方块电阻

方块电阻
方块电阻

方块电阻

摘要:本篇是丫丫自“半导体基础知识”篇之后,再次回归基础知识的学习记录。蒸发铝膜、导电漆膜、印制电路板铝箔膜等薄膜状导电材料,衡量它们厚度的最好方法就是测试它们的方阻。本篇学习记录主要涉及方阻的概念、意义、测量方法等。

一、基本概念

方阻就是方块电阻,又称面电阻,指一个正方形的薄膜导电材料边到边“之”间的电阻,如图一所示,即B边到C边的电阻值。方块电阻有一个特性,即任意大小的正方形边到边的电阻都是一样的,不管边长是1米还是0.1米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关。

方块电阻的计算公式:Rs=ρ/t (其中ρ为块材的电阻率,t为块材厚度)

二、利用方阻监控扩散

方块电阻是一个二级概念,真正的核心是扩散深度。一般扩散深度会影响电性能参数,因为扩散深度无法测量,所以只能通过测电阻来大概反映扩散深度和扩散浓度。

他是一个深度和浓度,以及体材料多重作用的结果,至于其和电性能参数各值之间的线性关系,目前没有什么特定方程式,都是通过经验来控制在一定的方位,做到30-50的都有。方阻一般只是在扩散后进行监控,监控方阻就是为了监控扩散的稳定性。测试方阻跟最后的烧结工序的影响也是很重要的,因为结的深度也会影响你最后烧结的深度,否则有可能出现Rs的异常。所以方阻也是烧结条件的重要指标。

一般结深则电阻小,掺杂浓度高。电阻小了,掺杂量就高了,表面死层就会多,这样会牺牲很多电流;电阻大了,电流的收集就会比较困难;方阻要做高,是需要其他相关条件保障的,假如其他条件不满足,效率反而会降低。一般扩散温度越高,时间越长,流量越大,方阻就越小,结就越深。

除了扩散之外,生产中的其它工序对方阻也会产生影响。一般如果是稳定生产,方阻也是稳定的。后道生产中,假如出现大量问题片,看症状跟方阻有可能相关的,就可以去反查工序中是否出现了问题,即使电池也是可以测试的。但是这个只能相对参考,一般公司都会规定方阻多少到多少之间的片子可以进入流程,另外的就要返工,但是因为是抽检,谁又能保障进入流程的都是好的呢,甚至员工有可能会偷懒,好的片子坏的片子都流入流程。

三、方阻的测量

1、铜棒测方阻

可不可以用万用表电阻档直接测试图一所示的材料呢?不可以的,因万用表的表笔只能测试点到点之间的电阻,而这个点到点之间的电阻不表示任何意义。如要测试方阻,首先我们需要在A边和B边各压上一个电阻比导电膜电阻小得多的圆铜棒,而且这个圆铜棒光洁度要高,以便和导电膜接触良好。

这样我们就可以通过用万用表测试两铜棒之间的电阻来测出导电薄膜材料的方阻。如果方阻值比较小,如在几个欧姆以下,因为存在接触电阻以及万用表本身性能等因素,用万用表测试就会存在读数不稳和测不准的情况。这时就需要用专门的用四端测试的低电阻测试仪器,如毫欧计、微欧仪等。测试方法如下:用四根光洁的圆铜棒压在导电薄膜上,如图二所示。

四根铜棒用A、B、C、D表示,它们上面焊有导线接到毫欧计上,我们使BC之间的距离L 等于导电薄膜的宽度W,至于AB、CD之间的距离没有要求,一般在10--20mm就可以了,接通毫欧计以后,毫欧计显示的阻值就是材料的方阻值。

这种测试方法的优点是:

(1)用这种方法毫欧计可以测试到几百毫欧,几十毫欧,甚至更小的方阻值。

(2)由于采用四端测试,铜棒和导电膜之间的接触电阻,铜棒到仪器的引线电阻,即使比被测电阻大也不会影响测试精度。

(3)测试精度高。由于毫欧计等仪器的精度很高,方阻的测试精度主要由膜宽W和导电棒BC之间的距离L的机械精度决定,由于尺寸比较大,这个机械精度可以做得比较高。在实际操作时,为了提高测试精度和为了测试长条状材料,W和L不一定相等,可以使L比W大很多,此时方阻Rs=Rx*W/L,Rx为毫欧计读数。

