2021年北京邮电大学大学物理实验习题
大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

可编辑修改精选全文完整版大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。
下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。
大学物理学(下)北京邮电大学第三版答案

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ1,如题8-2解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >>∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图 8-6 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan =α)解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+= ∴ )(π42200x R Sq +=Φε02εq=[221xR x+-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E S π2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd33030r E ερ= ;(2) ρ+在O '产生电场d π4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 00033)(3ερερερdr r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C d=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E中受力矩 E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -R q 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l = 则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4rql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)(2)*(3)解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求: (1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεεrd r d⋅+⋅=⎰⎰∞∞rrE E U 外内)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82lr Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B 的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B 方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用. 9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L ·d l =0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B两点处的磁题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
北京邮电大学大学物理第六版下答案

北京邮电大学大学物理第六版下答案1、27.在只有量筒没有天平的情况下,要取出16g酒精(ρ酒精=8×103kg/m3),下列做法正确的是()[单选题] *A.只有量筒没有天平是做不到的B.用量筒量出体积为16cm3的酒精C.用量筒量出质量为16g的酒精D.用量筒量出体积为20cm3的酒精(正确答案)2、如图63所示,MM’为平面镜,AO为入射光线,ON为法线,入射角∠AON等于60°。
已知∠NOB等于30°,∠NOC等于45°,∠NOD等于60°。
则入射光线AO的反射光线将沿着哪个方向射出()[单选题]A.ONB.OBC.OCD.OD(正确答案)3、32.下列涉及的物态变化现象解释正确的是()[单选题] *A.清晨河面上出现的薄雾是汽化形成的B.冰冻的衣服变干是熔化现象C.烧水时,壶嘴附近出现的“白气”是液化形成的(正确答案)D.浓雾逐渐散去是升华现象4、15.下列有关托盘天平的使用说法正确的是()[单选题] *A.称量前,应估计被测物体的质量,以免超过量程(正确答案)B.称量前,应调节平衡螺母或移动游码使天平平衡C.称量时,左盘放砝码,右盘放物体D.称量时,向右移动游码,相当于向左盘加砝码5、53.下列实例中不能用光的直线传播解释的是()[单选题] *A.水中倒影(正确答案)B.手影的形成C.日食和月食D.小孔成像6、1.民乐团演奏中国名曲《茉莉花》时,其中的声现象,下列说法错误的是()[单选题] *A.竹笛声是由空气柱振动产生的B.胡琴、琵琶发出的声音音色不同C.敲击鼓面的节奏越快,鼓声传播得就越快(正确答案)D.听众关闭手机,是从声源处控制噪声7、87.把一个实心铁块放入盛满水的容器中,溢出水的质量是5g,若把铁块放入盛满酒精的容器中,则溢出酒精的质量是()(ρ酒精=8×103kg/m3,ρ水=0×103kg/m3)[单选题] *A.5gB.5gC.4g(正确答案)D.36g8、48.如图所示是甲和乙两种液体物质的质量和体积的关系图像,下列说法正确的是()[单选题] *A.甲物质的密度比乙小B.体积为60cm3的乙物质的质量为48g(正确答案)C.质量为25g的甲物质的体积为30cm3D.甲和乙两种液体等体积混合后的密度小于1g/cm39、导体中的自由电子做定向移动时,它的周围就产生磁场[判断题] *对(正确答案)错答案解析:自由电子做定向移动时产生电流,电流周围存在磁场10、人耳听不到次声波,是因为响度太小[判断题] *对错(正确答案)答案解析:次声波和超声波的频率超过了人耳的听觉范围11、3.这一秒末的速度是前一秒末的速度的2倍.[判断题] *对错(正确答案)12、当0℃的冰熔化成0℃的水时,温度和内能都不变[判断题] *对错(正确答案)答案解析:温度不变,内能增大13、举重运动员把杠铃举在空中停三秒,此时运动员对杠铃的举力做功[判断题] *对错(正确答案)答案解析:有力无距离,不做功14、49.由甲、乙两种物质分别制成体积相等的甲、乙两种实心球,按照如图所示方式摊放在已调节平衡的天平左右盘内,天平仍平衡。
