2015年高考数学真题分类汇编:专题(08)直线与圆(文科)及答案

合集下载

2015年高考数学(新课标Ⅱ版)分项汇编专题08直线与圆(含解析)文

2015年高考数学(新课标Ⅱ版)分项汇编专题08直线与圆(含解析)文

专题08 直线与圆
一.基础题组
1. 【2005全国3,文2】已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0 B.-8 C.2 D.10
【答案】B
2. 【2010全国新课标,文13】圆心在原点且与直线x+y-2=0相切的圆的方程为________.【答案】:x2+y2=2
3.
4. 【2005全国2,文14】圆心为且与直线相切的圆的方程为_____________________.
【答案】
二.能力题组
1. 【2007全国2,文21】(本小题满分12分)
在直角坐标系xOy中,以O为圆心的圆与直线:相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求
的取值范围。

三.拔高题组
1. 【2014全国2,文12】设点,若在圆上存在点,使得,则的取值范围是()
(A)(B)(C)(D)
【答案】A
【解析】依题意,直线MN与圆有公共点即可,即圆心到直线MN的距离小于等于1即可,过作MN,垂足为A,在中,因为,故,所以,则,解得.
2. 【2006全国2,文15】过点的直线将圆分成两段弧,当劣弧所对的圆心角最小时,直线的斜率
【答案】
【解析】。

2015年湖北省高考数学试卷(文科)答案与解析

2015年湖北省高考数学试卷(文科)答案与解析

2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

6072.(3分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内×4.(3分)(2015•湖北)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结5.(3分)(2015•湖北)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l26.(3分)(2015•湖北)函数f(x)=的定义域为(),7.(3分)(2015•湖北)设x∈R,定义符号函数sgnx=,则(),而左边,而左边,而左边=xsgnx=,显然正确;8.(3分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()”==;;9.(3分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时=∴﹣,10.(3分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元二、填空题11.(3分)(2015•湖北)已知向量,||=3,则=9.,所以=0﹣,即212.(3分)(2015•湖北)设变量x,y满足约束条件,则3x+y的最大值为10.得13.(3分)(2015•湖北)函数的零点个数为2.14.(3分)(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=3.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为6000.15.(3分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.h=,h=100.16.(3分)(2015•湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为(x﹣1)2+(y﹣)2=2.(2)圆C在点B处切线在x轴上的截距为﹣1﹣.)由题意,圆的半径为=))1+)﹣﹣).17.(3分)(2015•湖北)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a=2﹣2时,g(a)的值最小.2﹣2时,=∵=﹣,[);,故答案为:三、解答题18.(12分)(2015•湖北)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)π(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.2))图象上所有点向左平移()﹣]2x+)=k﹣,.(﹣19.(12分)(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.,写出、,由题意可得,或;=•••∴+3+5+7+•∴+++﹣﹣20.(13分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.====.CD==21.(14分)(2015•湖北)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g (x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).时,>,(=)>×==时,>,故,故<22.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON 可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.其方程为.=k(,,)|PQ|==|PQ|d=|m||x|m|||=| =||=8|时,<(时,∴1+。

2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案(word 精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。

2. 若为a 实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。

3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】D考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。

4. 已知()0,1=-a ,()1,2=-b ,则(2)+⋅=a b a A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由题意可得21=a ,2,⋅=-a b 所以()222220+⋅=+⋅=-=a b a a a b .考点:向量数量积。

【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。

5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .11【答案】A2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===. 考点:等差数列【名师点睛】本题主要考查等差数列性质及前n 项和公式,具有小、巧、活的特点。

2015年高考数学真题分类汇编:专题(08)直线与圆(理科)及答案

2015年高考数学真题分类汇编:专题(08)直线与圆(理科)及答案

专题八 直线与圆1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( )A 、2B 、C 、6D 、【答案】C【解析】圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,A --6==.选C .【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l =.2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C .【考点定位】圆的方程.【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ∆是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题.3.【2015高考广东,理5】平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y xC. 052=+-y x 或052=--y xD. 052=++y x 或052=-+y x【答案】D .【解析】依题可设所求切线方程为20x y c ++=5c =±,所以所求切线的直线方程为250x y ++=或250x y +-=,故选D .【考点定位】直线与圆的位置关系,直线的方程.【名师点睛】本题主要考查直线与圆的位置关系,利用点到直线距离求直线的方程及转化与化归思想的应用和运算求解能力,根据题意可设所求直线方程为20x y c ++=,然后可用代数方法即联立直线与圆的方程有且只有一解求得,也可以利用几何法转化为圆心与直线的距离等于半径求得,属于容易题.4.【2015高考山东,理9】一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=错误!未找到引用源。

