七年级数学奥数题
7年级上册数学奥数题

7年级上册数学奥数题一、有理数运算相关奥数题1. 题目计算:公式解析:先计算括号内的式子:公式;公式;公式;公式;公式。
则原式可转化为公式。
可以发现前一项的分母和后一项的分子可以约掉,最后只剩下第一项的分子公式和最后一项的分母公式,所以结果为公式。
2. 题目计算:公式解析:我们根据公式的幂次规律来计算。
当公式为奇数时,公式;当公式为偶数时,公式。
原式中从公式到公式共有公式项。
可以将相邻的两项看作一组,即公式,公式,以此类推。
因为公式是奇数,所以最后剩下一项公式,所以结果为公式。
二、整式相关奥数题1. 题目已知公式,公式,且公式的值与公式无关,求公式的值。
解析:首先计算公式:因为公式,公式。
所以公式展开式子得:公式合并同类项得:公式即公式,提取公因式公式得公式。
因为公式的值与公式无关,所以公式的系数公式。
解方程公式,公式,解得公式。
2. 题目若公式,公式,求公式和公式的值。
解析:(1)求公式的值:因为公式。
已知公式,公式。
所以公式。
(2)求公式的值:因为公式。
已知公式,公式。
所以公式。
三、一元一次方程相关奥数题1. 题目解方程:公式解析:先从最外层开始去括号:两边同时乘以公式得:公式。
移项得:公式。
再两边同时乘以公式得:公式。
移项得:公式。
两边同时乘以公式得:公式。
解得公式。
2. 题目已知关于公式的方程公式的解为正整数,求公式的整数值。
解析:首先将方程公式变形为公式。
解得公式。
因为方程的解公式为正整数,所以公式是公式的正因数。
公式的正因数有公式、公式、公式。
当公式时,公式;当公式时,公式;当公式时,公式。
经典的七年级奥数题三篇

【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
下⾯是为⼤家带来的“经典的七年级奥数题三篇”,欢迎⼤家阅读。
经典的七年级奥数题篇⼀ 1.加⼯⼀批零件,原计划每天加⼯80个,正好按期完成任务。
由于改进了⽣产技术,实际每天加⼯100个,这样,不仅提前4天完成加⼯任务,⽽且还多加⼯了100个。
他们实际加⼯零件多少个? 2.甲、⼄⼆⼈加⼯⼀批帽⼦,甲每天⽐⼄多加⼯10个。
途中⼄因事休息了5天,20天后,甲加⼯的帽⼦正好是⼄加⼯的2倍,这时两⼈各加⼯帽⼦多少个? 3.甲、⼄两车同时从A、B两地相对开出,甲车每⼩时⽐⼄车多⾏20千⽶。
途中⼄因修车⽤了2⼩时,6⼩时后甲车到达两地中点,⽽⼄车才⾏了甲车所⾏路程的⼀半。
A、B两地相距多少千⽶? 4.甲、⼄两⼈承包⼀项⼯程,共得⼯资1120元。
已知甲⼯作了10天,⼄⼯作了12天,且甲5天的⼯资和⼄4天的⼯资同样多。
求甲、⼄每天各分得⼯资多少元? 5.⽤汽车运⼀堆煤,原计划8⼩时运完。
实际每⼩时⽐原计划多运1.5吨,这样运了6⼩时就⽐原计划多运了3吨。
原计划8⼩时运多少吨煤?经典的七年级奥数题篇⼆ 1、⼩明步⾏上学,每分钟⾏70⽶,离家12分钟后,爸爸发现⼩明的⽂具盒忘在家中,爸爸带着⽂具盒⽴即骑⾃⾏车以每分钟280⽶的速度去追⼩明。
爸爸出发⼏分钟后追上⼩明? 2、甲、⼄、丙三⼈都从A城到B城,甲每⼩时⾏4千⽶,⼄每⼩时⾏5千⽶,丙每⼩时⾏6千⽶,甲出发3⼩时后⼄才出发,恰好三⼈同时到达B城。
⼄出发⼏⼩时后丙才出发? 3、四年级同学从学校步⾏到⼯⼚参观,每分钟⾏75⽶,24分钟以后,因有重要事情,派张兵骑车从学校出发去追。
如果他每分钟⾏225⽶,那么⼏分钟后可以追上同学们? 4、两名运动员在环形跑道上练习长跑。
甲每分钟跑250⽶,⼄每分钟跑200⽶,两⼈同时同地同向出发,经过45分钟甲追上⼄。
环形跑道⼀周长多少⽶?如果两⼈同时同地背向⽽⾏,经过多少分钟两⼈相遇? 5、我骑兵以每⼩时20千⽶的速度追击敌兵,当到达某站时,得知敌⼈已于2⼩时前逃跑。
七年级数学奥数题[五篇模版]
![七年级数学奥数题[五篇模版]](https://img.taocdn.com/s3/m/9af0a847f342336c1eb91a37f111f18582d00c5c.png)
七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。
7年级奥数题及答案数学奥数题七年级

