一元二次方程的解法和定义

合集下载

一元二次方程的解法定理

一元二次方程的解法定理

一元二次方程的解法定理一、引言在数学中,解一元二次方程是一个基础与重要的问题。

为了找到方程的解,我们需要运用一些定理和方法。

本文将介绍一元二次方程的解法定理以及具体的解法方法。

二、一元二次方程的定义一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c是已知系数,且a≠0。

三、一元二次方程的解法定理一元二次方程的解法定理是指:对于一元二次方程ax^2 + bx + c = 0,它的解可根据判别式Δ=b²-4ac的值来分类。

1. 当Δ>0时,方程有两个不相等的实根;2. 当Δ=0时,方程有两个相等的实根;3. 当Δ<0时,方程没有实根,但有两个共轭复数根。

四、一元二次方程的解法方法根据一元二次方程的解法定理,我们可以采取不同的解法方法来求解方程。

1. 当Δ>0时,方程有两个不相等的实根。

此时,我们可以使用求根公式x=(-b±√Δ)/(2a)来求解。

其中,±代表两个不同的解。

2. 当Δ=0时,方程有两个相等的实根。

此时,我们同样可以使用求根公式x=(-b±√Δ)/(2a)来求解,并且由于Δ=0,所以解是重复的。

3. 当Δ<0时,方程没有实根,但有两个共轭复数根。

此时,我们可以使用公式x=-b/(2a)±(√-Δ/(2a))来求解,其中√-Δ表示二次方程中的虚根。

五、实例分析为了更好地理解一元二次方程的解法定理及解法方法,我们来看一个具体的实例:考虑方程2x^2 + 5x + 2 = 0,我们可以求解该方程的解。

首先,根据判别式Δ=b²-4ac,我们可以计算Δ=5²-4*2*2=1。

由于Δ>0,所以方程有两个不相等的实根。

接下来,根据求根公式x=(-b±√Δ)/(2a),我们可以计算出两个实根:x=(-5+√1)/(2*2)=-3/2和x=(-5-√1)/(2*2)=-1。

1、一元二次方程的定义及解法

1、一元二次方程的定义及解法

第一讲一元二次方程的定义及解法1.1 一元二次方程的定义知识网络图定义直接开平方法一元二次方程配方法解法公式法因式分解法知识概述1.一元二次方程的概念:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,都能化成形如ax2bx c 0(a 0),这种形式叫做一元二次方程的一般形式.其中ax2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项. 3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根课堂小练1.(2018?马鞍山二模)已知 a 是方程x2﹣2x﹣1=0 的一个根,则代数式2a2﹣4a﹣1的值为()A . 1 B.﹣ 2 C.﹣ 2 或 1 D .22(.2018?岐山县二模)若关于x 的一元二次方程(m﹣1)x2+x+m2﹣5m+3=0 有一个根为1,则m 的值为()A .1 B.3 C.0 D.1 或33.(2017 秋?潮南区期末)一元二次方程(x+3)(x﹣3)=5x 的一次项系数是()A .﹣ 5 B.﹣9 C.0 D .5课后练习1.(2018?荆门二模)已知 2 是关于x 的方程x2﹣(5+m)x+5m=0 的一个根,并且这个方向的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为()A .9 B.12 C.9 或12 D. 6 或12 或152.(2018?河北模拟)若关于x 的一元二次方程ax2﹣bx+4=0 的解是x=2,则2020+2a﹣b 的值是()A .2016B .2018 C.2020 D.20223.(2017 秋?武城县期末)若关于x 的一元二次方程(m﹣2)x2+3x+m 2﹣3m+2=0 的常数项为0,则m 等于1.2 直接开平方法知识概述1.直接开方法解一元二次方程:(1) 直接开方法:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法 (2)直接开平方法的理论依据:平方根的定义课堂小练1.(2017 春?费县校级月考)解方程:(1)25x 2﹣36=0 课后练习1.(2017 秋?天宁区校级月考)解方程:(1)(x+2)2﹣16=0 1.3 配方法4. 5. A . 0 B .1 C .2 2017 秋?蓬溪县期末)关于 A .1B .﹣ 12017 秋?常熟市期末)已知 A . 2015 D .1 或 2x 的一元二次方程(C .±12元二次方程 x 2﹣ xB .2016C .2018 22a ﹣ 1) x 2+2ax+1 ﹣ a 2=0 有一个根是 0,则D .0﹣ 2=0 的一个根是 m ,则 2018﹣ m 2+m 的值是( D . 