x
x *
*
|?
?
? r
的正数?r*称为近似值 x*的相对误差限 .
例如: x1=100±2的近似值 x1*=100的相对误差为
|
er? ( x1? )
sin
x
?
S5( x)
?
x
?
1 x3 3!
?
1 x5 5!
则截断误差 为:
R( x)
?
sin
x
?
S5( x)
?
?
1 x7 7!
?
1 9!
x9
?
?
由于计算机的字长有限 , 用0.166667 近似表示1/3!,
就会产生舍入误差 .
§2 误差的概念
一、绝对误差与绝对误差限
设x*为准确值 (也称为真值 ) x 的一个近似值 , 则称 x–x*为近似值 x*的绝对误差 , 简称为误差, 并记作 e(x*) = x–x*。
例如, ? =3.141592···, x*= 3.14的绝对误差 |e(x*)|=
0.00159···? 0.01?1/2, 即“4”所在的百分位的半个单位 0.01? 1/2 是x*的绝对误差限 , 故x*的最左边的非零位 数(个位)“3”到百分位“ 4”共有三位 , 所以x* = 3.14具 有3位有效数字 .
e( x*) ? e( x*) ? e( x*)( x * ? x)ຫໍສະໝຸດ x x*xx *?
? [e( x*)]2
? [e( x*)]2 ? x*
[x * ? e( x*)]x * 1 ? e( x*)
x*
当x*? x 时, 即e (x*)? 0 时, 上式是[e( x*)]2 x*
的同阶无穷小 , 故可忽略不计 .
有效数字位数越多 , 近似值的绝对误差和相对误 差就相对越小 , 反之亦然.
§3 误差的传播规律
设x1*, x2*分别为x1, x2的近似值, 函数值 y=f(x1, x2) 的近似值用 y*=f (x1*, x2*)表示. 利用函数f (x1, x2)在点 (x1*, x2*)处的二元泰勒展开公式 , 对y*的绝对误差和 相对误差进行分析 .
|? |
e( x1? ) x1?
|?
2 100
?
2%
而 x2=10±1的近似值 x2*=10的相对误差为
|
er? ( x2? ) |?|
e( x2? ) x2?
|?
1 10
?
10%
因此, 从相对误差来讲近似值 x1*比x2*的精度要好 .
三、有效数字及其位数
若近似值 x*某位数数值的 半个单位 是其绝对误差 限, 而从该位数字到 x*的最左边的非零数值数位止 , 共 有n位数, 则我们称这个近似值 x*具有n位有效数字 .
第一章 误 差
引例
例1: y = arctan5430 – arctan5429 的准确值为 : 0.0000000 339219···? 0.339? 10–7
但是, 用具有八位舍入功能 的计算器直接计算得 y ? 1.5706122 – 1.5706121 = 0. 0000001 = 1? 10–7 所得计算结果的可靠性值得怀疑 . 这一结果的产
:
例3: 对于一元二次方程
x2 –(109+1)x+109= 0
有两个精确的实根: x1= 109, x2= 1. 如果在有仅八位的浮点计算机上用求根公式 :
x1,2 ? ? b ?
b2 ? 4ac 2a
直接进行计算则得 : x1=109, x2=0. 其中的x2=0明显失真 , 这也是由于 舍入误差造成的.
生是由于四舍五入 造成的. 例2: 计算下面积分的值 ( n = 0, 1, 2, ···):
In ? e?1 ?01 xne xdx.
积分In的值必定落在区间 [0, 1]内, 我们由被积函 数及其图形作出判断 .
由分部积分法可得 :
In ? e?1 ?01 xnde x ? e?1 xne x |10 ? e?1 ?01nx n?1e xdx
设x的近似值为 x*, 则称x*的绝对误差 e(x*)与精确 值x的比值为近似值 x*的相对误差 , 并记作er(x*),

er ( x*) ?
e( x*) x
?
x? x* x
同样, 由于精确值 x 经常是未知的 , 所以, 需要另
外的近似表达形式 . 我们注意如下公式的推导 ,
当 | e( x*) | 较小时, 有 x*
1 0.36787944 7 0.11237760
13 -7.2276483
2 0.26424112 8 0.10097920
14 102.18708
3 0.20727664 9 0.091187200 15 -1531.8061
4 0.17089344 10 0.088128000
:
5 0.14553280 11 0.030591000
相关文档
最新文档