大学物理 北京邮电大学习题

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,tv d d 是加速度a 在切向上的分量.∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττϖϖϖ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jty i t x t r a jty i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学 物理实验 教程 第二版 北京邮电大学出版社 课件分光计参考答案

用分光计测量三棱镜折射率实验数据处理1.顶角及不确定度)(A u 的计算(1)自准法: )(2118021210右右左左θθθθ-+--=A , θθθ∆==⨯=)()()21(4)(22u u A u (2)反射法: )(412121右右左左θθθθ-+-=A 2.最小偏向角及最小偏向角的不确定度的计算 (1)最小偏向角min δ的计算公式:)(412121min 右右左左θθθθδ-+-= (2)最小偏向角min δ的不确定度计算公式: θθθδ∆==⨯=21)(21)()41(4)(22min u u u 仪器误差Δθ = 2′= 5.82×10-4(rad)u (A ) = 2′= 5.82×10-4(rad) u (δmin ) = 1′= 2.91×10-4(rad)A = ° ′±2′ δmin = ° ′±1′3.折射率n 以及折射率的不确定度)(n u 的计算(1)折射率的计算公式 A A n 21sin )(21sin min +=δ (2)折射率的不确定度计算公式)(2)(222)(min 2min 222min δδδu A ctg A u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-= )(2sin 2cos 21)(2sin 2sin 2cos 212cos 2sin 21min 22min 222min min δ⎪⎪⎪⎪⎭⎫ ⎝⎛δ++⎪⎪⎪⎪⎭⎫ ⎝⎛δ+-δ+=u A A A u A A A A A )()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A 式中的角度的不确定度应取弧度为单位 n ±u (n ) = ±思考题及参考答案1.望远镜光轴与分光计的中心轴相垂直,应该在望远镜中看到什么现象?利用哪些螺钉调节?光学平行平板或三棱镜两个光学面反射的十字像,都能与望远镜分划板叉丝刻线上交点重合。
北京邮电大学大学物理学习题答案6

习题六6-1 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同?答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化.力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 6-2 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点.6-3 何谓微观量?何谓宏观量?它们之间有什么联系?答:用来描述个别微观粒子特征的物理量称为微观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量.气体宏观量是微观量统计平均的结果. i N 21 4 6 8 2 )s m (1-⋅i V10.020.030.040.050.02864215024083062041021++++⨯+⨯+⨯+⨯+⨯==∑∑iii NV N V7.2141890== 1s m -⋅ 方均根速率28642150240810620410212232222++++⨯+⨯+⨯+⨯+⨯==∑∑iii NV N V6.25= 1s m -⋅6-5 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数. (4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.6-6 最概然速率的物理意义是什么?方均根速率、最概然速率和平均速率,它们各有何用 处? 答:气体分子速率分布曲线有个极大值,与这个极大值对应的速率叫做气体分子的最概然速率.物理意义是:对所有的相等速率区间而言,在含有P v 的那个速率区间内的分子数占总分子数的百分比最大.分布函数的特征用最概然速率P v 表示;讨论分子的平均平动动能用方均根速率,讨论平均自由程用平均速率.6-7 容器中盛有温度为T 的理想气体,试问该气体分子的平均速度是多少?为什么? 答:该气体分子的平均速度为0.在平衡态,由于分子不停地与其他分子及容器壁发生碰撞、其速度也不断地发生变化,分子具有各种可能的速度,而每个分子向各个方向运动的概率是相等的,沿各个方向运动的分子数也相同.从统计看气体分子的平均速度是0.6-8 在同一温度下,不同气体分子的平均平动动能相等,就氢分子和氧分子比较,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大,对吗? 答:不对,平均平动动能相等是统计平均的结果.分子速率由于不停地发生碰撞而发生变化,分子具有各种可能的速率,因此,一些氢分子的速率比氧分子速率大,也有一些氢分子的速率比氧分子速率小.6-9 如果盛有气体的容器相对某坐标系运动,容器内的分子速度相对这坐标系也增大了, 温度也因此而升高吗?答:宏观量温度是一个统计概念,是大量分子无规则热运动的集体表现,是分子平均平动动能的量度,分子热运动是相对质心参照系的,平动动能是系统的内动能.温度与系统的整体运动无关.只有当系统的整体运动的动能转变成无规则热运动时,系统温度才会变化. 6-10 题6-10图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?