2020(3)能用直接开平方法解一元二次方程的类型:①形如关于 x 的一元二次方程 ,可直接开平方求解可直接开平方求解,两根是2)4(2x ﹣1)2=36.2)x 2﹣2x ﹣4=0.②形如关于 x 的一元二次方程知识概述1.配方法解一元二次方程: (1)配方法解一元二次方程:将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法 叫配方法 .(2)配方法解一元二次方程的理论依据是公式: (3)用配方法解一元二次方程的一般步骤:① 移项:将含未知数的项移到左边,不含未知数的项移到右边; ②化系数为 1:方程两边同时除以二次项的系数,将二次项系数化为1;③ 配方:方程两边同时加上一次项系数一半的平方; ④ 再把方程左边配成一个完全平方式,右边化为一个常数;⑤ 若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解 课堂小练1.( 2018?临沂)一元二次方程 y 2﹣ y ﹣ =0 配方后可化为( )A .(y+ ) 2=1B .(y ﹣ )2=1C .(y+ )2=D .(y ﹣ )2=22.(2018?旌阳区模拟)用配方法解方程 x 2﹣ x ﹣1=0 时,应将其变形为()2 2 2 2A .(x ﹣ ) =B .(x+ ) =C .(x ﹣ ) =0D .( x ﹣ ) =3.( 2018?中江县模拟)用配方法解方程: x 2﹣7x+5=0 .课后练习上方程用配方法变形正确的是(1.( 2018?秀洲区二模)在《九章算术》 勾股”章里有求方程 2x +34x ﹣71000=0的正根才能解析的题目,以2A .(x+17 ) 2B .(x+17)2=71289 2C .(x ﹣17)2=70711 2D .(x ﹣17)2=712892.(2017 秋?定安县期末)将一元二次方程 x 2﹣ 4x ﹣ 6=0化成( x ﹣ a ) 2=b 的形式,则 b 等于( )[来A . 4B . 6C . 8D . 103.(2018?宁河县一模)解下列方程:21)x 2+10x+25=022) x 2﹣ x ﹣1=0.4.(2017?广东模拟)解方程:(x+1)(x﹣1)+2(x+3)=8.1.4 公式法知识概述1. 一元二次方程的求根公式一元二次方程,当时,2. 一元二次方程根的判别式①当时,原方程有两个不等的实数根②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3. 用公式法解一元二次方程的步骤①把一元二次方程化为一般形式;②确定a、b、c 的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根课堂小练1.(2016 秋?通江县月考)下列方程适合用求根公式法解的是(A .(x﹣3)2=2 B.325x2﹣326x+1=0 C.x2﹣100x+2500=0 D .2x2+3x ﹣1=0 2.(2016秋?惠安县校级期中)用求根公式法解方程x2﹣2x﹣5=0 的解是()A .x1 =1+ ,x2=1﹣B.x1=2+ ,x2=2﹣C.x1=1+ ,x2=1﹣ D .x 1=2+ ,x2=2﹣[来源学§科§网Z§X§X§K]3.(2018?和平区模拟)解方程:(x﹣3)(x﹣2)﹣4=0.课后练习1.解方程2(1)3x2+5x+1=0 .1.5 因式分解法知识概述1.用因式分解法解一元二次方程的步骤1)将方程右边化为0;2)将方程左边分解为两个一次式的积;3)令这两个一次式分别为0,得到两个一元一次方程;4)解这两个一元一次方程,它们的解就是原方程的解2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式)要点诠释:22)2x2﹣7x+6=03)4x2﹣3=12x(用公式法解)24)2x2+3x=1 (用公式法解),十字相乘法等[来源 学#科# 网 Z#X#X#K]( 1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的 积;( 2)用分解因式法解一元二次方程的理论依据:两个因式的积为 0,那么这两个因式中至少有一个等于 0; ( 3)用分解因 式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有 未知数的代数式 . 课堂小练1.( 2018?泸县模拟)解方程: x (x ﹣1)=4x+6 .2.(2017 秋?白银期末)解方程:(1)3( x ﹣ 1) 2=x (x ﹣1)课后练习1.解方程(1) 4x 2﹣ 8x+3=0(2)x (x+6)=7 (3)2(x ﹣3)2=5(3﹣x )22)4)3x(x﹣1)=2(x﹣5)x(x+5)=14;6)x(x﹣2)+(x﹣2)=0.1)[来源学#科# 网Z#X#X#K]。

