中南大学通信原理实验报告实验二 数字调制

合集下载

中南大学通信原理实验报告(截图完整)

中南大学通信原理实验报告(截图完整)

中南大学《通信原理》实验报告学生姓名指导教师学院专业班级完成时间数字基带信号1、实验名称数字基带信号2、实验目的(1)了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

(2)掌握AMI、HDB3码的编码规则。

(3)掌握从HDB3码信号中提取位同步信号的方法。

(4)掌握集中插入帧同步码时分复用信号的帧结构特点。

(5)了解HDB3(AMI)编译码集成电路CD22103。

3、实验内容(1)用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

(2)用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

(3)用示波器观察HDB3、AMI译码输出波形。

4、基本原理(简写)本实验使用数字信源模块和HDB3编译码模块。

1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。

本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。

发光二极管亮状态表示1码,熄状态表示0码。

本模块有以下测试点及输入输出点:• CLK 晶振信号测试点• BS-OUT 信源位同步信号输出点/测试点(2个)• FS 信源帧同步信号输出点/测试点• NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下:•晶振CRY:晶体;U1:反相器7404•分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 •并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应•八选一U5、U6、U7:8位数据选择器4512•三选一U8:8位数据选择器4512•倒相器U20:非门74HC04•抽样U9:D触发器74HC742. HDB3编译码原理框图如图1-6所示。

通信原理设计实验报告(3篇)

通信原理设计实验报告(3篇)

第1篇一、实验目的1. 理解通信原理的基本概念和原理。

2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。

3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。

二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。

(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。

(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。

2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。

(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。

(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。

3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。

(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。

(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。

4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。

(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。

通信原理实验2数字频带传输系统实验

通信原理实验2数字频带传输系统实验

实验2 数字频带传输系统实验一、实验目的掌握数字频带传输系统调制解调的仿真过程 掌握数字频带传输系统误码率仿真分析方法二、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。

数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。

1.调制过程 1)2ASK如果将二进制码元“0”对应信号0,“1”对应信号tf A c π2cos ,则2ASK 信号可以写成如下表达式:()()cos2T n s c n s t a g t nT A f tπ⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 01s t g 。

可以看到,上式是数字基带信号()()∑-=ns n nT t g a t m 经过DSB 调制后形成的信号。

其调制框图如图1所示:图1 2ASK 信号调制框图2ASK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2)2FSK将二进制码元“0”对应载波t f A 12cos π,“1”对应载波t f A 22cos π,则形成2FSK 信号,可以写成如下表达式:()()()()()12cos 2cos 2T n s n n s n nns t a g t nT A f t a g t nT A f t πϕπθ=-++-+∑∑当=n a 时,对应的传输信号频率为1f ;当1=n a 时,对应的传输信号频率为2f 。

上式中,n ϕ、n θ是两个频率波的初相。

2FSK 也可以写成另外的形式如下:()()cos 22T c n s n s t A f t h a g t nT ππ∞=-∞⎛⎫=+- ⎪⎝⎭∑其中,{}1,1-+∈n a ,()2/21f f f c +=,()⎩⎨⎧≤≤=其他 0T t 01s t g ,12f f h -=为频偏。