题6-10图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.题6-10图6-11 温度概念的适用条件是什么?温度微观本质是什么?答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义.温度微观本质是分子平均平动动能的量度. 6-12 下列系统各有多少个自由度: (1)在一平面上滑动的粒子;(2)可以在一平面上滑动并可围绕垂直于平面的轴转动的硬币; (3)一弯成三角形的金属棒在空间自由运动. 解:(1) 2,(2)3,(3)66-13 试说明下列各量的物理意义. (1)kT 21 (2)kT 23 (3)kT i2(4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T . (2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.6-14 有两种不同的理想气体,同压、同温而体积不等,试问下述各量是否相同?(1)分子数密度;(2)气体质量密度;(3)单位体积内气体分子总平动动能;(4)单位体积内气体分子的总动能. 解:(1)由kTpn nkT p ==,知分子数密度相同;(2)由RTpM V M mol ==ρ知气体质量密度不同; (3)由kT n23知单位体积内气体分子总平动动能相同; (4)由kT in 2知单位体积内气体分子的总动能不一定相同.6-15 何谓理想气体的内能?为什么理想气体的内能是温度的单值函数?解:在不涉及化学反应,核反应,电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势能之总和.对于理想气体不考虑分子间相互作用能量,质量为M 的理想气体的所有分子的热运动能量称为理想气体的内能.由于理想气体不计分子间相互作用力,内能仅为热运动能量之总和.即RT iM M E 2mol =是温度的单值函数.6-16 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?(1)分子的平均平动动能;(2)分子的平动动能;(3)内能. 解:(1)相等,分子的平均平动动能都为kT 23. (2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23. (3)不相等,因为氢分子的内能RT 25υ,氦分子的内能RT 23υ.6-17 有一水银气压计,当水银柱为0.76m 高时,管顶离水银柱液面0.12m ,管的截面积为2.0×10-4m 2,当有少量氦(He)混入水银管内顶部,水银柱高下降为0.6m ,此时温度为27℃,试计算有多少质量氦气在管顶(He 的摩尔质量为0.004kg ·mol -1)? 解:由理想气体状态方程RT M MpV mol=得 RTpV M M mol= 汞的重度 51033.1⨯=Hg d 3m N -⋅氦气的压强 Hg )60.076.0(d P ⨯-= 氦气的体积 4100.2)60.088.0(-⨯⨯-=V 3m)27273()100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯-⨯=-R d M)27273(31.8)100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯⨯-⨯=-d61091.1-⨯=Kg6-18 设有N个粒子的系统,其速率分布如题6-18图所示.求(1)分布函数)(vf的表达式;(2)a与v之间的关系;(3)速度在1.5v到2.0v之间的粒子数.(4)粒子的平均速率.(5)0.5v到1v区间内粒子平均速率.题6-18图解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2()()2()()0(/)(vvvNfvvvavNfvvvavvNf⎪⎩⎪⎨⎧≥≤≤≤≤=)2()2(/)0(/)(vvvvvNavvNvavvf)(vf满足归一化条件,但这里纵坐标是)(vNf而不是)(vf故曲线下的总面积为N,(2)由归一化条件可得⎰⎰==+00232ddv vv vNaNvaNvvavN(3)可通过面积计算NvvaN31)5.12(=-=∆(4) N个粒子平均速率⎰⎰⎰⎰+===∞∞022ddd)(1d)(vvvvavvvavvvvNfNvvvfv220911)2331(1vavavNv=+=(5)5.0v到1v区间内粒子平均速率⎰⎰==0005.0115.0d d v v v v NNv N N N Nv v ⎰⎰==00005.05.00211d d )(v v v v v Nv av N N v v vf N N 2471)243(1d 12103003015.002100av N v av v av N v v av N v v v =-==⎰ 05.0v 到01v 区间内粒子数N av v v a a N 4183)5.0)(5.0(210001==-+=9767020v N av v ==6-19 试计算理想气体分子热运动速率的大小介于1100-⋅-p p v v 与1100-⋅+p p v v 之间的分子数占总分子数的百分比. 解:令Pv vu =,则麦克斯韦速率分布函数可表示为 du e u N dN u 224-=π因为1=u ,02.0=∆u 由u e u N N u ∆=∆-224π得 %66.102.0141=⨯⨯⨯=∆-e N N π6-20 容器中储有氧气,其压强为p =0.1 MPa(即1atm)温度为27℃,求(1)单位体积中的分子n ;(2)氧分子的质量m ;(3)气体密度ρ;(4)分子间的平均距离e ;(5)平均速率v ;(6)方均根速率2v ;(7)分子的平均动能ε. 解:(1)由气体状态方程nkT p =得242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m - (2)氧分子的质量26230mol 1032.51002.6032.0⨯=⨯==N M m kg (3)由气体状态方程RT M MpV mol=得 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ 3m kg -⋅(4)分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m(5)平均速率58.446032.030031.860.160.1mol =⨯≈=M RT v 1s m -⋅ (6) 方均根速率87.48273.1mol2=≈M RTv 1s m -⋅ (7) 分子的平均动能20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ6-21 1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少? 