(完整版)倒立摆建模

合集下载

建模4(单级倒立摆系统建模,供参考)

建模4(单级倒立摆系统建模,供参考)


J 1θ + f1θ1 = M 0 + M 21 + m1 gL1 sin θ1 1
③ ④
其中,M0为电机输出转矩, 0 = K m (u K eθ 1 ) M
M21为摆杆对旋臂的作用力矩,有:
M 21
图2单级旋转倒立摆的模型分析
d2 = m2 [ g + 2 ( R1 cos θ1 + L2 cos θ 2 )] R1 sin θ1 dt d2 m2 [ 2 ( R1 sin θ1 + L2 sin θ 2 )] R1 cos θ1 ] dt = m2 gR1 sin θ1 m2 R12θ m2 R1 L2θ 22 sin(θ1 θ 2 ) 1 m R L θ cos(θ θ )
单级旋转倒立摆系统结构
两个角度电位器分别安装在直流电动 机的转轴处和摆杆关节处,可以测量旋臂 与铅直线角度偏移量,摆杆与旋臂之间的 相对角度偏移量。由两个角度电位器提供 的电压信号分别定标后,作为旋转倒立摆 的两个输出量,经过A/D转换,送入计算机, 由计算机按照一定的控制算法计算出数字 量的控制信号,再经过D/A转换及功率放 大器放大后去驱动直流力矩电动机,使单 级旋转倒立摆在不稳定的平衡点处平衡。
Mlx4 ( M + m) gx3 + u (t ) = 0
小车倒立摆系统状态方程模型
于是4个一阶微分方程为:
x1 = x2 , x3 = x 4 , x2 = mg 1 x3 + u (t ) M M ( M + m) g 1 x4 = x3 u (t ) Ml Ml
0
系统状态方程为: X = AX + Bu (t )
x = [x1 x2 x3 x4 ] = y

(完整)倒立摆MATLAB建模

(完整)倒立摆MATLAB建模

Matlab程序设计上交作业要求:1)纸质文档:设计分析报告一份(包括系统建模、系统分析、系统设计思路、程序及其执行结果).2)Matlab程序:按班级统一上交后备查。

题目一:考虑如图所示的倒立摆系统.图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题.图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0.003kgm2摆杆的质量在摆杆的中心.设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标—-能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。

题目二:根据自身的课题情况,任意选择一个被控对象,按照上题所示步骤进行分析和设计,并给出仿真程序及其执行结果。

题目一:考虑如图所示的倒立摆系统.图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题.图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0。

003kgm2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标—-能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图.设计分析报告1 系统建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。

倒立摆建模

倒立摆建模

1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lgsin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32m l J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。

(完整)倒立摆实验报告

(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。

倒立摆建模与控制

倒立摆建模与控制

倒⽴摆建模与控制2倒⽴摆系统的模型建⽴2.1 倒⽴摆特性●⾮线性倒⽴摆是⼀个典型的⾮线性复杂系统,实际中可以通过线性化得到系统的近似线性模型,线性化处理后再进⾏控制。

也可以利⽤⾮线性控制理论对其进⾏控制。

●不确定性模型误差以及机械传动间隙,各种阻⼒带来实际系统的不确定性。

实际控制中⼀般通过减少各种误差降低不确定性,如施加预紧⼒减少⽪带或齿轮的传动误差,利⽤滚珠轴承减少摩擦阻⼒等不确定性因素。

●耦合性倒⽴摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒⽴摆的控制中⼀般都在平衡点附近进⾏解耦计算,忽略⼀些次要的耦合量。

●开环不稳定性倒⽴摆的平衡状态只有两个,即垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定平衡点,垂直向下为稳定平横点。

