试验35光栅特性的研究

合集下载

光栅特性研究

光栅特性研究

望远镜支架 望远镜水平调节螺钉
调节 载物盘水平调节螺钉

④ 松开望远镜锁紧螺钉
载物盘水平、望远镜俯仰调节的特例
平面镜两侧面的反射像同时位于
d
d

时,只需调节载物盘的 水平调节螺钉
平面镜两侧面的反射像分别位于
d d

时,只需调节望远镜的 俯仰调节螺钉
2) 用自准直法将望远镜调焦到无穷远



反射像 叉丝像 透光窗 伸缩目镜筒
表1:透射光栅常数的测量
绿 546.1 nm
衍射-1级 次数 1 2 3 4 左端读数 衍射+1级
1
右端读数 2
左端读数 1
右端读数
2
5
6 平均
实验数据(汞灯光谱分析)
1数据记录
自拟数据记录表格。
测出汞灯各谱线的k =±1、 ±2的衍射角,计 算各谱线波长及百分误差。
表2:汞灯光谱的研究
a
b
d
f
k----------第级衍射角
----
如果已知光栅常数d,用分光计测出k级谱线
对应的衍射角k,则可求出该谱线对应的入射光
波长;若已知入射光的波长,则反过来可求光栅
常数d 。
仪器及调整
分光计一台 光源(汞灯)一个
平面反射镜一块
衍射光栅一块.
分光计介绍
分光计(又名分光测角仪)是用来精确 测量角度的仪器。分光计是光学实验的基本仪 器之一,通过角度的测量可以计算媒质折射率、 光波波长等相关的物理量,检验棱镜的棱角是
实验目的
1 .熟悉分光计的调整和应用; 2.了解光栅分光的特点;
3.学会用光栅测定光栅常数的方法。

光栅实验的实验报告

光栅实验的实验报告

光栅实验的实验报告光栅实验的实验报告一、实验目的二、实验原理1. 光栅的基本原理2. 光栅常见参数三、实验器材与装置四、实验步骤与记录1. 实验前准备2. 实验过程记录与数据处理五、实验结果分析与讨论1. 测量结果分析及误差控制讨论2. 光栅常见应用领域讨论六、结论七、参考文献一、实验目的本次光栅实验的主要目的是:1. 掌握光栅的基本原理和常见参数;2. 学习使用光栅仪器进行测量;3. 分析测量结果,并探讨光栅在现代科技中的应用。

二、实验原理1. 光栅的基本原理光栅是一种具有规则周期性结构的光学元件。

它由若干平行于同一平面并等间距排列的透明或不透明条纹组成,这些条纹被称为“刻线”,刻线之间形成了一系列平行于刻线方向且等间距排列的透明或不透明区域,这些区域被称为“槽”。

当平行入射的单色光通过光栅时,会发生衍射现象。

衍射光线的强度和方向都与光栅的刻线间距有关。

通常情况下,当刻线间距为d时,对于波长为λ的入射单色光,衍射最强的方向满足以下条件:sinθ = nλ/d其中,θ是衍射角度,n是整数。

2. 光栅常见参数(1)刻线密度:表示单位长度内刻线条数。

单位通常为/mm。

(2)刻线间距:表示相邻两条刻线之间的距离。

单位通常为nm或μm。

(3)分辨本领:表示能够分辨出两个相邻波长差异的最小值。

分辨本领与光栅的刻线密度和入射角有关。

三、实验器材与装置本次实验使用了以下仪器和设备:1. 光栅仪2. 单色光源3. 三角架4. 卡尺、千分尺等测量工具四、实验步骤与记录1. 实验前准备(1)将光栅仪放置在水平台面上,并将单色光源固定在三角架上。