解:理想气体分子的能量RT iE 2υ= 平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r 249330031.822=⨯⨯=r E J内能5=i 5.623230031.825=⨯⨯=i E J6-22 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比. 解:(1)因为 nkT p =则1=HOn n (2)由平均速率公式mol60.1M RTv = 41mol mol ==O H HOM M v v6-23 一真空管的真空度约为1.38×10-3Pa(即1.0×10-5mmHg),试 求在27℃时单位体积中的分子数及分子的平均自由程(设分子的有效直径d =3×10-10m). 解:由气体状态方程nkT p =得172331033.33001038.11038.1⨯=⨯⨯⨯==-kT p n 3m - 由平均自由程公式 nd 221πλ=5.71033.3109211720=⨯⨯⨯⨯=-πλ m6-24 (1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到1.33×10-4Pa ,平均碰撞频率又为多少(设分子有效直径10-10m)? 解:(1)碰撞频率公式v n d z 22π=对于理想气体有nkT p =,即kTp n =所以有 kTpv d z 22π=而 mol60.1M RTv ≈ 43.4552827331.860.1=⨯≈v 1s m -⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz 1s - 气压下降后的平均碰撞频率123420s714.02731038.11033.143.455102----=⨯⨯⨯⨯⨯⨯=πz6-25 1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比; (2)分子平均自由程之比.解:由气体状态方程2211T p T p = 及 3322V p V p = 方均根速率公式 mol273.1M RTv = 21212122===p p T T v v 末初 对于理想气体,nkT p =,即 kTpn = 所以有 pd kT 22πλ=212121212131===T p p T T p p T 末初λλ 6-26 飞机起飞前机舱中的压力计指示为1.0 atm(1.013×105Pa),温度为27 ℃;起飞后压力计指示为0.8 atm(0.8104×105Pa),温度仍为27 ℃,试计算飞机距地面的高度. 解:气体压强随高度变化的规律:由nkT p =及kTmgz en n 0=RTgz M kTmgz kTmgz ep ep kTen p mol 000---===pp g M RTz 0mol ln =31096.18.01ln 8.90289.030031.8⨯=⨯⨯=z m6-27 上升到什么高度处大气压强减少为地面的75%(设空气的温度为0℃). 解:压强随高度变化的规律pp g M RTz 0mol ln =3103.275.01ln 8.90289.027331.8⨯=⨯⨯=z m。
大学物理学(上)北京邮电大学第三版习题答案

习题解答习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d trv =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
(完整word)北京邮电大学大学物理实验习题8

大学物理实验模拟试题八一、填空题(20分,每题2分)1.依照测量方法的不同,可将测量分为和两大类。
2.误差产生的原因很多,按照误差产生的原因和不同性质,可将误差分为疏失误差、和 .3.测量中的视差多属误差;天平不等臂产生的误差属于误差。
4.已知某地重力加速度值为9。
794m/s2,甲、乙、丙三人测量的结果依次分别为:9。
790±0.024m/s2、9。
811±0。
004m/s2、9.795±0。
006m/s2,其中精密度最高的是,准确度最高的是 .5.累加放大测量方法用来测量物理量,使用该方法的目的是减小仪器造成的误差从而减小不确定度。
若仪器的极限误差为0.4,要求测量的不确定度小于0.04,则累加倍数N> .6.示波器的示波管主要由、和荧光屏组成。
7.已知 y=2X1—3X2+5X3,直接测量量X1,X2,X3的不确定度分别为ΔX1、ΔX2、ΔX3,则间接测量量的不确定度Δy= .8.用光杠杆测定钢材杨氏弹性模量,若光杠杆常数(反射镜两足尖垂直距离)d=7.00cm,标尺至平面镜面水平距离D=105。
0㎝,求此时光杠杆的放大倍数K= .9、对于0。
5级的电压表,使用量程为3V,若用它单次测量某一电压U,测量值为2。
763V,则测量结果应表示为U= ,相对不确定度为B= 。
10、滑线变阻器的两种用法是接成线路或线路。
二、判断题(“对”在题号前( )中打√,“错”打×)(10分)( )1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。
()2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。
()3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。
()4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。
( )5、在验证焦耳定律实验中,量热器中发生的过程是近似绝热过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验模仿试题六
一.选取题(30分,任选10题,每题3分)
1.用0.02mm游标卡尺测量约36mm物体长度,下面读数对的是()A: 36.08mm;
B: 36.080mm;
C: 36.07mm;
D: 36.008mm.