●约束限制由于机构的限制,如运动模块的⾏程限制,电机⼒矩限制等。

为了制造⽅便和降低成本,倒⽴摆的结构尺⼨和电机的功率尽量要求最⼩。

⾏程限制对倒⽴摆的摆起影响尤为突出,容易出现⼩车撞边现象[22]。

2.2 ⼀阶倒⽴摆数学模型倒⽴摆系统是典型的运动的刚性系统,可以在惯性坐标系内应⽤经典⼒学理论建⽴系统的动⼒学⽅程。

下⾯分别采⽤⽜顿⼒学⽅法和拉格朗⽇⽅法建⽴直线型⼀级,⼆级倒⽴摆系统的数学模型。

2.2.1 ⼀级倒⽴摆物理模型在忽略了空⽓阻⼒和各种摩擦之后,可将直线型⼀级倒⽴摆系统抽象成⼩车和匀质杆组成的系统,如图2.1所⽰:⽪带轮图2.1 单级倒⽴摆系统物理模型2.2.2 ⼀级倒⽴摆数学模型各符号代表的意义及相关的数值:表2.1 ⼀级倒⽴摆参数表参数参数意义参数值 M ⼩车质量 1.096Kg m 摆杆质量 0.13Kg b ⼩车摩擦系数0.1N/m/sec l 摆杆转动轴⼼到杆质⼼的长度0.25m I 摆杆转动惯量 0.0034Kg*m*mf 加到⼩车上的⼒ x⼩车位置φ摆杆与竖直向上⽅向的夹⾓通过对系统中⼩车和摆杆进⾏受⼒分析,分别可得到以下运动⽅程:2()cos sin F M m x bx ml ml θθθθ=++-+ (2.1) 22()sin cos 2sin (sin cos )I ml mgl mlx ml θθθθθθθθ+-=++ (2.2)22222cos sin cos 2sin sin 2sin cos M m ml x F bx ml ml ml I ml mgl ml θθθθθθθθθθ+-?--=----(2.3) 2.3 ⼆阶倒⽴摆数学模型2.3.1 ⼆级倒⽴摆物理模型如图2.3所⽰为直线型⼆级倒⽴摆物理模型⽪带轮图2.3⼆级倒⽴摆系统的物理模型倒⽴摆装置主要由沿导轨运动的⼩车和固定到⼩车上的两个摆体组成。

倒立摆系统的建模(拉格朗日方程)

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。

整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。

如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum deviceQuanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。

1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。

这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing图2.4系统导轨结构图Fig 2.4 System guide rail structure直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。

倒立摆拉格朗日建模方法

倒立摆拉格朗日建模方法

倒立摆拉格朗日建模方法倒立摆是一种常见的动力学系统,具有广泛的应用。

倒立摆借助控制算法可以实现平衡控制,因此在工业机器人、机械臂、自行车等控制系统中具有重要的意义。

而拉格朗日建模方法是研究动力学系统的常用方法之一,下面将详细介绍倒立摆的拉格朗日建模方法。

倒立摆的拉格朗日建模方法是基于拉格朗日动力学原理进行的。

拉格朗日原理主要包括两部分:拉格朗日第一方程和拉格朗日第二方程。

其中,拉格朗日第一方程是关于系统广义力的方程,而拉格朗日第二方程是关于系统的广义力的运动方程。

首先,我们需要确定倒立摆的广义坐标。

对于倒立摆来说,可以选择摆杆的倾斜角度和摆杆的角速度作为广义坐标。

假设摆杆的倾斜角度为θ,摆杆的角速度为ω,那么可以得到广义坐标集合{θ,ω}。

接下来,我们需要确定倒立摆的拉格朗日函数。

拉格朗日函数是广义坐标的函数,它描述了系统的动能和势能之间的关系。

倒立摆的拉格朗日函数可以表示为L=T-U,其中T表示系统的动能,U表示系统的势能。

同时,我们还需要确定系统的动能和势能。

对于倒立摆来说,系统的动能可以表示为T = 1/2 * m * l^2 * ω^2,其中m表示摆杆的质量,l表示摆杆的长度,ω表示摆杆的角速度。

系统的势能可以表示为U = m * g * l * (1 - cosθ),其中g表示重力加速度,θ表示摆杆的倾斜角度。

通过上述步骤,我们可以得到倒立摆的拉格朗日函数为L = 1/2 * m * l^2 * ω^2 - m * g * l * (1 - cosθ)。

然后,我们可以使用拉格朗日第一方程和拉格朗日第二方程来得到倒立摆的运动方程。

拉格朗日第一方程可以表示为∂L/∂q - d/dt(∂L/∂q') =Q,其中q表示广义坐标集合,q'表示广义坐标的导数,∂表示偏导数,d/dt表示对时间的导数,Q表示系统的广义力。