(2)调整光栅仪的位置,使得单色光源的光线垂直于光栅平面。

(3)打开单色光源,调节其波长为λ。

2. 实验过程记录与数据处理(1)测量刻线密度:将千分尺放置在刻线之间,测量两个相邻刻线之间的距离。

重复多次测量,并计算出平均值。

(2)测量刻线间距:将千分尺放置在同一条刻线上,记录其位置。

光栅的制作及其衍射特性研究

光栅的制作及其衍射特性研究

光栅的制作及其衍射特性的研究实验原理1.光的干涉原理当两束相干的平面波以一定的角度相遇时,在他们相遇的区域内便会产生干涉,其干涉图样在某一平面内是一系列平行等距的干涉条纹,其强度分布则是按余弦规律而变化,即干涉图样的强度分布是121212I =I I 2cos()A A ϕϕ++-(1)式中的211I A =、222I A =,1A 、2A 是两列平面波的振幅,1ϕ、2ϕ是对应的空间相位函数。

当两束相干光的相位差为π2的整数倍时,即 122n ϕϕπ-=012n =±±、、……(1)式便描述了两束相干光干涉所形成的峰值强度面的轨迹,如图1所示。

若能用记录介质将此干涉图样记录下来并经过适当处理,则就获得了一块全息光栅。

1. 全息光栅基本参数的控制(1) 全息光栅空间频率(周期)的控制如图2所示,波长为λ的Ⅰ、Ⅱ两束相干光与P 平面法线的夹角分别为1θ和2θ, 它们之间的夹角为22θθθ+=。

这两束相干的平行光相干叠加时所产生的干涉图样是平行等距的、明暗相间的直条纹,条纹的间距d 可由下式决定:)(21cos )(21sin 21sin sin 212121θθθθθθλ-+=-=d (2)当两束对称入射,即12=/2θθθ=时2sin2θλ=d (3)当θ很小时有/d λθ=(4)若所制光栅的空间频率较低时,两光束的之间的夹角不大,就可以根据(4)式估算光栅的空间频率。

具体做办法是:把透镜L 放在Ⅰ、Ⅱ两光束的重合区,则两光束在透镜后焦面上会聚成两个亮点,若两个亮点之间的距离为X ,透镜的焦距为f ,则有0/X f θ=(5)将(5)带入(4)式得到图1两束平行相遇所形成的干涉/d f X λ=(6)即光栅的空间频率为01//v d X f λ==如图2所示,将白屏P 放在透镜L 的后焦面上,根据亮点的距离0X 估算光栅的空间频率v0X f vλ=(7)(2) 全息光栅的槽形控制由于全息光栅是通过记录相干光场的干涉图形而制成的,因此,其光栅的周期结构与两个因素有关:干涉图样的本身周期结构;记录干涉图样的条件。

光纤布拉格光栅传输特性理论分析及其实验研究共3篇

光纤布拉格光栅传输特性理论分析及其实验研究共3篇

光纤布拉格光栅传输特性理论分析及其实验研究共3篇光纤布拉格光栅传输特性理论分析及其实验研究1光纤布拉格光栅传输特性理论分析及其实验研究随着通信技术的不断发展,人们对高速、宽带、低衰减的光纤通信系统的需求越来越强烈。