2015高考数学真题及答案

2015高考数学真题及答案

2015高考数学真题及答案高三数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项) (1)在复平面内,复数12i z =-对应的点的坐标为(A )(1,2) (B )(2,1) (C ) (1,2)- (D )(2,1)-(2)双曲线2214x y -=的渐近线方程为(A )12y x =±(B )y =(C )2y x =± (D )y =(3)记函数)(x f 的导函数为)(x f ',若()f x 对应的曲线在点))(,(00x f x 处的切线方程为1y x =-+,则(A )0()=2f x ' (B )0()=1f x ' (C )0)(0='x f(D )0()=1f x '-(4)已知命题p :直线a ,b 不相交,命题q :直线a ,b 为异面直线,则p 是q 的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)在区间[0,2]上随机取一个实数x ,则事件“310x -<”发生的概率为(A )12 (B )13(C )14(D )16(6)执行如图所示的程序框图,若输出的b 的值为4,则图中判断框内①处应填(A )2 (B )3(C )4 (D )5(7)设集合1,(,) 1.x y D x y x y ⎧⎫+≥⎧⎪⎪=⎨⎨⎬-≤,则下列命题中正确的是(A )(,)x y ∀D ∈,20x y -≤ (B )(,)x y ∀D ∈,22x y +≥- (C )(,)x y ∀D ∈,2x ≥(D )(,)x y ∃D ∈,1y ≤-(8)某学校餐厅每天供应500名学生用餐,每星期一有A ,B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的学生,下星期一会有20%改选B 种菜;而选B 种菜的学生,下星期一会有30%改选A 种菜.用n a ,n b 分别表示在第n 个星期的星期一选A 种菜和选B 种菜的学生人数,若1300a =,则+1n a 与n a 的关系可以表示为 (A )111502n n a a +=+ (B )112003n n a a +=+ (C )113005n n a a +=+ (D )121805n n a a +=+第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

高考数学文真题分类汇编:专题08直线与圆含解析

高考数学文真题分类汇编:专题08直线与圆含解析

1.【2015高考北京,文2】圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D【解析】由题意可得圆的半径为r =()()22112x y -+-=,故选D .【考点定位】圆的标准方程.【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心(),a b ,半径为r 的圆的标准方程是()()222x a y b r -+-=.2.【2015高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题.3.【2015高考湖南,文13】若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____. 【答案】【解析】如图直线3450x y -+=与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且120o AOB ∠=,则圆心(0,0)到直线3450x y -+=的距离为12r ,12r r =∴,=2 .故答案为2.【考点定位】直线与圆的位置关系【名师点睛】涉及圆的弦长的常用方法为几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则222().2l r d =-本题条件是圆心角,可利用直角三角形转化为弦心距与半径之间关系,再根据点到直线距离公式列等量关系.4.【2015高考安徽,文8】直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 【答案】D【解析】∵直线b y x =+43与圆心为(1,1),半径为1的圆相切,∴224343+-+b =1⇒2=b 或12,故选D .【考点定位】本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,得到关于x (或y )的一元二次方程,通过判断0;0;0<∆=∆>∆来确定直线与圆的位置关系;方法二是几何法:主要是利用圆心到直线的距离公式求出圆心到直线的距离d ,然后再将d 与圆的半径r 进行判断,若r d >则相离;若r d =则相切;若r d <则相交;本题考查考生的综合分析能力和运算能力.5.【2015高考重庆,文12】若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________. 【答案】250x y +-=【解析】由点(1,2)P 在以坐标原点为圆心的圆上知此圆的方程为:225x y +=,所以该圆在点P 处的切线方程为125x y ⨯+⨯=即250x y +-=,故填:250x y +-=. 【考点定位】圆的切线.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.6.【2015高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【答案】(Ⅰ)22(1)(2x y -+=;(Ⅱ)1-第16题图【解析】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1,即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r ==,所以圆C 的标准方程为22(1)(2x y -+=,令0x =得:1)B +.设圆C 在点B处的切线方程为1)kx y -=,则圆心C 到其距离为:d ,解之得1k =.即圆C 在点B处的切线方程为x 1)y =++,于是令0y =可得x 1=-,即圆C 在点B 处的切线在x轴上的截距为1--,故应填22(1)(2x y -+=和1-【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C 的横坐标. 7.【2015高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34k =±. 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点. 试题解析:(1)圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0(2)设线段AB 的中点00(,)x y M ,由圆的性质可得1C M 垂直于直线l .设直线l 的方程为mx y =(易知直线l 的斜率存在),所以1C 1k m M ⋅=-,00mx y =,所以130000-=⋅-x y x y ,所以0320020=+-y x x ,即49232020=+⎪⎭⎫ ⎝⎛-y x . 因为动直线l 与圆1C 相交,所以2132<+m m ,所以542<m . 所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x .(3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线.结合图形,492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x 表示的是一段关于x 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫⎝⎛352,35的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P ⎪⎪⎭⎫⎝⎛-352,35,则752354352=-=PTk ,而当直线L 与轨迹C 相切时,2314232=+-k kk ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <.结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤34k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知:当0k ≤<或34k =-时,直线L 与x 轴对称上方的圆弧有且只有一个交点. 综上所述,当752752≤≤-k 或34k =±时,直线L:()4y k x =-与曲线C 只有一个交点. 考点:1、圆的标准方程;2、直线与圆的位置关系.【名师点晴】本题主要考查的是圆的标准方程、直线与圆的位置关系,属于难题.解题时一定要注意关键条件“直线l 与圆1C 相交于不同的两点A ,B ”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程和直线与圆的位置关系,即圆22D F 0x y x y +++E +=的圆心D ,22E ⎛⎫-- ⎪⎝⎭,直线与圆相交⇔d r <(d 是圆心到直线的距离),直线与圆相切⇔d r =(d 是圆心到直线的距离).L8.【2015高考新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点. (I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I)(II )2(II )设1122(,),(,)M x y N x y . 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k++==++21212121224(1)1181k k OM ON x x y y k x x k x x k+?+=++++=++, 由题设可得24(1)8=121k k k +++,解得=1k ,所以l 的方程为1y x =+.故圆心在直线l 上,所以||2MN =.考点:直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.。

