桥梁抗风设计课件
土木工程中的桥梁抗风设计技术

土木工程中的桥梁抗风设计技术桥梁作为连接两地交通的重要通道,在土木工程中占据着举足轻重的地位。
然而,在桥梁的设计和建设过程中,抗风是一个不可忽视的重要因素。
本文将介绍土木工程中的桥梁抗风设计技术,重点分析桥梁的抗风设计原则、设计方法和常用技术。
一、桥梁抗风设计原则在土木工程中,桥梁抗风设计的原则是保证桥梁在遭受风力作用时能够保持结构的稳定和安全。
具体而言,桥梁抗风设计需要考虑以下几个方面:1. 桥梁的形状设计:合理的桥梁形状设计可以减小桥梁受风的面积,降低风力对桥梁的影响。
例如,在大跨度桥梁的设计中,采用空腹箱梁或曲线形状的桥面板可以减小风阻力,提高桥梁的抗风性能。
2. 桥墩和支座的布置:桥墩和支座的布置对桥梁的抗风性能有着重要影响。
合理的桥墩布置可以增加桥梁的稳定性,减小风力对桥梁的作用力。
同时,在桥梁的设计中还需要考虑桥墩的高度和断面形状,以减小斜向风对桥梁的冲击力。
3. 桥面横向刚度的设计:桥面横向刚度对桥梁的抗风性能起着至关重要的作用。
适当增加桥面的横向刚度可以提高桥梁的自振周期,减小动力响应,增加桥梁的抗风能力。
二、桥梁抗风设计方法基于桥梁抗风设计原则,桥梁的抗风设计方法也日趋成熟。
常用的桥梁抗风设计方法包括静力分析和动力分析两种。
1. 静力分析:静力分析是桥梁抗风设计中较为简单和常用的分析方法。
它通过对桥梁结构所受风力的静力平衡分析,确定桥梁在不同风速下的受力状态,进而判断桥梁是否满足设计要求。
静力分析方法在桥梁设计初期用于快速评估桥梁的抗风能力具有一定的优势。
2. 动力分析:动力分析是桥梁抗风设计中较为精确和全面的分析方法。
它通过考虑风力的频谱特性,结合桥梁结构的固有振动特性,综合计算桥梁的响应和变形情况。
动力分析方法可以更加准确地评估桥梁的抗风性能,并对桥梁的关键部位进行优化设计。
三、常用的桥梁抗风技术为了提高桥梁的抗风性能,土木工程师们还开发了许多创新的桥梁抗风技术。
下面介绍两种常用的技术:1. 风洞试验技术:风洞试验是桥梁抗风设计中常用的实验方法,通过模拟真实风场的风洞试验,获取桥梁结构在不同风速下的受力和变形情况。
桥梁抗风概念设计 PPT

• 风致振动是研究的重点和难点。 汽车:风阻系数 建筑:风荷载,风致振动(舒适性) 桥梁:大跨度桥梁的高跨比很小,钢阻尼也小,极易
振动
高跨比: 苏通桥 3.5/1088=1/310.8; 西堠门桥 3.51/1650=1/470
• 至1950‘年代:建立气动弹性力学基础 Wagner,Theodonson,Sears, • 1960’年代:
桥梁颤振理论 Sakata(日本),Scanlan(美国) 桥梁抖振理论 Davenport,Scanlan • 1970‘年代:英国Severn桥的抗风设计 • 1980’年代:日本本州-四国连线工程,跨度 1991m的明石桥 • 1990‘年代后:丹麦大海带桥,CFD应用,中国
11.9米,梁高2.4米 • 宽跨比1:72,高跨
比1:350 !! • 主梁截面形式:
H型板梁
旧塔科马海峡桥风毁事故
• 原因:扭转颤振-风致自激发散振动 • 教训:桥梁要有空气动力稳定性。 • 途径: (1)主梁良好的气动外形 (2)保证桥梁扭转刚度 (3)风洞试验, (4)建立桥梁抗风理论
发展简史
• 基本思路:
本质上是一个流固耦合问题,简化为风荷载的确定及其相应的结构效 应问题。这里的风荷载,包括静力的和动力的,动力荷载包括强迫的 和自激的。
• 基本方法:理论分析,风洞试验,CFD
往往需要多种方法的综合应用与相互校核
• 重要假定:条带假定:
等截面直梁的单位长度受到的风荷载处处相等
• 主要对策
(4) Buffeting 抖振