通信原理实验——2FSK调制与解调实验

通信原理实验——2FSK调制与解调实验
实验总

基本到达实验要求,掌握2FSK调制和解制的原理及实现方法。
指导教师意见
签名: 年 月 日
贵州大学实验报告
学院:计信学院 专业:网络工程 班级:101
学号
实验组
实验时间
指导教师
成绩
实验项目名称
实验三 2FSK调制与解调实验
实验目的
1、掌握2FSK调制的原理及实现方法。
2、掌握2FSK解调的原理及实现方法。
实验要求
本实验属于验证型实验,通过实验,加强对课堂讲授知识的理解。开始实验前,先集中由老师进行具体要求和注意事项的讲解,然后各自独立在机器上完成实验。实验过程中出现问题,在实验指导老师帮助下解决。
〔4〕示波器双踪观测信号源模块“NRZ”与数字解调模块FSK解调“解调输出”测试点码型,比照2FSK解调复原的效果。
〔5〕改变信号源模块NRZ码的码型,重复上述实验步骤。
实验内容
1、采用数字键控法2FSK调制,观测2FSK调制信号的波形。
2、采用过零检测法2FSK解调。
实验数据
1.调节“384K正弦载波”调节至与“192K正弦载波”的幅度
3、信号源模块设置
〔1〕“码速率选择”拨码开关设置为8分频,即拨为00000000 00001000。
24位“NRZ码型选择”拨码开关任意设置。
〔2〕调节“384K调幅”旋转电位器,使“384K正弦载波”输出幅度与“192K正弦载波”输出幅度相等,为左右。
说明:当“384K正弦载波”调节至与“192K正弦载波”幅度相等时,有下列图所示相位对齐关系。
实验原理
1、2FSK调制
图15-1是2FSK调制数字键控法原理框图。
图15-1 2FSK调制数字键控法原理框图

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理实验报告4—2ASK调制与解调实验第6组

通信原理实验报告4—2ASK调制与解调实验第6组

通信原理实验报告班级:组号:06 时间:2015/11/12成员:学号:实验四2ASK调制与解调实验一、实验目的1、了解数字调制与解调的概念。

1、掌握2ASK调制的原理及实现方法。

2、掌握2ASK解调的原理及实现方法。

二、实验内容1、采用数字键控法2ASK调制,观测2ASK调制信号的波形。

2、采用包络检波法2ASK解调。

三、实验仪器1、信号源模块一块2、数字调制模块一块3、数字解调模块一块4、20M双踪示波器一台五、实验步骤(若码型太长,示波器单张图片无法清晰显示,可调整至2~3张图片记录)1、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的电源开关,对应的发光二极管灯亮,三个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)2、信号源模块设置(1)“码速率选择”拨码开关设置为8分频,即拨为00000000 00001000。

信号源模块的NRZ码型选择SW01~SW03拨码开关依次设置成本组同学的学号尾数的二进制码,例:陈欢,陈金洪,陈景鹏同学学号尾数是1,2,3,则他们SW01~SW03拨码开关依次设置成0000 0001,0000 0010,0000 0011B。

(2)调节“384K调幅”旋转电位器,使“384K正弦载波”输出幅度为3.6V。

3、2ASK调制(1)实验连线如下:信号源模块数字调制模块NRZ ———————— NRZ输入(数字键控法调制)384K正弦载波————载波1输入(数字键控法调制)(2)数字调制模块“键控调制类型选择”拨码开关拨成1000,即选择2ASK调制方式。

(3)以数字调制模块“NRZ输入”的信号为内触发源,示波器双踪观测“NRZ输入”和“调制输出”测试点波形,并记录图片为图1。

图1图1局部放大图5、2ASK解调(1)以上模块设置和连线均不变,增加连线如下:数字调制模块数字解调模块调制输出(数字键控法调制)——ASK-IN信号源模块数字解调模块BS —————————————ASK-BS(2)示波器双踪两两观测“ASK-IN”、“OUT1”测试点波形,并记录图片为图2 。

2.数字调制 - 通信原理实验报告

2.数字调制 - 通信原理实验报告

计算机与信息工程学院验证性实验报告一、实验目的1、掌握绝对码(AK)、相对码(BK)的概念以及它们之间的关系。

2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。

3、掌握BK 与2PSK 信号波形之间的关系、AK 与2DPSK 信号波形之间的关系。

4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。

二、实验原理及方法数字调制分为二进制调制和多进制调制,二进制调制是多进制调制的基础。

在HUST TX 系列实验设备中只包含二进制数字调制,多进制调制实验由仿真软件实现,需要仿真软件的读者可以向作者索取,当然也可以使用有关商业软件或自己开发。

本实验使用数字信源模块和数字调制模块。

信源模块向调制模块提供数字基带信号和位定时信号。

调制模块将输入的绝对码AK (NRZ 码)变为相对码BK 、用键控法产生2ASK 、2FSK 、2DPSK 信号。

调制模块内部使用+5V 电源。

数字调制模块的原理方框图如图2.1所示,电原理图如图2.2所示。

图中CLK-IN 接信源模块晶振的输出信号CLK,NRZ-IN(AK)接信源模块的输出信号NRZ-OUT (AK ),BS-IN 接信源模块的输出位定时信号BS-OUT ,它们已在印刷电路板上连通。