高考数学(文科)分项专题 直线与圆(解析)

高考数学(文科)分项专题 直线与圆(解析)

一.基础题组 1. 【2008全国1,文10】若直线1x y a b+=与圆221x y +=有公共点,则( ) A .221a b +≤B .221a b +≥C .22111a b +≤D .2211a b+≥1 【答案】D二.能力题组1. 【2011新课标,文20】(本小题满分12分)【解析】2.【2016新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若23AB =,则圆C的面积为 .【答案】4π【解析】试题分析:圆22:220C x y ay +--=,即222:()2C x y a a +-=+,圆心为(0,)C a ,由||23,AB =圆心C 到直线2y x a =+的距离为|02|2a a -+,所以得22223|02|()()222a a a -++=+,则22,a =所以圆的面积为2π(2)4πa +=.【考点】直线与圆【名师点睛】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. 三.拔高题组1. 【2011全国1,文11】设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82【答案】C2. 【2005全国1,文12】设直线l 过点)0,2(-,且与圆221x y +=相切,则l 的斜率是(A )1±(B )21±(C )33± (D )3±【答案】C【解析】3. 【2015高考新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33(II )2考点:直线与圆的位置关系;设而不求思想;运算求解能力。

2015年浙江省高考数学试卷及答案(文科)完整版.doc

2015年浙江省高考数学试卷及答案(文科)完整版.doc

绝密★考试结束前2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =I ( ) A .[)3,4 B .(]2,3 C .()1,2- D .(]1,3- 2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .83cm B .123cmC .3233cm D .4033cm3、设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m5、函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 7、如图,斜线段AB 与平面α所成的角为60o ,B 为斜足,平面α上的动点P 满足30∠PAB =o ,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 8、设实数a ,b ,t 满足1sin a b t +==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin 2b唯一确定 D .若t 确定,则2a a +唯一确定二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:22log 2= ,24log 3log 32+= . 10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .13、已知1e r ,2e r 是平面单位向量,且1212e e ⋅=r r .若平面向量b r 满足121b e b e ⋅=⋅=r r r r ,则b =r.14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .15、椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值; (2)若B ,34a π==,求ABC ∆的面积.17.(本题满分15分)已知数列{}n a 和{}n b 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈L .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .18.(本题满分15分)如图,在三棱锥111ABC A B C -中,011ABC=90=AC2,AA 4,A ?=,AB 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明: 11D A BC A ⊥平面; (2)求直线1A B 和平面11B C B C 所成的角的正弦值.19.(本题满分15分)如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点, 且与抛物线的对称轴不平行,则该直线 与抛物线相切,称该公共点为切点.20.(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)参考答案一、 选择题1. A2.C3.D4.A5.D6.B7.C8.B二、 填空题9.1,332- 10.2,13- 11.32,2π- 12.1;2662-- 13.23314.15 15.22三、解答题16. 【答案】(1)25;(2)9(1)利用两角和与差的正切公式,得到tan 13A =,利用同角三角函数基本函数关系式得到结论; (2)利用正弦原理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积 试题解析:(1)由tan 12,tan ,43A A π⎛⎫+==⎪⎝⎭得所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++(2) 由tan 13A =可得,sin 10310;cos 1010A A ==. 3,,4a B π==由正弦定理知:b=35又()25sin sin sin cos ,5C A B A B =+==所以S ∆ABC =11sin 22ab C =×3×35×255=9 17. 