• 机理:自然风的脉动分量产生一种随机力 从而迫使桥梁产生随机振动
桥梁抗震与抗风设计 第一讲

地震灾害与国策
地震对我国的危害性
邢台地震破坏现场 震级:7.2级 时间:1966年3月22日 死亡:8186人 损失:19.3亿元
2021/3/30
17
地震灾害与国策
地震对我国的危害性
海城地震破坏现场 震级:7.3级 时间:1975年2月4日 死亡:2041人 损失:17.5亿元
2021/3/30
群测群防工作:总则第八条规定,“国家鼓励、引导社会组织和个人
开展地震群测群防活动,对地震进行监测和预防”。由于我国的群测群 防已经实行了多年,群众把观察到的一些异常现象向地震工作部门报告, 可以弥补专业地震监测台网的不足,同时也有助于提高群众防震减灾意 识,有利于地震工作部门做好防震减灾工作。
2021/3/30
20
地震灾害与国策
地震对我国的危害性
江西九江地震破坏现场 震级:5.7级 时间:2005年11月26日 死亡:13人 损失:20.4亿元
2021/3/30
21
地震灾害与国策
地震对我国的危害性
四川汶川地震破坏现场 震级:8.0级 时间:2008年5月12日 死亡:8.7万人 损失:8451亿元
2021/3/30
发生9.0级地震。这次地震引起了巨大海啸,海啸共造成约37万人死亡,伤者 不计其数,直接经济损失估计数十亿美元,形成空前的海啸巨灾。
2021/3/30
5
地震灾害与国策
地震对人类社会的危害性
2005年巴基斯坦地震:2005年10月8日,克什米尔的印、巴控制区交界地
区突发7.8级地震,震中在巴控一侧的穆扎法拉巴德、巴格和曼瑟拉一带。在 巴控一侧死亡73276人,伤69000人,倒塌官民房屋244000套,严重损坏约20 万套,280万人受灾,直接经济损失折合达23亿美元。在印(印度)控一侧 死亡1600人,伤约5千人,近万套民房倒塌和严重破坏。
桥梁抗风抗震概论PPT文档共29页

谢谢!
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
桥梁抗风Байду номын сангаас震概论
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
第十三讲桥梁抗风设计详解

桥梁及结构风振理论及其控制——之第十三讲桥梁抗风设计主讲教师:葛耀君博士.教授1、设计风速定义2、气动参数识别3、动力特性分析4、静风性能检验5、风振性能检验6、抗风性能改善7、抗风设计发展¾1.设计风速定义1.1平均风速()()()()果桥位专门风速仪纪录结计分析气象站历年风速纪录统桥梁和建筑结构不同全国基本风压图方法用三种方法确定参考风速,目前主要采—参考风速离地高度—地表粗糙度指数— 3 2 )( 1 R R R R d U z z z U z U αα⎟⎟⎠⎞⎜⎜⎝⎛=1.2 阵风风速()()z U G z U d v g = 1.70.IV III 1.38;II I : .,G v 类和类和南》《公路桥梁抗风设计指风洞试验确定可按有关规范或风环境阵风因子— 1.3 紊流强度u w w w u v v v u u I 5.0I UI I 88.0I UI UI =σ==σ=σ=按—按—的数值可按规范确定特征高度—1.4 脉动风谱()()()())( 416 :)(501200 :22*3/52*谱垂直方向谱水平来流Panofsky f f u n nS Simiu f f u n nS w u +=+= 1.5 相关函数()21~7 exp , :=Δ⎟⎟⎠⎞⎜⎜⎝⎛Δ−=Δλλλγ衰减系数,—空间相对位置坐标—特征频率—空间相关性r f U r f r f d¾2. 