一元二次方程的解法公式法

一元二次方程的解法公式法

一元二次方程的解法公式法
一元二次方程解法公式法:
(一)定义:
一元二次方程是由一个方程组成的形式,其中包含一个独立的变量以
及平方项和恒等于零的常数。

(二)解法:
1. 首先,我们要用一元二次方程解法公式法来求解一元二次方程问题。

公式为:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
2. 其次,我们把方程中的变量代入到公式中。

一般来说,方程的形式为:$$ax^2+bx+c=0$$
3. 最后,根据公式,可以得出$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
(三)特殊情况:
1. 一元二次方程的实数根有可能为两个相等的数,此时,解的形式会
变成$$x=\frac{-b}{2a}$$
2. 当$b^2-4ac=0$时,表示方程只有一个实数根,这时,解的形式可以
写作$$x=\frac{-b}{2a}$$
(四)应用:
1. 一元二次方程解法公式法可以用来求解各类一元或多元函数的极值。

例如,可以应用这一方法求解二次曲线的极值点、凸函数的极值点等。

2. 同时,一元二次方程解法公式法也可用于求解数学建模问题,包括
求解市场博弈问题、求解应用各类运筹学问题等等。

(五)益处:
1. 一元二次方程解法公式法比较简单明晰,容易理解,易于使用。

2. 可以让人们轻松地解决一元或多元函数求极值问题,以及市场博弈
问题和应用各类运筹学技术来解决复杂的数学问题。

3. 这种方法可以将复杂的数学问题转换为简单的方程,从而节省时间,提高工作效率。

一元二次方程概念及其解法

一元二次方程概念及其解法

对于一元二次方程,最多有两个解,也 可能有一个解或无解。
解的情况取决于判别式 $Delta = b^2 - 4ac$ 的值:当 $Delta > 0$ 时,方 程有两个不相等的实数根;当 $Delta = 0$ 时,方程有两个相等的实数根 (即一个重根);当 $Delta < 0$ 时,
方程无实数根。
其他实际问题
增长率问题
已知某量的增长率和初始值,求经过一段时间后 的总量。
储蓄问题
已知本金、利率和存款期限,求到期后的本息和。
工程问题
已知工作效率和工作时间,求工作总量或剩余工 作量。
05 一元二次方程与函数关系 探讨
一元二次函数图像性质
开口方向
当a>0时,抛物线开口 向上;当a<0时,抛物
线开口向下。
对称性
顶点
抛物线关于对称轴对称, 对称轴为x=-b/2a。
抛物线的顶点坐标为(b/2a, c-b^2/4a),是抛 物线的最高点或最低点。
与x轴交点
当Δ=b^2-4ac≥0时,抛 物线与x轴有交点,交点 坐标为(-b±√Δ/2a, 0)。
判别式与函数图像关系
判别式Δ=b^2-4ac 的值决定了抛物线与 x轴的交点个数
frac{n}{m}$,$x_2 = frac{q}{p}$
03 特殊类型一元二次方程求 解
完全平方型
概念
示例
完全平方型一元二次方程是指可以化 为 $(x+a)^2=b$ 或 $(x-a)^2=b$ 形式的一元二次方程。
方程 $(x+3)^2=16$ 可以化为 $x+3=pm4$,解得 $x=-3pm4$, 即 $x_1=1$,$x_2=-7$。