在新型光纤通信系统中,光纤布拉格光栅逐渐成为一种广泛应用的光纤分布式传感技术。

本文将分析光纤布拉格光栅的传输特性,并通过实验验证分析结果的准确性。

光纤布拉格光栅是一种基于光纤中的光学衍射现象的光学器件。

在光纤中加入一定周期的光折射率折变结构,就能形成光纤布拉格光栅。

在光纤中传输的光波,经过布拉格光栅时,会出现衍射现象,产生反射、透射和反向散射,这些效应是产生传输特性的基础。

光纤布拉格光栅的传输特性主要表现在其反射光频谱和传输带宽两个方面。

反射光频谱是指光波经过光纤布拉格光栅后,由栅中反射的光波在谱域的表现。

反射光频谱可以通过反射率、衰减率、相位等参数来描述。

光纤布拉格光栅的反射带宽会随着栅体的折射率调制以及周期变化而发生变化。

而传输带宽则是指光波通过光纤布拉格光栅后的传输性能表现,其传输性能主要由栅体的反射率和传播损耗来决定。

传统的光纤布拉格光栅的制备方法主要有激光干涉、可调光束、干涉光阴影和相位掩膜等方法。

一般情况下,涉及到光纤布拉格光栅的应用,需要随时监测栅体的传输特性。

为了准确地监测光纤布拉格光栅的传输特性,通常采用光谱光学方法来进行反射光频谱的测量。

根据光谱光学方法,可以直接测量出光纤布拉格光栅的反射率和反射带宽,同时还能进一步计算出光纤布拉格光栅的传输损耗和传输带宽。

为了验证理论分析的正确性,本文进行了一系列光纤布拉格光栅的实验研究。

实验采用了对光纤布拉格光栅进行反射光频谱的测量,并通过计算反射光频谱的反射率和反射带宽,得出光纤布拉格光栅的传输损耗和传输带宽。

实验结果表明,本文理论分析的光纤布拉格光栅传输特性是可靠的,能够为光纤布拉格光栅在光纤通信系统中的应用提供有效的理论基础。

光栅实验报告

光栅实验报告

光栅实验报告光栅实验报告引言:光栅实验是光学实验中的一种常见实验,通过光栅的作用,可以观察到光的干涉现象,进一步了解光的性质和波动特性。

本次实验旨在通过光栅实验,验证光的干涉现象,并探究光栅常数和波长之间的关系。

一、实验原理光栅是由许多等间距的狭缝组成的光学元件,当光通过光栅时,会发生干涉现象。

光栅实验的原理是利用光的波动性,当光通过光栅时,不同狭缝的光程差会导致光的干涉现象。

二、实验器材和方法实验器材:1. 光源:使用一束单色光源,如激光光源或钠光源。

2. 光栅:选择合适的光栅,常用的有平行光栅和反射光栅。

3. 光屏:用于接收和观察干涉条纹的光屏。

4. 尺子:用于测量光栅的常数。

实验方法:1. 将光源放置在适当的位置,使光线垂直射向光栅。

2. 调整光栅和光屏的位置,使光线通过光栅后能够在光屏上形成清晰的干涉条纹。

3. 使用尺子测量光栅的常数。

4. 改变光源的颜色或者改变光栅的角度,观察干涉条纹的变化。

三、实验结果和分析在实验中,我们使用了一束激光光源和一个平行光栅进行实验。

通过调整光栅和光屏的位置,我们成功地观察到了清晰的干涉条纹。

随着光栅的旋转,干涉条纹的形状也发生了变化,这表明光栅的角度对干涉现象有一定的影响。

在测量光栅的常数时,我们使用尺子测量了光栅上相邻两个狭缝的间距,并计算出了光栅的常数。

通过多次测量和取平均值,我们得到了较为准确的光栅常数。

根据实验结果,我们可以进一步探究光栅常数和光的波长之间的关系。

根据干涉现象的理论,当光通过光栅时,会发生衍射和干涉现象,而干涉条纹的间距与光栅常数和波长之间存在着一定的关系。

通过进一步的分析和计算,我们可以得到光栅常数和波长之间的具体关系式。

四、实验总结通过本次光栅实验,我们深入了解了光的干涉现象和光栅的作用。

通过观察干涉条纹的变化和测量光栅的常数,我们验证了光栅实验中的干涉现象,并探究了光栅常数和波长之间的关系。

光栅实验不仅帮助我们更好地理解了光的波动性和干涉现象,还为我们进一步研究光学提供了基础和方法。

实验报告-光栅特性的研究

实验报告-光栅特性的研究

实验报告姓名:班级:学号:实验成绩:同组姓名:实验日期:2008-9-16 指导老师:助教28 批阅日期:光栅特性的研究【实验目的】1.进一步熟悉光学测角仪的调整和使用2. 测量光栅的特性参数。