拉格朗日第二方程可以表示为d/dt(∂L/∂q') - ∂L/∂q = 0。

倒立摆_精品文档

倒立摆_精品文档

倒立摆1. 引言倒立摆(Inverted Pendulum)是一种经典的控制理论问题,它是指一个固定在支点上的杆子上方挂着一个质点,而质点受到重力的作用下,能够垂直于杆子方向做摆动的系统。

倒立摆在控制理论和机器人领域中具有重要意义,是研究控制策略和平衡控制的经典案例。

在本文中,我们将介绍倒立摆的基本原理、数学建模方法以及控制策略。

2. 基本原理倒立摆是一个多输入多输出系统,它受到外部输入(控制力)的作用下,通过控制杆子的倾斜角度,使质点能够保持在垂直方向上平衡。

倒立摆系统的基本原理可以用以下方程描述:ml^2θ'' + mgl sin(θ) = u - bθ'其中,m是质点的质量,l是杆子的长度,θ是杆子与垂直方向的夹角,u是施加在杆子上的控制力,b是阻尼系数,g是重力加速度。

3. 数学建模方法为了对倒立摆进行控制,我们需要对其进行数学建模。

首先,我们可以把倒立摆系统分解为两个自由度:质点在杆子上的位置和杆子的角度。

然后,我们可以利用拉格朗日方程进行建模。

对于质点在杆子上的位置,拉格朗日方程可以表示为:mx'' = N - mg - mθ'^2l sin(θ) - mlθ'' cos(θ)对于杆子的角度,拉格朗日方程可以表示为:ml^2θ'' = u - bθ'将以上两个方程联立,我们可以得到完整的倒立摆系统的数学模型。

4. 控制策略为了使倒立摆保持平衡,我们需要设计合适的控制策略。

常见的控制策略包括PID控制器、模糊控制器和神经网络控制器等。

PID控制器是一种广泛应用的控制策略,它通过调节比例、积分和微分三项来实现控制。

在倒立摆系统中,PID控制器可以通过测量杆子的角度和角速度,来调整施加在杆子上的控制力。

模糊控制器是一种基于模糊逻辑的控制策略,它通过模糊化输入和输出以及定义一系列模糊规则来实现控制。

在倒立摆系统中,模糊控制器可以根据当前的角度和角速度来确定施加在杆子上的控制力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为得 (3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩&&&&&& sin cos ..........(1)y x J F l F l θθθ=-&&2222(sin ) (2)(cos ).........(3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ&⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。

3、匡选要封装区后选择[Edit>>Create Subsystem]便得以下系统:图3 子系统建立4、鼠标右击子系统模块,在模块窗口选项中选择[Edit>>EditMask>>Parameters],则弹出如下窗口,添加参数m和l。