一元二次方程的概念及解法

一元二次方程的概念及解法

一元二次方程一、一元二次方程的概念:(1)只含一个未知数x;(2)最高次数是2次的;(3)•整式方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.练习: 判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.练习:一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为_____,一次项系数为_______,常数项为______.2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1、关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?2、方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?3、当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于x的一元二次方程二、一元二次方程的解:复习:方程的解一元二次方程的解也叫做一元二次方程的根.(只含有一个未知数的方程的解,又叫方程的根)例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习: 关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值三,一元二次方程的解法的整式方程叫做一元二次方程,一般式为:。

一元二次方程的解法及判别

一元二次方程的解法及判别

一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。

一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。

求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。

三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。

判别式的公式为:Δ = b^2 - 4ac。

四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。

2.当Δ = 0时,方程有两个相等的实数根,也称为重根。

3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。

五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。

2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。

六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。

总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。

习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。

这是一个一元二次方程,我们可以尝试使用因式分解法来解它。

首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。

这两个数是-2和-3。

因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。

根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。

解得x1 = 2,x2 = 3。

给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。

第四讲 一元二次方程的解法

第四讲 一元二次方程的解法

第4讲 一元二次方程的解法一、一元二次方程的定义一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元 二次方程.一元二次方程的一般形式:20(0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数, c 为常数项.二、一元二次方程的解法:⑴直接开平方法:适用于解形如2()(0)x a b b +=≥的一元二次方程. ⑵配方法:解形如20(0)ax bx c a ++=≠的一元二次方程,一般步骤是:①二次项系数化1.②常数项右移.③配方(两边同时加上一次项系数一半的平方).④化成2()x m n +=的形式.⑤若0n ≥,选用直接开平方法得出方程的解.⑶公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是x =. 运用公式法解一元二次方程的一般步骤是:①把方程化为一般形式②确定a 、b 、c 的值.③计算24b ac -的值.④若240b ac -≥,则代入公式求方程的根.⑤若240b ac -<,则方程无解.⑷因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.常用解法直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.⑴ 因式分解法 适用于右边为0(或可化为0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法. ⑵ 公式法 适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算24b ac -的值. ⑶ 直接开平方法 用于缺少一次项以及形如2ax b =或()()20x a b b +=≥或()2ax b +=()2cx d +的方程,能利用平方根的意义得到方程的解. ⑷ 配方法 配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式20ax bx c ++=(a 、b 、c 为常数,0a ≠)转化为它的简单形式2Ax B =,这种转化方法就是配方,具体方法为:2ax bx c ++22222244424b b b b ac b a x x c a x a a a a a ⎛⎫⎛⎫-⎛⎫=+++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以方程20ax bx c ++=(a 、b 、c 为常数,0a ≠)就转化为224024b ac b a x a a -⎛⎫++= ⎪⎝⎭的形式,即222424b b ac x a a -⎛⎫+= ⎪⎝⎭,之后再用直接开平方法就可得到方程的解. 典例分析:知识点1:一元二次方程的定义 例1:(1)下列方程是一元二次方程的是( )A.x2+2y=1 B.x3﹣2x=3 C.x2+=5 D.x2=0(2)方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为()A.6、2、5 B.2、﹣6、5 C.2、﹣6、﹣5 D.