气动参数识别2.1 断面流迹显示2.2 Stroughl 数识别识别方法物理风洞试验方法数值风洞试验方法(CFD 方法)等压线、等速线、表面粒子(1) 烟雾照相(2) 数值模拟(1) 尾流涡脱卓越频率测量(2) CFD 数值模拟计算UfB S t =2.3 静力系数识别αραραρd dC F BU C d dC F B U C d dC F B U C M M M D D D L L L , : , : , :2221221221⋅=⋅=⋅=升力矩系数阻力系数升力系数(1) 节段模型测力试验(2) CFD 数值模拟计算三分力系数也可表示成体轴系数座标,Mz y C C ,C 和2.4 气动导数识别()()()6 5, 4, 3, 2, ,1 :6 5, 4, 3, 2, ,1 :6 5, 4, 3, 2, ,1 :===i A i P i H *i*i*i升力矩方向阻力方向升力方向(1) 节段模型测振试验(2) CFD 数值模拟计算大多数情况下气动导数值()4 321 **,, , i A H ii =和¾3. 动力特性分析3.1 结构计算模型(1) 按施工阶段划分(缆索承重桥梁)(a) 桥塔自立状态(b) 主要拼梁状态(c) 全桥成桥状态(2) 按主梁离散划分(a) 单梁式(b) 双梁式(c) 三梁式3.2 结构振型描述(1) 按对称性划分—对称和反对称(2) 按特征值划分—一阶、二阶、…(3) 按振动特性划分—侧向弯曲、竖向弯曲、扭转3.3 基本振型分析(1) 同类桥梁固有频率比较(2) 扭弯频率比(3) 对称或反对称振型出现次序(4) 扭转振型耦合特征¾4. 静风性能验算4.1 静风稳定性—扭转发散扭转发散临界风速(1) 二维计算模型(2) 三维计算模型 4.2 静风强度荷载最不利组合问题(1) 平均风荷载(2) 脉动风荷载 4.2 静风刚度(1) 侧向静风位移(2) 竖向静风位移(3) 扭转静风位移(较小)¾5. 风振性能检验5.1 风振稳定性5.2 风振强度(1) 驰振临界风速(2) 扭转颤振临界风速—变号(3) 耦合颤振临界风速—竖弯和扭转耦合*2A (4) 涡激共振锁定风速(1) 抖振引起的强迫力荷载(2) 涡振引起的自激力荷载荷载最不利组合5.3 风振刚度(1) 抖振位移(a) 统计分析方法(b) 节段模型试验法(c) 全桥模型试验法(2) 涡振位移(a) 理论模型计算法(b) 节段模型试验法(c) 全桥模型试验法¾6. 抗风性能改善6.1 桥梁抗风性能(1) 主梁风振失稳(驰振、颤振)绝对避免(2) 主梁涡激振动尽量避免(3) 主梁抖振一般不作控制(4) 拉索风振或雨振尽量避免6.2 主梁性能改善措施(1) 结构措施—刚度、质量、约束(2) 外形措施—导流、开槽、分流(中央稳定性),裙板等(3) 阻尼措施—TMD、主动、半主动等6.3 拉索性能改善措施(1) 表面处理—刻痕、螺旋线等(2) 内置阻尼器—锚箱内(3) 外置阻尼器—离索端一定距离(4) 稳定索系—交叉索等¾7. 抗风设计发展(1) 概率性评价和可靠性分析(2) 等效风荷载问题(3) 基于结构性能(舒适度)的抗风设计(4) 风振疲劳问题(5) 斜拉桥拉索振动控制(6) 考虑周边地形影响的风振问题下周同一时间再见!。
桥梁抗风设计规范

风荷载计算: 根据风速、风 向、地形地貌 等因素,计算 桥梁所受的风 荷载,为结构 设计提供依据。
抗风措施设计: 根据桥梁结构 和风环境特点, 采取相应的抗 风措施,如加 装风屏障、调 整结构刚度等。
风洞试验:通 过风洞试验获 取桥梁模型在 各种风速下的 响应数据,验 证抗风措施的 有效性和安全
抗风设计的审查流程与要点
审查流程:初 步审查、详细 审查和最终审
查
审查要点:结 构稳定性、风 载作用下的响 应和疲劳性能
等