图4 添加参数5、将精确模型subsystem和简化模型subsystem1组合成以下系统以供验证(输入信号是由阶跃信号合成的脉冲,幅值及持续时间为0.1s)。

图5 系统模块封装3 仿真验证3.1 实验设计假定使倒立摆在(θ=0,x=0)初始状态下突加微小冲击力作用,则依据经验知,小车将向前移动,摆杆将倒下。

3.2 编制绘图子程序1、新建M文件输入以下程序并保存。

clcload xy.matt=signals(1,:); %读取时间信号f=signals(2,:); %读取作用力F信号x=signals(3,:); %读取精确模型中的小车位置信号q=signals(4,:); %读取精确模型中倒摆摆角信号xx=signals(5,:); %读取简化模型中的小车位置信号qq=signals(6,:); %读取简化模型中倒立摆摆角信号figure(1) %定义第一个图形hf=line(t,f(:)); %连接时间-作用力曲线grid on;xlabel('Time(s)') %定义横坐标ylabel('Force(N)') %定义纵坐标axis([0 1 0 0.12]) %定义坐标范围axet=axes('Position',get(gca,'Position'),...'XAxisLocation','bottom',...'YAxisLocation','right','color','none',...'XColor','k','YColor','k'); %定义曲线属性ht=line(t,x,'color','r','parent',axet); %连接时间-小车位置曲线ht=line(t,xx,'color','r','parent',axet); %连接时间-小车速度曲线ylabel('Evolution of the xposition(m)') %定义坐标名称axis([0 1 0 0.1]) %定义坐标范围title('Response x and x''in meter to a f(t) pulse of 0.1 N' ) %定义曲线标题名称gtext ('\leftarrow f (t)'),gtext ('x (t) \rightarrow') , gtext (' \leftarrow x''(t)')figure (2)hf=line(t,f(:));grid onxlabel('Time')ylabel('Force(N)')axis([0 1 0 0.12])axet=axes('Position',get(gca,'Position'),...'XAxisLocation','bottom',...'YAxisLocation','right','color','none',...'XColor','k','YColor','k');ht=line(t,q,'color','r','parent',axet);ht=line(t,qq,'color','r','parent',axet);ylabel('Angle evolution (rad)')axis([0 1 -0.3 0])title('Response \theta(t)and \theta'' in rad to a f(t) pulse of 0.1 N' )gtext('\leftarrow f (t)'), gtext ('\theta (t) \rightarrow'), gtext (' \leftarrow \theta''(t)'3.3 仿真验证2、在系统模型中,双击子系统模块,则会弹出一个新窗口,在新窗口中输入m和l值,点击OK并运行,如图7所示。

图6 参数输入3、运行M文件程序,执行该程序的结果如图8所示。

图7 模型验证仿真结果从中可见,在0.1N的冲击力下,摆杆倒下(θ由零逐步增大),小车位置逐渐增加,这一结果符合前述的实验设计,故可以在一定程度上确认该“一阶倒立摆系统”的数学模型是有效的。

同时,由图中也可以看出,近似模型在0.8s以前与精确模型非常接近,因此,也可以认为近似模型在一定条件下可以表达原系统模型的性质。

4 双闭环PID控制器设计一级倒立摆系统位置伺服控制系统如图10所示。

内环图10 一级倒立摆系统位置伺服控制系统方框图4.1内环控制器的设计内环采用反馈校正进行控制。

图11 内环系统结构图反馈校正采用PD 控制器,设其传递函数为2'12()D s K s K =+,为了抑制干扰,在前向通道上加上一个比例环节2()D s K =。

控制器参数的整定:令:内环控制器的传递函数为:内环控制系统的闭环传递函数为:4.2外环控制器的设计外环系统前向通道的传递函数为:图12 外环系统结构图设2()D s 的增益20K =-,则内环控制系统的闭环传递函数为:222'2212()64()1()()646440s s KK G s W s KK G s D s s K s K ==+++-0.7ξ=216440646420.7K K -=⎧⎪⎨=⨯⨯⎪⎩120.1751.625K K =⎧⎨=⎩2'()0.175 1.625D s s =+2264()11.264W s s s =++2212264(0.410)()()(11.264)s W s G s s s s -+=++()D s外环控制器采用PD 形式,其传递函数为:图13 系统仿真结构图对外环模型进行降阶处理,若忽略2()W s 的高次项,则近似为一阶传递函数为:264()11.264W s s ≈+对模型1()G s 进行近似处理,则1()G s 的传递函数为:1210()G s s ≈采用单位反馈构成外环反馈通道,即1'()1D s =,则系统的开环传递函数为2113257()()()()(1)(57)W s W s G s D s K s s s τ==++采用基于Bode 图法的希望特性设计方法,得30.12,0.877K τ==,取1τ=,则外环控制器的传递函数为: 1()0.12(1)D s s =+一级倒立摆13()(1)D s K s τ=+5 仿真实验1、根据已设计好的PID控制器,可建立图14系统,设置仿真时间为20ms,单击运行。

(其中的对象模型为精确模型的封装子系统形式)图14 SIMULINK仿真框图2、新建M文件,输入以下命令并运行。

相关文档
最新文档