3. 掌握RC、RL串联电路的幅频特性和相频特性的测量方法。

4. 从测定钠灯和汞灯光谱在可见光范围内几条谱线的波长过程中,观测和研究光栅的衍射现象。

【实验原理】1. 光栅衍射有大量等宽间隔的平行狭缝构成的光学元件成为光栅.设光栅的总缝数为N,缝宽为a,缝间不透光部分为b,则缝距d = a + b,称为光栅常数.按夫琅和费光栅衍射理论,当一束平行光垂直入射到光栅平面上时,通过不同的缝,光要发生干涉,但同时,每条缝又都要发生衍射,且N条缝的N套衍射条纹通过透镜后将完全重合.如图1所示,当衍射角θ满足光栅方程dsinθ = kλ(k = 0、±1、± 2、…)时,任两缝所发出的两束光都干涉相长,形成细而亮的主极大明条纹.2.光栅光谱单色光经过光栅衍射后形成各级主极大的细亮线称为这种单色光的光栅衍射谱.如果用复色光照射,由光栅方程可知不同波长的同一级谱线(零级除外)的角位置是不同的,并按波长由短到长的次序自中央向外侧依次分开排列,每一干涉级次都有这样的一组谱线.在较高级次时,各级谱线可能相互重叠.光栅衍射产生的这种按波长排列的谱线称为光栅光谱.评定光栅好坏的标志是角色散率和光栅的分辨本领.若入射光束不是垂直入射至光栅平面(图2),则光栅的衍射光谱的分布规律将有所变化.理论指出:当入射角为i时,光栅方程变为【实验数据记录、实验结果计算】1、白色条纹角度:25720’7721’2、绿光绿光的测量数据编号-1 +1 -2 +21266’247’27625’’1’-9’195’-19’286’’26’’29’-’’-19’9’-’’-19’3.33 3.32 3.34 3.33 2、蓝光蓝光的测量数据编号-1 +1 -2 +21264’249’27228’’1’-7’158’-15’284’’27’’27’-’’-15’7’-’’-15’434.7 434.7 434.2 433.33、紫光编号-1 +1 -2 +231264’25027119’’1’-7’13’-14’284’’20’’26’-’’-14’6’-’’-14’401.0 406.8 402.3 403.3 4、黄光1黄光1的测量数据编号-1 +1 -2 +21267’24725’277’’1’-9’’-20’287’’’’29’-9’’-20’9’-’’-20’573.5 574.4 574.0 574.0 4、黄光2黄光2的测量数据编号-1 +1 -2 +21267’247’277’’1’-10’-20’287’’’’29’-10’’-20’10’-’’-20’578.2 579.2 576.2 576.7 4、Na黄光1Na黄光1的测量数据编号-3 +31289’225’1’-31’2’’231’-’31’-31’585.7 585.755、Na黄光2Na黄光2的测量数据编号-3 +31289’225’1’-31’2’’231’-’31’-31’586.6 586.8【对实验结果中的现象或问题进行分析、讨论】1、本次实验的主要内容有两部分,一是光学测角仪的调整,另一个部分是对光栅的测量,由于上个学期我曾经做过光学测角仪调整的实验,所以我很快就完成了仪器的调整,与上个学期三棱镜的观测结果比较,光栅的光谱更为清晰,且容易辨认,三棱镜的光谱比较难找,很容易观测到彩虹。