抗风设计评估与审查的实践经验与教训
评估指标:应综合 考虑结构、材料、 施工等因素,制定 合理的评估指标体 系。
审查要点:对桥梁 的抗风设计进行全 面审查,确保其满 足规范要求和安全 性能。
新型抗风设计方法与技术的应用
桥梁抗风设计的重要性 新型抗风设计方法的优势 新型抗风设计方法的应用案例 新型抗风设计方法的前景与展望
既有桥梁的抗风加固与改造
既有桥梁的抗风加 固:针对已建成桥 梁的风毁事故,采 取相应的加固措施, 提高其抗风能力。
既有桥梁的抗风改 造:对存在抗风性 能不足的既有桥梁, 进行全面的改造, 使其满足抗风设计 规范要求。
桥梁抗风设计规范
风,a click to unlimited possibilities
汇报人:风
目录
01 添 加 目 录 项 标 题
02 桥 梁 抗 风 设 计 的 重 要 性
03 桥 梁 抗 风 设 计 的 基 本 原 则 05 桥 梁 抗 风 设 计 的 规 范 要 求
04 桥 梁 抗 风 设 计 的 主 要 内 容
添加标题
创新技术应用: 未来桥梁抗风设 计需要不断探索 和应用新的技术 与方法,如大数 据、人工智能、 仿真模拟等,以 提高设计的科学 性和可靠性,降
工程结构抗风课件7

Davenport分析步骤 分析步骤5-6 分析步骤
启动 Internet Explorer 浏览器.lnk
21
桥梁抗风设计
抖 振 的 机 理 及 分 析 方 法
Scanlan的准定常气动力表达式,并引入气动导纳函数修正 的准定常气动力表达式, 的准定常气动力表达式
1 u(x, t ) A Dbu (x, t ) = ρU 2 B2 CD (α 0 ) γ 1 (t ) 2 U B 1 u(x, t ) A w(x, t ) ′ Lbu (x, t ) = − ρU 2 B2CL (α 0 ) γ 2 (t ) + CL (α 0 ) + CD (α 0 ) γ 3 (t ) 2 U B U u(x, t ) w(x, t ) 1 ′ M bu (x, t ) = ρU 2 B 2 2CM (α 0 ) γ 4 (t ) + CM (α 0 ) γ 5 (t ) U U 2
步骤4 步骤
20
桥梁抗风设计
抖 振 的 机 理 及 分 析 方 法
结构的内力响应 求得了结构的振型位移后, 求得了结构的振型位移后,由 位移求内力的过程将是一介静 力学的问题, 力学的问题,根据力和位移的 关系可求出内力功率谱及响应 方差。 方差。 抖振反应的概率评价 根据得到的脉动风引起的抖振 位移的反应和内力反应的统计 功率谱,方差等), ),按适 量(功率谱,方差等),按适 当的概率分布理论推算最大期 望值,并由此进行概率评价。 望值,并由此进行概率评价。 评 价 Davenport先基于随机振动理论 提出频域抖振分析理论,引入联 合接受函数来描述气动力沿跨向
桥梁抗风设计
抖 振 的 机 理 及 分 析
钢筋混凝土桥梁结构抗风设计

钢筋混凝土桥梁结构抗风设计钢筋混凝土桥梁是现代交通建设中最为常见且重要的结构形式之一。
在桥梁建设中,抗风设计是一个至关重要的环节。
本文将就钢筋混凝土桥梁结构的抗风设计进行探讨。
一、引言抗风设计是确保钢筋混凝土桥梁结构在恶劣气象条件下能够安全运行的关键要素之一。
随着桥梁设计理念不断创新与进步,抗风设计也变得越来越重要。
二、风荷载的计算方法钢筋混凝土桥梁结构的抗风设计首先需要计算风荷载。
目前,常用的风荷载计算方法有理论计算法、风洞模型试验法和数值模拟法。
1. 理论计算法理论计算法是通过计算结构在风场中的受力情况来确定风荷载。
这种方法依赖于风荷载规范的相关理论,通常适用于规模较小的桥梁。
2. 风洞模型试验法风洞模型试验法是通过在风洞中对桥梁模型进行模拟试验,以获取风对桥梁结构的荷载参数。