图2.1 数字调制方框图数字调制模块上有以下信号测试点:• CAR2DPSK 和2ASK 的载波信号测试点• BK 相对码测试点• 2DPSK 2DPSK信号测试点,V P-P>0.5V• 2FSK 2FSK信号测试点,V P-P>0.5V• 2ASK 2ASK信号测试点,V P-P>0.5V图2.2 数字调制模块电原理图图2.1中各单元与图2.2中元器件的对应关系如下:•÷2(A)U18B:双D触发器74LS74•÷2(B)U9B:双D触发器74HC74•滤波器A V1:三极管9013,电感L1,电容C7•滤波器B V6:三极管9013,电感L2,电容C2•码变换器U18A:双D触发器74LS74;U19A:异或门74LS86 • 2ASK调制器U22:三路二选一模拟开关4053• 2FSK调制器U22:三路二选一模拟开关4053• 2PSK调制器U21:八选一模拟开关4051•放大器V5:三极管9013•射随器V3:三极管9013数字调制模块将数字信源模块晶振的输出信号CLK 进行2分频、滤波后,得到2ASK 和2DPSK 的载波信号,频率为2.2165MHz 。

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。

实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。

本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。

实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。

实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。

实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。

通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。

在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学
《通信原理》
实验报告
学生姓名
学生学号
学院信息科学与工程学院
专业班级
完成时间
实验二数字调制
一、实验目的
1、掌握绝对码、相对码概念及它们之间的变换关系。

2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。

3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。

4、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。

二、实验内容
1、用示波器观察绝对码波形、相对码波形。

2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。

3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。

三、基本原理
本实验用到数字信源模块和数字调制模块。

信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。

调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。

调制模块内部只用+5V电压。

数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。

图2-1 数字调制方框图
本单元有以下测试点及输入输出点:
• CAR 2DPSK信号载波测试点
• BK 相对码测试点
>0.5V • 2DPSK 2DPSK信号测试点/输出点,V
P-P
>0.5V • 2FSK 2FSK信号测试点/输出点,V
P-P
>0.5V
• 2ASK 2ASK信号测试点,V
P-P
用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下:
•÷2(A)U8:双D触发器74LS74
•÷2(B)U9:双D触发器74LS74
•滤波器A V6:三极管9013,调谐回路
•滤波器B V1:三极管9013,调谐回路
•码变换U18:双D触发器74LS74;U19:异或门74LS86 • 2ASK调制U22:三路二选一模拟开关4053
• 2FSK调制U22:三路二选一模拟开关4053
• 2PSK调制U21:八选一模拟开关4051
•放大器V5:三极管9013
•射随器V3:三极管9013
将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。

放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。

下面重点介绍2PSK、2DPSK。

2PSK、2DPSK波形与信息代码的关系如图2-3所示。

图2-3 2PSK、2DPSK波形
图中假设码元宽度等于载波周期的1.5倍。

2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180︒,相同时2PSK信号相位不变,
可简称为“异变同不变”。

2DPSK 信号的相位与信息代码的关系是:码元为“1”时,2DPSK 信号的相位变化180 。

码元为“0”时,2DPSK 信号的相位不变,可简称为“1变0不变”。

应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。

实际工程中,2PSK 或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。

但不管是那种关系,上述结论总是成立的。

本单元用码变换——2PSK 调制方法产生2DPSK 信号,原理框图及波形图如图2-4所示。

相对于绝对码AK 、2PSK 调制器的输出就是2DPSK 信号,相对于相对码、2PSK 调制器的输出是2PSK 信号。

图中设码元宽度等于载波周期,已调信号的相位变化与AK 、BK 的关系当然也是符合上述规律的,即对于AK 来说是“1变0不变”关系,对于BK 来说是“异变同不变”关系,由AK 到BK 的变换也符合“1变0不变”规律。