衍射光栅特性实验报告

衍射光栅特性实验报告

一、实验目的1. 理解衍射光栅的工作原理及其在光谱分析中的应用。

2. 掌握使用衍射光栅测定光波波长和光栅常数的实验方法。

3. 深入理解光栅衍射公式及其适用条件。

4. 分析衍射光栅的色散率、光谱特性等关键参数。

二、实验原理衍射光栅是利用多缝衍射原理使光发生色散的光学元件。

光栅由一组数目极多、平行等距、紧密排列的等宽狭缝构成,分为透射光栅和平面反射光栅。

当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。

光栅衍射公式为:\[ d \sin \theta = m \lambda \]其中,\( d \) 为光栅常数(即相邻两狭缝间距),\( \theta \) 为衍射角,\( m \) 为衍射级数,\( \lambda \) 为光波波长。

三、实验仪器1. 分光计2. 平面透射光栅3. 低压汞灯(连镇流器)4. 白色光源5. 硅光电池6. 毫米刻度尺四、实验步骤1. 将分光计调整至水平状态,确保光栅垂直于光路。

2. 打开低压汞灯,调节光源与光栅的距离,使光束垂直照射在光栅上。

3. 通过分光计观察衍射光谱,记录不同衍射级数 \( m \) 对应的衍射角\( \theta \)。

4. 利用光栅衍射公式计算光波波长 \( \lambda \) 和光栅常数 \( d \)。

5. 改变光栅常数,观察衍射光谱的变化,分析色散率、光谱特性等参数。

五、实验结果与分析1. 计算光波波长和光栅常数:\[ \lambda = \frac{d \sin \theta}{m} \]\[ d = \frac{\lambda}{m \sin \theta} \]根据实验数据,计算得到光波波长和光栅常数,并与理论值进行比较。

2. 分析色散率:色散率 \( D \) 表示为:\[ D = \frac{d \sin \theta}{\theta} \]随着衍射级数 \( m \) 的增加,色散率 \( D \) 呈线性增加,说明光栅的色散率较高。

光栅实验报告

光栅实验报告

光栅实验报告引言:光学是一门研究光的传播、相互作用和控制的学科。

在现代光学中,光栅实验是一项重要的实验,通过光栅的特殊结构和光的干涉现象,可以研究光的波动性质和光的传播规律。

本文将介绍光栅实验的原理、装置和实验结果,并对实验现象进行分析和解释。

一、实验原理光栅是一种特殊的光学元件,它由一系列平行排列的透明条纹组成,每个透明条纹与相邻条纹之间有固定的空隙。

当入射到光栅上的平行光通过光栅时,会发生干涉现象。

1. 光栅的空隙以及光的干涉现象光栅的空隙是指相邻透明条纹之间的间距,通常用密度来表示,即单位长度上的空隙数目。

我们可以使用干涉条纹的形状和密度来确定光栅的空隙大小。

当入射光通过光栅时,会发生衍射和干涉。

在每个空隙的位置,来自不同透明条纹的光波在空隙中干涉,形成了干涉条纹。

这些干涉条纹的形状和密度与光栅的空隙密度有关,具体的干涉图样可以用复杂的数学函数来描述。

2. 光栅的衍射和光强分布除了干涉现象,光栅的衍射也是实验中需要关注的现象。

当入射光通过光栅时,会发生衍射现象,光栅上的每个透明条纹都成为一个次级光源,发出各自的次级波。

这些次级波相互干涉,形成了衍射图样。

在中心最亮的位置,我们可以观察到零级衍射光,即入射光直接通过光栅的正中央。

而在其他位置,我们可以看到一系列明暗相交的衍射光斑,它们的出现是由光栅条纹的空隙和光的波长决定的。

二、实验装置为了观察和研究光栅的干涉和衍射现象,我们需要搭建相应的实验装置。

实验装置包括以下几个部分:1. 光源:可以使用一束平行光或者单色激光。

2. 光栅:通常为光学玻璃制成,具有一定的空隙密度。

3. 透镜:用于调整入射光的方向和形状。

4. 探测器:用于记录干涉和衍射图样,可以是像底片、摄像机或光电探测器等。

在实验中,我们先调整光源和透镜的位置,使得入射光束平行并通过透镜。

然后将光栅放置在入射光束中,调整光栅的位置和角度,以获得清晰的干涉和衍射图样。

三、实验结果通过搭建光栅实验装置并进行实验观察,我们可以得到一系列干涉和衍射图样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三十八 光栅特性的研究
实验内容
1.测出所给衍射光栅的四个主要特性参数;光栅常数d、角色散率φ、分辨本领R和衍射效率η。