这种方法适用于规模较大、形状复杂的桥梁。
3. 数值模拟法数值模拟法基于计算流体力学原理,通过建立桥梁结构的数值模型,并应用CFD软件进行模拟计算,来获取风荷载。
这种方法适用于各种桥梁结构。
三、桥梁结构的风荷载分析在抗风设计中,需要对桥梁结构的风荷载进行分析。
这包括对风速、风压分布以及风荷载的大小进行研究。
1. 风速与风压分布风速与风压分布是指在桥梁周围空域内的风力特征。
一般来说,离地面越高,风速越大,风压越大。
这种分布规律对于桥梁结构的抗风设计非常重要。
2. 风荷载大小的确定风荷载的大小取决于多个因素,包括桥梁结构的特性、地理位置、风场条件等。
通过对这些因素进行考量和计算,可以确定桥梁结构所承受的最大风荷载。
四、抗风设计措施为了确保钢筋混凝土桥梁结构能够在恶劣气象条件下安全运行,需要采取一系列的抗风设计措施。
1. 结构形式设计在钢筋混凝土桥梁的结构形式设计中,应尽可能选择流线型的断面形状,减小风的阻力。
同时,合理设置桥面、桥墩等结构,以增加桥梁结构的稳定性。
2. 材料选择与构造设计在桥梁的材料选择和构造设计中,要考虑到材料的抗风性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬索桥结构动力特性示例 19
20
21
阶次 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
频率(Hz) 0.0693 0.1419 0.2163 0.2690 0.3954 0.4106 0.4806 0.5020 0.5129 0.5614 0.6437 0.6620 0.7039 0.7045 0.7480 0.7634
相关的基本概念
桥梁抗风设计有很多地方不同于建筑结构,在此先将要涉及的 一些术语介绍如下:
基本风速:桥梁所在地区中的开阔平坦地面以上10m高度处 100年重现期的10min平均年最大风速
设计基准风速:在桥梁所在地区基本风速的基础上,考虑桥位 局部地表粗糙度影响的桥面高度处100年重现期的10min平均 年最大风速。
对数衰减律
1 ln x0
n xn
阻尼比与对数衰减率的关系
2 , 2 1 2
12
结构的频率和振型可以通过结构动力特性分析 获得,结构阻尼与材料、结构形式等多种因素有关,无 法通过计算取得。桥梁抗风设计中结构的阻尼比可以取 以下经验值:
桥梁种类 钢桥
结合梁桥 混凝土桥
阻尼比 阻尼比的统计范围
5
在风轴坐标系下,静力三分力表达为:
阻力 升力 力矩
FD
1 2
V
2 HLCD
FL
1 2
V
2 BLCL
M
1 2
V 2 B 2 LCM
式中:为空气密度,H为梁高,B为梁宽,L为长度,12 V 2 为气流的动压。CD、CL、CM分别为主梁的阻力系数、升力
系数、力矩系数。
6
2. 桥塔、主缆及拉索上平均风荷载
阵风系数:瞬时风速与10min平均风速的比值。计算阵风 荷载时应采用时距为1~3s的瞬时(阵风)风速,即由阵风 系数乘以设计基准风速求得。
静力扭转发散:在空气静力扭转力矩作用下,当风速超过 某一临界值时,悬吊桥梁主梁扭转变形的附加攻角所产生 的空气力矩增量超过了结构抵抗力矩的增量,使主梁出现 一种不稳定的扭转发散现象。
FD
1 2
V
2DLC D
式中:D为桥墩、塔柱宽度或拉索外径,其余参数意义
同上。计算桥塔和拉索承受的风荷载时,按风剖面变 化考虑不同高度的风速。由于桥墩、塔柱、拉索截面
较为规则其阻力系数CD可按《公路桥梁抗风设计指南》
取值或通模型实测
7
a
二、扭转发散
a V
Ka 弹性轴
扭转发散问题的几何位置与参数
令扭转弹簧刚度为Ka ,其含义为梁段发生单位转角所需的气动 力矩。桥面宽为B,则扭转发散的临界风速度为 :