﹣2、6、5(3)下面关于x的方程中:①(a2+1)x2+x+2=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④x2﹣a=0(a为任意实数);⑤x2﹣3x+8=(x+1)(x﹣1),一元二次方程的个数是()A.1 B.2 C.3 D.4(4)已知关于x的一元二次方程(a﹣2)x2﹣(a2﹣4)x+8=0不含一次项,则a=.(5)关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.0(6)关于x的方程(4﹣a)x﹣ax﹣5=0是一元二次方程,则它的一次项系数是()A.﹣1 B.1 C.4 D.4或﹣1(7)把方程(1﹣3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,一次项及常数项.(8)已知关于x的方程(2k+1)x2+k﹣4kx+(k﹣1)=0.(1)k为何值时,此方程是一元一次方程?求这个一元一次方程的根;(2)k为何值时,此方程是一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项.知识点2:利用一元二次方程的根求值例2:(1)m是方程x2+x﹣1=0的根,则式子2m2+2m+2015的值为()A.2013 B.2016 C.2017 D.2018(2)已知m是方程x2﹣2009x+1=0的一个根,则代数式m2﹣2008m++11的值等于()A.2016 B.2017 C.2018 D.2019(3)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定知识点3:一元二次方程的解法之直接开平方法例3:(1)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=.(2)解方程:1. 16x2﹣81=0;2. x2﹣144=0.3.(x﹣1)2=9.4.(2x﹣3)2=9;5. 25x2+=5x6. x2﹣8x+16=(5﹣2x)2知识点4:一元二次方程的解法之配方法例4:(1)一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4(2)已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5 B.(x﹣p)2=9 C.(x﹣p+2)2=9 D.(x﹣p+2)2=5(3)若方程4x2﹣(m﹣2)x+1=0的左边是一个完全平方式,则m的值是()A.﹣6或﹣2 B.﹣2 C.6或﹣2 D.2或6(4)用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=4(5)填上适当的数,使下列等式成立.(1)x2+12x+=(x+6)2;(2)x2-4x+=(x-)2;(3)x2+8x+=(x+)2.在上面等式的左边,常数项和一次项系数有什么关系?(6)用配方法解下列方程.(1)x2-4x=5; (2)x2-100x-101=0;(3)x2+8x+9=0; (4)y2+2y-4=0.(7)用配方法解下列方程.(1)3x2-4x-2=0;(2)2x2+3x-2=0;(3)4(x-3)2=225;(4)2x2+1=3x;(5)3y2-y-2=0; (6)3x2-4x+1=0;(7)2x2=3-7x. (x-2)2-4(x-2)-5=0(8)用配方法求解下列问题.(1)求—2x2-2x+2的最大值;(2)求3x2+4x+5的最小值.知识点5:一元二次方程的解法之公式法例5:(1)用公式法解下列方程.(1)3x 2-x-2=0; (2)2x 2+1=3x ; (3)4x 2-3x-1=x-2; (4)3x (x-3)=2(x-1)(x +1).(5) 25720x x -+= (6) 22310x x +-=(7)2362x x =- (8)2952n n =-知识点6:一元二次方程的解法之因式分解法例6:因式分解法解方程:(1)21904x -= (2)281030x x +-=(3)26x -= (4)2670x x --=(5)()()23430x x x -+-= (6)222320x mx m mn n -+--= (m 、n 为常数)知识点7:一元二次方程的解法的选用例7:选择适当的方法解一元二次方程(1)﹣3x 2+4x +1=0; (2)x (x +4)=﹣3(x +4).(3)7x 2﹣23x +6=0. (4)(x ﹣1)(x +3)=12(5)(x+2)2=2(x2+3)(6)3x2+5(2x+1)=0.(7)5x2﹣4x﹣12=0 (8)2x2+x﹣6=0.知识点8:利用方程的解法解决综合问题例8:(1)用配方法说明:无论实数x取何值,代数式﹣2x2+8x﹣15的值为负,并求出当x取何值时代数式的值最大,最大是多少?(2)已知a、b、c是△ABC的三边的长,且满足2a2+b2+c2﹣2ac﹣8a﹣2b+17=0,试判断此三角形的形状.(3)若0是关于x的方程(m﹣2)x2+3x+m2+2m﹣8=0的解,求实数m的值,并讨论此方程解的情况.(4)已知x2+y2﹣6x+10y+34=0,求3x﹣2y的值夯实基础:1.方程(m﹣2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2 B.m=2 C.m=﹣2 D.m≠22.用公式法解一元二次方程3x2﹣2x+3=0时,首先要确定a、b、c的值,下列叙述正确的是()A.a=3,b=2,c=3 B.a=﹣3,b=2,c=3C.a=3,b=2,c=﹣3 D.a=3,b=﹣2,c=33.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1 B.0 C.﹣1 D.24.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x满足的方程是()A.50+50(1+x2)=196 B.50+50(1+x)+50(1+x)2=196C.50(1+x2)=196 D.50+50(1+x)+50(1+2x)=1965.已知M=a﹣1,N=a2﹣a(a为任意实数),则M,N的大小关系为()A.M>N B.M=N C.M<N D.不能确定6.把一元二次方程x(x+5)=5(x﹣2)化为一般形式;它的二次项系数为,一次项系数为,常数项为7.解方程(1)x2﹣10x+25=7.(2)2x2+3x﹣7=0(3)﹣x2+3x+4=2.(4)3x(x﹣1)=2﹣2x(5)x2+8x﹣9=0 (6)(x﹣3)2=(2x+1)28.已知关于x的方程22-=-是一元二次方程,求a的取值范围()(2)x a ax9.解方程:2560--=x x10.已知a、b、c是△ABC的三边长,且满足a2+b2+c2=ab+bc+ac,试判断△ABC的形状.11.已知a2+b2+c2+ab﹣3b+2c+4=0,求a+b+c的值。