7年级奥数题及答案数学奥数题七年级7年级奥数题及答案7年级奥数题及答案刚步入7年级的学生对于自己的基础知识要求扎实之外,也要多做奥数题为自己铺一个垫脚石,下面是WTT为你们准备的7年级的相关奥数题目以及相关的奥数答案,希望能帮助你们。
7年级奥数题1:把1至205这205个自然数依次写下来得到一个多位数 123456789..205,这个多位数除以9余数是多少解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9 整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少2021__022******** 从1000~1999千位上一共999个“1”的和是999,也能整除;2021__022********的各位数字之和是27,也刚好整除。
最后答案为余数为0。
7年级奥数题2:A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是:98 / 100 7年级奥数题3:已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案一、选择题1. 一个数列的前三项为 2, 3, 5,每一项都是前两项的和,那么第10项是多少?A. 144B. 145C. 146D. 147答案:D2. 一个正整数,如果加上100后是一个完全平方数,那么这个数最小是多少?A. 49B. 50C. 51D. 52答案:B3. 一个长方体的长、宽、高分别为 a, b, c,且 a < b < c,如果长方体的体积是 216 立方厘米,那么 a 的可能值是?A. 3B. 4C. 6D. 8答案:C二、填空题1. 一个数的平方比它本身大 40,这个数是 _______。
答案:7 或 -72. 一个数列的前三项为 1, 2, 3,每一项都是前一项的两倍加上 1,那么第 5 项是多少?答案:11三、解答题1. 一个水池有一个进水管和一个出水管,单独开进水管 5 小时可以注满水池,单独开出水管 3 小时可以放空水池。
现在同时打开进水管和出水管,需要多少时间才能注满水池?解答:设水池的容量为 V 升。
进水管的流量为 V/5 升/小时,出水管的流量为 V/3 升/小时。
设同时打开两个水管需要 t 小时注满水池,则有:(V/5 - V/3) * t = V解得 t = 15/2 = 7.5 小时。
2. 一个班级有 40 名学生,其中 1/4 喜欢数学,1/3 喜欢英语,1/6 喜欢历史,剩下的学生喜欢科学。
问喜欢科学的有几人?解答:喜欢数学的学生有 40 * 1/4 = 10 人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为 13 人,喜欢历史的学生有 40 * 1/6 ≈ 6.67,取整数为 7 人。
喜欢科学的人数为:40 - 10 - 13 - 7 = 10 人。
结束语:以上是初一奥数竞赛考试题及答案,希望同学们能够通过这些题目,锻炼自己的逻辑思维能力和数学解题技巧,为未来的学习打下坚实的基础。
七年级经典的奥数题三篇

七年级经典的奥数题三篇七年级经典的奥数题篇一1、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?2、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?3、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?4、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?5、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?七年级经典的奥数题篇二1、甲、乙两队挖一条水渠,甲队单独挖要8天完成,乙队单独挖要12天完成,现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成,乙队挖了多少天?2、某工程队预计30天修完一条水渠,先由18人修12天后完成工程的1/3,如果要提前6天完成,还要增加多少人?3、一项工程,甲2小时完成了1/5,乙5小时完成了剩下的1/4,余下的部分由甲、乙合作完成,甲共工作了多少小时?4、一个水池,甲、乙两管同时打开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满(这时乙管关闭),那么乙管单独开灌满水池需多少小时?5、师、徒两人共同加工一批零件,师傅每小时加工9个,徒弟每小时加工个,完成任务时,徒弟比师傅少加工120个,这批零件共有多少个?七年级经典的奥数题篇三1、甲、乙两人同时分别从两地骑车相向而行。
甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米。
问全程长多少米?2、两地相距900千米,甲走需15天,乙走需12天。
精选初一奥数题五篇

精选初一奥数题五篇1.精选初一奥数题篇一1.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.2.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?3.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).4.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?5.求不定方程49x-56y+14z=35的整数解.6.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?2.精选初一奥数题篇二1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?2.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.3.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?4.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.5.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?3.精选初一奥数题篇三1.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?2.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。
初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。
从第四个数字开始,每个数字都是前三个数字的和。
请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。
然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。
将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。
所以,斜边的长度是5厘米。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。
问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。
我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。
这相当于在4个球之间插入2个隔板来形成3个部分。
我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。
但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。
因此,最终的放球方法有\[ 6 - 3 = 3 \]种。
试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。
求这个数列的第10项。
答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥数
1.下列判断正确的是( )
A.平角是一条直线
B.凡是直角都相等
C.两个锐角的和一定是锐角
D.角的大小与两条边的长短有关
3.下列哪个角不能由一副三角板作出( )
A.105°
B.12°
C.175°
D.135°
4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是( )
A.互补
B.互余
C.和为钝角
D.和为周角
5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为( )
6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位
于这个灯塔的( )
A.南偏西50°方向
B.南偏西40°方向
C.北偏东50°方向
D.北偏东40°方向
7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( )
A.1/2∠1
B.1/2∠2
C.1/2(∠1-∠2)
D.1/2(∠1+∠2)
8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则
∠BOC的
度数是
9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若
MN=a,BC=b,则AD的长是
10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则
∠BO G=
11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD=
12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An 平分AAn-1则AAn=
14.小明每天下午5:46回家,这时分针与时针所成的角的度数为
度
15.如果∠a=26°,那么∠a余角的补角等于
16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=
17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是
cm
18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票
(1)在A,B两站之间最多共有种不同的票价;共有
种不同的车票
(2)如果共有n(n≥3)个站点,则需要种不同的车票
19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则( )
A.∠A>∠B>∠C
B.∠B>∠A>∠C
C.∠A>∠C>∠B
D.∠C>∠A>∠B
20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF 为OE的反向延长线
(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?
21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。
(1)如图①,当∠BOC=70°时,求∠DOE的度数(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由
(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程)
22.(1)如下图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N 分别是AC、BC的中点,求线段MN的的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律
(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。
”结果会有变化吗?如果有,求出结果
23.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)
(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB 上的位
(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQ/AB的值
(3)在(1)的条件下,若C、D运动5秒后,恰好有CD-A,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②2B的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值。