VC
2Ka
B2CM' 0
式中:CM a 为绕扭转轴转动的气动力参数。
8
三、横向屈曲
对于单跨简支的悬索桥,可采用以下公式估算横向 屈曲临界风速
Vlb Klb ft B
Klb
3( B )(r )
Hb
1.88CD
4.54 CL' Bc CD H
m ;b B ; r 1 Im ; ft
足各种必要的空气动力学相似条件的三维弹性模型,在大
型边界层风洞中观测其在均匀流及紊流风场中的各种风致
振动现象,用于考察桥梁从施工期各阶段到成桥的抗风性
能。是研究桥梁风致振动最精确的试验方法。
3
风对桥梁的静力作用
一、作用在桥梁结构上的平均风荷载
1. 主梁静力三分力及静力三分力系数
FL
FV
a风
y MZ
o
FD
α
x
FH
体轴坐标系和风轴坐标系
4
在体轴坐标系下,静力三分力表达为:
阻力 升力 力矩
FH
1 2
V
2
HLC
H
FV
1 2
V
2
BLC
V
M
1 2
V
2 B 2 LC M
式中:为空气密度,H为梁高,B为梁宽,L为长度,12 V 2 为气流的动压。CH、CV、CM分别为主梁的阻力系数、升
力系数、力矩系数,它们由节段模型试验提供。
静力横向屈曲:作用于悬吊桥梁主梁上的横向静风载超过 主梁侧向屈曲的临界荷载时出现的一种静力失稳现象。
2
静力三分试验:采用主梁或桥塔的刚性节段模型,在风洞 中测定平均风绕流的静作用力的三个分量,即阻力、升力 和扭转力矩。无量纲的三分力系数和攻角的关系曲线反映 出断面的基本气动性能,是分析桥梁各种风致振动和静力 稳定的重要参数。
振型特点 纵漂 L-S-1 V-S-1 V-A-1 V-S-2 L-A-1 V-A-2
主塔横摆 主塔横摆
T-S-1 V-S-3 V-A-3 V-S-4 L-S-2 边跨竖向 T-A-1
22
斜拉桥结构动力特性计算示例 23
设计风荷载:进行静力抗风设计所采用的风荷载。跨度较小、 刚性较大的桥梁可只考虑阵风荷载作用下的强度问题,较大跨 度的柔性桥梁应考虑风致振动引起的动力风荷载作用。
1
风的攻角:由于地形的影响,近地风的方向可能对水平面 产生一定的倾斜度,称为风的攻角。具有攻角的风可能对 桥梁的风致振动,如颤振,产生不利的影响。一般认为高 风速时的平均攻角约在±3°之间。
0.005
0.5%~1.0%
0.01
1.0%~1.5%
0.02
2.0%~3.0%
13
二、采用有限元方法计算桥梁结构动力特性
14
15
空间杆单元
16
空间梁单元
17
进行结构动力特性分析常用的商业有限元软件
1. ANSYS 2. ALGOR 3. SAP2000 4. ADINA 5. NASTRAN 6. ABAQUS 7. DIANA
节段模型试验:将主梁的代表性做成刚性模型,用弹簧悬 挂在支架上形成一个有竖向平动、转动(及侧向)自由度 的振动模型,在风洞中测定风的动力作用。满足相似条件 的节段模型试验可直接测定二维颤振的临界风速,也可识 别出用气动导数表示的非定常动力,是桥梁最重要的风洞 试验之一。
全桥气动弹性模型试验:将全桥按一定几何缩尺制成并满
b 2
2b b m
fb
9
四、桥梁空气静力稳定性的非线性分析
考虑结构的几何非线性及静力三分力随攻角的变化, 采用非线性有限元方法进行分析。该方法可以将横向屈 曲和静力扭转发散一并考虑,是研究桥梁空气静力稳定 性的较为完善的方法。
10
桥梁动力特性及其计算分析
11
一、 频率、振型及结构阻尼
频率——单位时间内系统简谐振动的次数,常记为f,单位为Hz(次/ 秒)。简谐振动的频率等于周期的倒数。圆频率w2f,单位为(周/ 秒)。 振型——结构以某一频率做箭谐振动时,结构各点相对位移的关系。 阻尼——结构在做有阻尼自由振动时振幅衰减的程度