时,用加、减砝码各测一次办法,目是()2.杨氏模量实验中测量x
A:消除随机误差;
B:增长测量次数;
C:无意义;
D:减小或消除某些系统误差。
3.电位差计测量电动势基本办法是()A:比较法;
B:补偿法;
C:模仿法;
D:伏安法。
4.在分光计调节中,调节望远镜聚焦于无穷远所用办法是()A:干涉法;
B:一半逼近法;
C:自准直法;
D:反射法。
5.用伏安法测量1000欧姆电阻,所用测量线路应是()A:内接法;
B : 外接法;
C : 内、外接法都可以;
D : 内、外接法都不可以。
6. 用示波器观测李萨如图形,当图形不稳定期,应当调节 ( )
A : f x 、f y 其中任意一种;
B : 电平旋钮;
C : 锯齿波频率;
D : 聚焦旋钮。
7.不拟定度x = x ±x ∆含义是 ( )
A : x = x +x ∆;
B : x = x -x ∆;
C : x 值以一定概率落在x +x ∆和x -x ∆之间;
D : x 值一定落在x +x ∆和x -x ∆之间。
8.测量约6Ω(功率1W )电阻,且使误差不大于2.5%,应当选取 ( ) A : 2.5级量程3V 电压表,1.0级量程0.5A 电流表; B : 0.5级量程3V 电压表,0.5级量程10mA 电流表; C : 1.0级量程3V 电压表,1.0级量程0.5A 电流表; D : 1.0级量程3V 电压表,1.0级量程1A 电流表。
9.测量约10mm 长度规则物体长度,单次测量使误差在千分之几毫米,应选取测量工具是 ( ) A : 米尺; B : 游标卡尺; C : 千分尺;
D : 以上三种工具都不可以。
10.在示波器使用中,规定锯齿波周期与被观测信号周期成整数倍,图形才稳定,是为了
便于 ( ) A : 观测李萨如图形; B : 观测波形; C : 测量锯齿波频率; D : 防止信号幅度过大。
11.对一物理量进行多次等精度测量,其目是 ( ) A : 消除系统误差; B : 消除随机误差; C : 减小随机误差; D : 减小系统误差。
12.对一物理量进行单次测量,预计出误差是 ( ) A : 系统误差; B : 随机误差;
C : 有系统误差,也具有随机误差;
D : 粗大误差。
二. 填空题(20分,任选5题,每题4分)
1.使用天平前,必要进行 调节和 调节,使 用天平时,取放物体、加减砝码等操作都必要使天平处在 状态。
2.若H =
l
L 2λ
,L 误差为L ∆,l 误差为l ∆,则H ∆= , 其相对误差E = 。
3.系统误差是 引起误差,随机误差是 引起误差,粗大误差是 引起误差。
4.用电位差计测量电动势普通是两个环节,(1) ,(2) 。
5.模仿法条件是 。
6.用精确度级别为a 、量程为V m 电压表单次测得电压为V ,则
∆V= ; 用精确度级别为a 、量程为V m 电位差计单次测得电压
为V ,则∆V= 。
三. 计算题(50分)
1、 (10分)用千分尺对圆柱体直径进行多次测量,测量数据如下:
求出平均值及其误差,并表达出成果。
2、(20分)用流体静力称衡法测量一不规则铜块密度ρ,ρ=
1
m m m
-0ρ,其中m 为
铜块在空气中质量,m =64.05g ,1m 为铜块在水中视重,1m =56.00g ,0ρ为水密度,在200C 时,0ρ≈0.998g/cm 3
.试求铜块密度ρ及其误差,并表达出成果。
(天平感量为0.05g )
3、(20分)已知热电偶温差电动势E 与温差τ关系为 E=a+b τ,E 和τ测量值如下。
试用图解法求热电势系数b 。