2、四探针法测方阻

铜棒测方阻的方法虽然精度比较高,但比较麻烦,尤其在导电薄膜材料比较大,形状不整齐时,很难测试,这时就需要用专用的四探针探头来测试材料的方阻,如图三所示。

探头由四根探针阻成,要求四根探针头部的距离相等。四根探针由四根引联接到方阻测试仪上,当探头压在导电薄膜材料上面时,方阻计就能立即显示出材料的方阻值,具体原理是外端的两根探针产生电流场,内端上两根探针测试电流场在这两个探点上形成的电势。因为方阻越大,产生的电势也越大,因此就可以测出材料的方阻值。需要提出的是虽然都是四端测试,但原理上与图二所示用铜棒测方阻的方法不同。因电流场中仅少部分电流在BC点上产生电压(电势)。所示灵敏度要低得多,比值为1:4.53。

影响探头法测试方阻精度的因素:

(1)要求探头边缘到材料边缘的距离大大于探针间距,一般要求10倍以上。

(2)要求探针头之间的距离相等,否则就要产生等比例测试误差。

(3)理论上讲探针头与导电薄膜接触的点越小越好。但实际应用时,因针状电极容易破坏被测试的导电薄膜材料,所以一般采用圆形探针头。

3、实际测量中需要注意的问题

(1)如果被测导电薄膜材料表面上不干净,存在油污或材料暴露在空气中时间过长,形成氧化层,会影响测试稳定性和测试精度。在测试中需要引起注意。

(2)如探头的探针存在油污等也会引起测试不稳,此时可以把探头在干净的白纸上滑动几下擦一擦可以了。

(3)如果材料是蒸发铝膜等,蒸发的厚度又太薄的话,形成的铝膜不能均匀的连成一片,而是形成点状分布,此时方块电阻值会大大增加,与通过称重法计算的厚度和方阻值不一样,因此,此时就要考虑到加入修正系数。

(4)上面介绍的测量方法适用于批量测试,假如是做研究,还需要遮光,最好用施美乐博的无接触扫描型测试,可精确反应面内各区域的方阻情况。

电荷、电流、电压、电阻概念

电荷、电流、电压、电阻概念复习 一、电荷 1、与毛皮摩擦过的橡胶棒所带的电荷是 ,与丝绸摩擦过的玻璃棒带的电荷是 。电荷量指的是 ,简称 。电荷量用 来表示,单位是 ,记作 所带电量总是等于某一个最小电量的整数倍,这个最小电量叫做 ,也称 ,用 表示,在计算中可取值为 。它等于一个 所带电量的多少,也等于一个 所带电量的多少 。 2、有些化纤布料做成的衣服穿在身上很容易脏,着主要是因为化纤布料容易发生 现象而吸引细小的灰尘所造成的。 3、我们经常在加油站看到一条醒目的警示:“严禁用塑料桶运汽油”。这是因为在运输过程中汽油会不断与筒壁摩擦,使塑料桶带________,造成火灾隐患。 4、用与橡胶棒摩擦过的毛皮靠近与丝绸摩擦过的玻璃棒,则毛皮与玻璃棒( ) A.相互吸引 B.相互排斥 C.无相互作用 D.无法判断 5、有A 、B 两个带电体,若A 与B 相互排斥,而A 又与带正电的C 相互吸引,那么A 一定带________电,B 与C 一定能相互________。 6、带电小球靠近带正电的物体附近被排斥,则小球( ) 变形:轻质小球靠近带正电的物体附近被吸引,则轻质小球( ) A.一定带正电 B.一定带负电 C.可能带负电 D.一定不带电 7、如果元电荷的电荷量为C e 19106.1-?=,那么5个电子所带的电量是 二、电路 1.将电源、导线、开关、用电器等元器件连接在一起就组成了_________。基本电路的连接方式有_________联和_________联。 2.在电路中提供电能的装置叫_________;消耗电能的元器件是_________;导线的作用是_________;开关的作用是_________。 3、在下图所示的电路图中,正确的是( ). 4、在下图所示的电路中,两灯串联的是哪几个? 5、关于串联电路,下列说法中正确的是: ( ) A. 串联电路中,只要有一处断开,就处处无电流。 B. 串联电路中,只要有一盏灯被短路,其余各灯就都不亮。 C. 马路上的电灯,一起亮,一起灭,可知它们是串联的。 D. 串联电路中的各用电器之间是互不影响的。