2.测量钠光灯的钠双线波长,或汞灯谱线的各个波长,或He-Ne 激光器的激光波长。

教学要求
•• 1.了解衍射光谱的结构、分类和特性。

•• 2.学习如何选择实验方法测定光学元件的特性参数。

实验器材
•• 除给定不同光栅常数的全息光栅外,其余仪器设备请自行拟定后,向实验室申请使用。

光栅通常用于研究复色光谱的组成,进行光谱分析,还可以通过光栅获得特定波长的单色光。

所以,光栅是一种重要的分光元件。

了解光栅的结构和工作特性,对使用和开发光学器件有着重要的意义。

•• 光栅按其结构分类,可分为平面光栅,阶梯光栅和凹面光栅;按衍射条件分类,可分为透射光栅和反射光栅。

操作步骤
•• 1.选择一定的方法和仪器,测出所给衍射光栅的四个主要特性参数:光栅常数d、角色散率φ、分辨本领R和衍射效率η。

•• 2.利用所给光栅测量钠光谱双线的波长,或汞光各条谱线的波长,或He-Ne 激光谱线的波长。

要求测量结果的准确度 λE ≤0.1%。

•• 3.从理论上算出在给定的光栅和光波长(汞灯)的条件下,能观察到的光栅的最高衍射级数K,并用实验加以验证。

•• 4.观察分辨本领R与光栅狭缝数目N的关系。

挡住光栅的一部分,减小狭缝数目N,观察钠光谱的双线的衍射谱随N的减小而发生的变化。

实验提示
• 根据夫琅和费衍射理论,当一束平行光垂直入射到光栅平面上时,将发生衍射。

衍射光谱中亮条纹的位置由衍射方程dsin φ=k λ (k=0,±1, ±2,……)决定。

其中缝间距d称为光栅常数,φ为衍射角,k为衍射光谱线的级数,λ为入射单色光的波长。

关于光栅的几个特性参数说明如下:
•• 1.光栅常数d:d=a+b ,a 为光栅任一狭缝的宽度,b 为相邻狭缝间不透光部分的宽度。

•• 2.角色散率φ:λ
φϕd d =,定义为单位波长间隔内两单色谱线之间的角间距。

由dsin φ=k λ,可得k
d k φϕcos =。

•• 3.分辨本领R:λ
λ∆=R ,定义为两条刚可被分辨开的谱线的波长差除以它们的平
均波长。

根据瑞利条件,两条刚可被分辨开的谱线可规定为:波长相差Δλ的两条相邻谱线,其中一条谱线的最亮处应落在另一条谱线的最暗处。

可以证明对于宽度一定的光栅,R的理论极限值为d
L K KN R m ==,而实测值将小于KN 。

式中K为光谱线的级数,N为光栅参与衍射的狭缝数目,L 为入射光束照亮的光栅宽度,d 为光栅常数。

•• 4.衍射效率η:η=%1000
1⨯I I ,1I 为第一级衍射光谱的强度,0I 为零级衍射光谱的强度。

报告要求
•• 1.写明实验方法、所需仪器设备。

•• 2.拟出实验具体程序,设计数据记录表格。

分析讨论
•• 1.为什么实测分辨本领R的数值小于理论极限值m R ?
•• 2.通过分析比较,说明光栅光谱和棱镜光谱的特点(可从谱线的排列次序、间距、角色散率和衍射级数等方面进行讨论)。

•• 3.谈谈实验的设计思想。

相关文档
最新文档