一元二次方程概念及解法

一元二次方程概念及解法

一元二次方程一、一元二次方程的概念:1、定义:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 补充关于初中常见代数式:2、一元二次方程的一般式:例1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.举一反三:【变式】若方程2(2)310m m x mx --=是关于x 的一元二次方程,求m 的值.3、一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.的两根求,,的两根分别为为常数方程已知关于0)2(1-2)0,,,(0)(22=+++≠=++b m x a a m b a b m x a xb a b b ax x x --=++求有一个非零根的一元二次方程关于,,02二、一元二次方程的解法1、基本思想:一元二次方程−−−→降次一元一次方程 2、常见解法:直接开平方法:模型)0(2≥=p p x因式分解理论基础:(1)提公因式法解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).(2)运用公式完全平方公式:222()2a b a ab b ±=±+ 平方差公式:22()()a b a b a b +-=-三数和平方公式:2222()2()a b c a b c ab bc ac ++=+++++224(3)25(2)0x x ---= 22)25(96x x x -=+- 01442=++x x(3)十字相乘:化成标准形式之后“看两端,凑中间”模型一: (1)=0 (2)21016x x -+=0; (3)2310x x --=0模型二:(1) 21252x x --=0 (2) 22568x xy y +-=0配方法:0362=+-x x 01242=+-x x公式法:步骤:0322=+-x x 0962=+-x x 0242=+-x x关于四种方法比较3、思想补充:换元思想0913424=+-x x 2(21)4(21)40x x ++++=的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法和定义
一、一元二次方程的解法和定义
1、一元二次方程的定义
等号两边都是整式,只含有一个未知数(一元)。

并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、解一元二次方程
(1)直接开平方法
我们知道如果$x^2$=25,则$x$=≠$\sqrt{25}$,即$x$=±5,像这种利用平方根的定
义通过直接开平方求一元二次方程的解的方法叫做直接开平方法。