薄膜电阻和厚膜电阻的区别

薄膜电阻和厚膜电阻的区别 (捷比信)薄膜电阻器是用类真空蒸发、磁控溅射的方法将一定电阻率材料蒸镀于绝缘材料表面制成一种电阻器。是现在主流的贴片精密电阻器。 捷比信薄膜电阻和厚膜电阻的最大区别是: 一、膜厚的区别,厚膜电路的膜厚一般大于10μm,薄膜的膜厚小于10μm,大多处于小于1μm; 二、制造工艺的区别,厚膜电路一般采用丝网印刷工艺,捷比信薄膜电阻采用的是真空蒸发、磁控溅射等工艺方法。 厚膜电阻和捷比信薄膜电阻在材料和工艺上的区别直接导致了两种电阻在性能上的差异。厚膜电阻一般精度较差,10%,5%,1%是常见精度,而捷比信薄膜电阻则可以做到0.01%万分之一精度,0.1%千分之一精度等。同时厚膜电阻的温度系数上很难控制,一般较大,同样的,捷比信薄膜电阻则可以做到非常低的温度系数,如5PPM/℃,10 PPM/℃这样电阻阻值随温度变化非常小,阻值稳定可靠。所以捷比信薄膜电阻常用于各类仪器仪表,医疗器械,电源,电力设备,电子数码产品等。 以下是其他相关电阻器:

1.碳膜电阻器 将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低。性能稳定。阻值范围宽。温度系数和电压系数低,是目前应用最广泛的电阻器。 2.金属膜电阻器。 用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数校在仪器仪表及通讯设备中大量采用。 3.金属氧化膜电阻器 在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。 大品牌有保证---捷比信精密电阻!欢迎来电来函索取资料,样品及查货等。 业德薄膜电阻器是用类真空蒸发、磁控溅射的方法将一定电阻率材料蒸镀于绝缘材料表面制成一种电阻器。是现在主流的贴片精密电阻器。 业德薄膜电阻和厚膜电阻的最大区别是: 一、膜厚的区别,厚膜电路的膜厚一般大于10μm,薄膜的膜厚小于10μm,大多处于小于1μm; 二、制造工艺的区别,厚膜电路一般采用丝网印刷工艺,业德薄膜电阻采用的是真空蒸发、磁控溅射等工艺方法。 厚膜电阻和业德薄膜电阻在材料和工艺上的区别直接导致了两种电阻在性能上的差异。厚膜电阻一般精度较差,10%,5%,1%是常见精度,而薄膜电阻则可以做到0.01%万分之一精度,0.1%千分之一精度等。同时厚膜电阻的温度系数上很难控制,一般较大,同样的,薄膜电阻则可以做到非常低的温度系数,如 5PPM/℃,10 PPM/℃这样电阻阻值随温度变化非常小,阻值稳定可靠。所以薄膜电阻常用于各类仪器仪表,医疗器械,电源,电力设备,电子数码产品等。 以下是其他相关电阻器: 1.碳膜电阻器

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

上拉电阻与下拉电阻的概念与用法

上拉电阻 定义: 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。 上拉: 1TTL驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平值 2 OC门必须加上拉,提高电平值 3 加大输出的驱动能力(单片机较常用) 4 CMOS芯片中(特别是门的芯片),为防静电干扰,不用的引脚也不悬空,一般上拉,降低阻抗,提供泄荷通路 5 提高输出电平,提高芯片输入信号的噪声容限,增强抗干扰 6 提高总线抗电磁能力,空脚易受电磁干扰 7 长线传输中加上拉,是阻抗匹配抑制反射干扰 原则: 1 从节约功耗和芯片的电流、能力应是电阻尽量大,R大,I小啊 2 从确保驱动能力,应当电阻足够小,R小,I大啊 3 对高速电路,加上拉可能边沿平缓(上升时间延长) 建议可以在1K---10K之间选(可根据实际情况) 信号输入端上拉电阻的工作原理 (从电路原理的角度分析输入端口电压为何会被提高) 悬赏分:20 - 提问时间2008-11-7 02:57 假如信号输入端是外界电路送来的低电平,那么输入端的电压不是应该被锁定在低电平吗,为什么加了个上拉电阻和电源,输入端的电压就被提高了呢?这个问题一直很困惑,希望能耐心解答。 问题补充: 我想问的是上拉电阻如何实现电压上拉的,而不是问的上拉电阻的使用目的和必要性,我很清楚上拉电阻的作用和目的。 提问者:michael6810 - 二级 其实你不清楚上拉电阻的作用和目的。否则你不会困惑。 你的困惑,yao311yan805 已经说出来了。只是你没有细心看,或者没有想到你该专著的重点。

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

金属电阻、电阻率等基本概念

第二节 金属电阻 电阻率等基本概念 一、学习目标 (1)了解电阻的大小是电线电缆产品测试的一项基本指标; (2)了解导体发热与电阻有关,掌握公式 Rt I Q 2=; (3)掌握电阻率ρ是表征导体导电性能的重要参数,并会熟练使用=R S L ρ计算导体的电阻; (4)掌握温度对导体电阻的影响关系) (12112t t R R R --=α,并会熟练运用。 二、重点和难点 (1)教学重点:对电阻率ρ的理解和熟练使用公式=R S L ρ、)(12112t t R R R --=α求解问题。 (2)教学难点:对电阻率ρ的理解和熟练使用公式=R S L ρ、) (12112t t R R R --=α求解问题。 三、知识细化 1、导体发热与电阻有关 情境:我们应该有这样的感受:家里的用电器在打开使用一段时间之后,它的导线上有发热的现象。这是为什么呢? 2、表征导体导电性能好坏的参数 思考一:我们以前学过哪些计算电阻的公式?影响电阻大小的因素究竟是什么呢?