【答案】(1)2;n n n a b n==;(2)1*(1)22()n n T n n N +=-+∈(1)由112,2,n n a a a +==得2.nn a =当n=1时,121,b b =-故22b = 当n 2≥时,11,n n n b b b n+=-整理得11,n n b n b n ++=所以n b n =(2)由(1)知,2nn n a b n =g所以23n 222322n T n =+++⋅⋅⋅+g gg ()4231n 222222122n n T n n +=+++⋅⋅⋅+-+g g g g所以()1n 122n T n +=-+18. 【答案】(1)略;(2)78(1)设E 为BC 中点,由题意得1A E ⊥平面ABC,所以1.A E AE ⊥ 因为,AB AC =所以AE BC ⊥ 所以AE ⊥平面1A BC由D,E 分别为11.B C BC 的中点,得1//,DE BB 从而DE//1AA 且DE=A 1A 所以1AA DE 是平行四边形,所以1//A D AE 因为AE ⊥平面1,A BC 所以1A D ⊥平面1A BC(2)作1A F DE⊥,垂足为F ,连结BF.因为AE ⊥平面1A BC,所以1BC A E⊥. 因为BC AE ⊥,所以BC ⊥平面1AA DE.所以11,BC A F A F ⊥⊥平面11BB C C.所以1A BF∠为直线1A B与平面11BB C C所成角的平面角.由2,90AB AC CAB ==∠=o,得2EA EB ==.由AE ⊥平面1A BC,得1114,14A A A B A E ===.由1114,2,90DE BB DA EA DA E ====∠=o,得172A F =.所以17sin 8A BF ∠=19. 【答案】(1)222222(2,),(,)11t t A t t B t t ++;(2)32t(1)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为().y k x t =-所以()214y k x t y x =-=⎧⎨⎩消去y,整理得:2440x kx kt -+=因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点2(2,)A t t . 设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B,O 关于直线PD 对称,故有00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩,解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t ++. (2)由(1)知,21AP t t =+,直线AP 的方程为20tx y t --=, 所以点B 到直线PA 的距离为221t d t =+.所以PAB ∆的面积为3122t S AP d =⋅=.20. 【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,945]--(1) 当214a b =+时,()21,2a f x x ⎛⎫=++ ⎪⎝⎭故其对称轴为2a x =- 当2a ≤-时,()()2124a g a f a ==++ 当-2<a 2≤时,g ()12a a f ⎛⎫=-= ⎪⎝⎭当a >2时,g ()()2124a a f a =-=-+ 综上所述,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设s,t 为方程()0f x =的解,且-11t ≤≤,则{s t ast b+=-=由于021b a ≤-≤,因此()2121122t ts t t t --≤≤-≤≤++ 当01t ≤≤时,2222.22t t t b t t --≤≤++ 由于222032t t --≤≤+和21294 5.32t t t t--≤≤-+ 所以29453b -≤≤- 当-122220,22t t t t b t t --≤≤≤≤++ 由于2222t t --≤+<0和232t t t --≤+<0,所以-3b ≤<0.综上可知,b 的取值范围 是3,945⎡⎤--⎣⎦高考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学真题分类汇编 专题08 直线与圆 文1.【2015高考北京,文2】圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D【解析】由题意可得圆的半径为r =()()22112x y -+-=,故选D.【考点定位】圆的标准方程.【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心(),a b ,半径为r 的圆的标准方程是()()222x a y b r -+-=.2.【2015高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题.3.【2015高考湖南,文13】若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____. 【答案】【解析】如图直线3450x y -+=与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且120o AOB ∠=,则圆心(0,0)到直线3450x y -+=的距离为12r ,12r r =∴,=2 .故答案为2.【考点定位】直线与圆的位置关系【名师点睛】涉及圆的弦长的常用方法为几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则222().2l r d =-本题条件是圆心角,可利用直角三角形转化为弦心距与半径之间关系,再根据点到直线距离公式列等量关系.4.【2015高考安徽,文8】直线3x+4y=b与圆222210x y x y+--+=相切,则b=()(A)-2或12 (B)2或-12 (C)-2或-12 (D)2或12【答案】D【解析】∵直线byx=+43与圆心为(1,1),半径为1的圆相切,∴224343+-+b=1⇒2=b或12,故选D.【考点定位】本题主要考查利用圆的一般方程求圆的圆心和半径,直线与圆的位置关系,以及点到直线的距离公式的应用.