图2-4中调制后的信号波形也可能具有相反的相位,BK 也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。

2DPSK 通信系统可以克服上述2PSK 系统的相位模糊现象,故实际通信中采用2DPSK 而不用2PSK (多进制下亦如此,采用多进制差分相位调制MDPSK ),此问题将在数字解调实验中再详细介绍。

+
2PSK 调制
2DPSK(AK)
2PSK(BK)
T S
A K
B K
B K -1
图2-4 2DPSK 调制器
2PSK 信号的时域表达式为
S(t)= m(t)Cos ωc t
式中m(t)为双极性不归零码BNRZ ,当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK 信号的频谱与2PSK 相同。

2ASK 信号的时域表达式与2PSK 相同,但m(t)为单极性不归零码NRZ ,NRZ 中有直流分量,故2ASK 信号中有载频分量。

2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。

时域表达式为
t t m t t m t S c c 21cos )(cos )()(ωω+=
式中m(t)为NRZ 码。

图2-5 2ASK 、2PSK (2DPSK )、2FSK 信号功率谱
设码元宽度为T S ,f S =1/T S 在数值上等于码速率,2ASK 、2PSK (2DPSK )、2FSK 的功率谱密度如图2-5所示。

可见,2ASK 、2PSK (2DPSK )的功率谱是数字基带信号m(t)功率谱的线性搬移,故常称2ASK 、2PSK (2DPSK )为线性调制信号。

多进制的MASK 、MPSK (MDPSK )、MFSK 信号的功率谱与二进制信号功率谱类似。

本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2ASK 、2PSK (2DPSK )、2FSK 也具有离散谱。

四、实验步骤
本实验使用数字信源单元及数字调制单元。

1、熟悉数字调制单元的工作原理。

接通电源,打开实验箱电源开关。

将数字调制单元单刀双掷开关K7置于左方N (NRZ )端。

2、用数字信源单元的FS 信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK (即调制器的输入),CH2接数字调制单元的BK ,信源单元
的K
1、K
2
、K
3
置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码
变换规律以及从相对码至绝对码的变换规律。

3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK 信号相位变化与信源代码的关系)。

注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。

2DPSK AK 2DPSK BK
4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。

AK 2FSK AK SASK
5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行
此项观察)。

条件不具备
五、实验报告要求
1、设绝对码为全1、全0或1001 1010,求相对码。

绝对码全为1时,相对码为:1010 1010
绝对码全为0时,相对码为:0000 0000
绝对码为1001 1010时,相对码为:1110 1100
2、设相对码为全1、全0或1001 1010,求绝对码。

相对码全为1时,绝对码为:1000 0000
相对码全为0时,绝对码为:0000 0000
相对码为1001 1010时,绝对码为:1101 0111
3、设信息代码为1001 1010,假定载频分别为码元速率的1倍和1.5倍,画出2DPSK及2PSK信号波形。

4、总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。

规律:相对码的码反变换规则为“比较相对码本码元与前一码元电位相同绝对码为0,否则为1”,反变化与之相反。

5、总结2DPSK信号的相位变化与信息代码(即绝对码)之间的关系以及2DPSK信号的相位变化与相对码之间的关系(即2PSK的相位变化与信息代码之间的关系)。

2DPSK 信号的相位变化与绝对码(信息代码)之间的关系是:“1 变0 不变”,即“1”码对应的2DPSK 信号的初相相对于前一码元内2DPSK 信号的末相变化180º,“0”码对应的2DPSK 信号的初相与前一码元内2DPSK 信号的末相同。

2PSK 信号的相位变化与相对码(信息代码)之间的关系是:“异变同不变”,即当前码元与前一码元相异时则当前码元内2PSK 信号的初相相对于前一码元
内2PSK 信号的末相变化180º。

相同时则码元内2PSK 信号的初相相对于前一码元内2PSK 信号的末相无变化。

相关文档
最新文档