一般地,对于方程
$x^2$=$p$,
①当$p$>0时,方程有两个不等的实数根$x_1$=$\sqrt{p}$ ,$x_2$=$-\sqrt{p}$。

②当$p$=0时,方程有两个相等的实数根$x_1$=$x_2$=0。

③当$p$<0时,因为对任意实数$x$ ,都有$x^2\geqslant$0,所以方程无实数根。

(2)配方法
通过配成完全平方的形式来解一元二次方程的方法,叫做配方法。

用配方法解方程是
以配方为手段,以直接开平方法为基础的一种解一元二次方程的方法。

用配方法解一元二次方程的一般步骤:
①化二次项系数为1。

②移项:使方程左边为二次项和一次项,右边为常数项。

③配方:方程两边都加上一次项系数一半的平方,原方程变为$(x+n)^2$=$p$的形式。

④直接开平方:如果右边是非负数,就可用直接开平方法求出方程的解。

(3)公式法
①公式法的定义
解一元二次方程时,可以先将方程化为一般形式$ax^2$+$bx$+$c$=0($a$≠0)。


$b^2-$$4ac\geqslant$0时,方程$ax^2$+$bx$+$c$=0($a$≠0)的实数根可写为
$x$=$\frac{-b±\sqrt{b^2-4ac}}{2a}$的形式,这个式子叫做一元二次方程
$ax^2$+$bx$+$c$=0($a$≠0)的求根公式。

利用求根公式解一元二次方程的方法叫做公式法。

由求根公式可知,一元二次方程最多有两个实数根。

②一元二次方程根的个数与根的判别式的关系
一般地,式子$b^2-$$4ac$叫做方程$ax^2$+$bx$+$c$=0($a$≠0)的根的判别式,通常用希腊字母$\mathit{Δ}$表示,即$\mathit{Δ}=$$b^2-$$4ac$。

当$\mathit{Δ}=$$b^2-$$4ac>0$时,一元二次方程$ax^2$+$bx$+$c$=0($a$≠0)有两个不相等的实数根。

即$x_1$=$\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2$=$\frac{-b-\sqrt{b^2-4ac}}{2a}$。

当$\mathit{Δ}$=$b^2-$$4ac=0$时,一元二次方程$ax^2$+$bx$+$c$=0($a$≠0)有两个相等的实数根。

即$x_1$=$x_2$=$-\frac{b}{2a}$。

当$\mathit{Δ}$=$b^2-$$4ac<0$时,一元二次方程$ax^2$+$bx$+$c$=0($a$≠0)无实数根。

③利用公式法解一元二次方程$ax^2$+$bx$+$c$=0($a$≠0)的一般步骤:
将一元二次方程整理成一般形式。

确定公式中$a$,$b$,$c$的值。

求出$b^2-4ac$的值。

当$b^2-4ac\geqslant$0时,将$a$,$b$,$c$的值及$b^2-4ac$的值代入求根公式即可;当$b^2-4ac<0$时,方程无实数根。

④一元二次方程根的判别式的应用
一元二次方程根的判别式的应用主要有以下三种情况:
不解方程,由根的判别式的正负性及是否为0可直接判定根的情况。

根据方程根的情况,确定方程中字母系数的取值范围。

应用判别式证明方程根的情况(有实根、无实根、有两个不相等实根、有两个相等实根)。

(4)因式分解法
①因式分解法的定义
将一元二次方程先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法。

②用因式分解法解一元二次方程的一般步骤:
移项——将方程的右边化为0。

化积——将方程的左边分解为两个一次式的乘积。

转化——令每个一次式分别为零,得到两个一元一次方程。

求解——解这两个一元一次方程,它们的解就是原方程的解。

二、一元二次方程的解法的相关例题
用配方法解方程$x^2-$$2x-$$1=0$时,配方后所得的方程为___
A.$(x+1)^2$=0 B.$(x-1)^2$=0
C.$(x+1)^2$=2 D.$(x-1)^2$=2
答案:D
解析:$x^2-2x-1=0$,移项得$x^2-2x=1$。

配方得$x^2-2x+1^2=$$1+1^2$,即$(x-1)^2$=2。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档