【名师点睛】在解决直线与圆的位置关系问题时,有两种方法;方法一是代数法:将直线方程与圆的方程联立,消元,得到关于x(或y)的一元二次方程,通过判断0;0;0<∆=∆>∆来确定直线与圆的位置关系;方法二是几何法:主要是利用圆心到直线的距离公式求出圆心到直线的距离d,然后再将d与圆的半径r进行判断,若rd>则相离;若rd=则相切;若rd<则相交;本题考查考生的综合分析能力和运算能力.5.【2015高考重庆,文12】若点(1,2)P在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为________.【答案】250x y+-=【解析】由点(1,2)P在以坐标原点为圆心的圆上知此圆的方程为:225x y+=,所以该圆在点P处的切线方程为125x y⨯+⨯=即250x y+-=,故填:250x y+-=.【考点定位】圆的切线.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.6.【2015高考湖北,文16】如图,已知圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点A,B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为_________;(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22(1)(2x y-+=;(Ⅱ)1-【解析】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1,即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r ==,所以圆C 的标准方程为22(1)(2x y -+=,令0x =得:1)B +.设圆C 在点B处的切线方程为1)kx y -+=,则圆心C 到其距离为:d ,解之得1k =.即圆C 在点B处的切线方程为x 1)y =+,于是令0y =可得x 1=-,即圆C 在点B 处的切线在x轴上的截距为1--,故应填22(1)(2x y -+=和1-【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C 的横坐标. 7.【2015高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34k =±. 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点. 试题解析:(1)圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0(2)设线段AB 的中点00(,)x y M ,由圆的性质可得1C M 垂直于直线l .设直线l 的方程为mx y =(易知直线l 的斜率存在),所以1C 1k m M ⋅=-,00mx y =,所以130000-=⋅-x y x y ,所以0320020=+-y x x ,即49232020=+⎪⎭⎫ ⎝⎛-y x . 因为动直线l 与圆1C 相交,所以2132<+m m ,所以542<m . 所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x .(3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线.结合图形,492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x 表示的是一段关于x 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫⎝⎛352,35的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P ⎪⎪⎭⎫⎝⎛-352,35,则752354352=-=PTk ,而当直线L 与轨迹C 相切时,2314232=+-k kk ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <.结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤34k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知:当0k ≤<或34k =-时,直线L 与x 轴对称上方的圆弧有且只有一个交点. 综上所述,当752752≤≤-k 或34k =±时,直线L:()4y k x =-与曲线C 只有一个交点. 考点:1、圆的标准方程;2、直线与圆的位置关系.【名师点晴】本题主要考查的是圆的标准方程、直线与圆的位置关系,属于难题.解题时一定要注意关键条件“直线l 与圆1C 相交于不同的两点A ,B ”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程和直线与圆的位置关系,即圆22D F 0x y x y +++E +=的圆心D ,22E ⎛⎫-- ⎪⎝⎭,直线与圆相交⇔d r <(d 是圆心到直线的距离),直线与圆相切⇔d r =(d 是圆心到直线的距离).L数学备课大师 【全免费】8.【2015高考新课标1,文20】(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点. (I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I)(II )2(II )设1122(,),(,)M x y N x y . 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k++==++21212121224(1)1181k k OM ON x x y y k x x k x x k+?+=++++=++, 由题设可得24(1)8=121k k k +++,解得=1k ,所以l 的方程为1y x =+.故圆心在直线l 上,所以||2MN =.考点:直线与圆的位置关系;设而不求思想;运算求解能力数学备课大师 【全免费】【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.。

相关文档
最新文档