①I U R =(欧姆定律): 提示:只适用于确定电阻的求解。我们可以利用加在其两端的电压U 和通过的电流I 来计算该电阻阻值的大小,但U 、I 不能影响该电阻阻值的大小,因为一个已经做好的电阻其阻值大小是确定的。 ②公式 =R S L ρ(电阻定律) 式中:ρ为导体的电阻率 单位 m ?Ω L 为导体的长度 单位 m S 为导体的横截面积 单位 2m 该公式告诉我们:导体的电阻不仅与其尺寸有关,还与导体的材料有关。 因此,导体的导电性能好坏直接取决于导体的材料。请看课本第31页(B 页)表1-1. 从表中我们可以得出: 导体: 半导体: 绝缘体: 思考二:日常生活中,作为导线常用的材料是什么?结合表1-1说说为什么? 结论:反映导体导电性能好坏的不是电阻R ,而是电阻率ρ。电阻率越大,导电性能越差。因此,电阻率ρ是检测技术上用来判定导体的合格与否的一个重要参数。 对于我们检测而言,我们要判断原材料是否合格有两个方法: 一是运用化学成分分析法。分析材料的纯度,如铜杆,只要纯度达到99.99%

九年级物理《电阻的定义》知识点归纳

九年级物理《电阻的定义》知识点归纳 九年级物理《电阻的定义》知识点归纳 知识点总结 1、电阻的概念;每个导体都具有阻碍电流的性质,这种性质叫做电阻。符号为R。 2、电阻的单位:单位欧姆Ω,常见的的还有Ω、Ω。106Ω= 103Ω= 1 Ω。 3、决定电阻大小的因素:导体的材料、长度、横截面积。 关系为: 4、滑动变阻器的构造及其使用: ①接线柱②滑片③电阻丝④金属杆⑤瓷筒 、滑动变阻器的接法 为了使变阻器能改变电路中的电流,必须把电阻丝介入电路中,无论采用什么接法,都是“一上一下”。 6、读电阻箱的示数: 各旋钮对应的指示点的示数乘以面板上标记的倍数,他们之和就是电阻箱接入电路的电阻。 常见考法 主要以选择题、填空题的形式考查电阻单位间的换算,电阻大小的影

响因素,滑动变阻器的使用方法,电阻箱的读书方法。 误区提醒 1、电阻的大小决定因素是导体的材料; 2、滑动变阻器在电路中的作用:分压或分流; 3、电阻箱可以间断的变化电阻值,滑动变阻器是连续变化。 【典型例题】 例析: 甲、乙两条用同种材料制成的金属线,甲的长度是乙的3倍,甲、乙横截面积之比是2∶1。若乙电阻是30Ω,那么甲电阻是多少? 初中物理电阻的定义知识点(二) 一、电压 (一)电压的作用 1电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。电是提供电压的装置。 2电路中获得持续电流的条:①电路中有电(或电路两端有电压);②电路是连通的。 注:说电压时,要说“xxx”两端的电压,说电流时,要说通过“xxx”的电流。 3在理解电流、电压的概念时,通过观察水流、水压的模拟实验帮助我们认识问题,这里使用了科学研究方法“类比法”

NTC热敏电阻原理及应用

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有 接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、 温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的 检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的 应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度 25 ℃时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

2021年补1:电阻、电导、电抗、电纳基本概念

补1:电阻、电导、电抗、电纳的基 本概念 欧阳光明(2021.03.07) 一、电阻的基本概念: 电阻是构成电路的基本元件,现分别从它的物理特性和电特性两种不同角度进行说明,并且对电路中的电阻进行简单分类。 1.电阻的物理特性: 导体两端电压固定时,导体中的电流与导体的粗细(截面积s ),导体的长短(长度l ),导体的材料(材质)有关,表示导体这一性质的物理量为导体的电阻,其数学表达为:s l R ρ = 式中R --导体电阻,其单位为欧姆(Ω); 欧姆的意义表述为:导体两端的电压为V 1时,导体中的电流 为A 1,此导体的电阻即为Ω1; ρ--由导体的材料决定, 称为电阻率,其单位为欧姆米(m ?Ω);电阻率的倒数γ称为电导率,其单位为西门子每米(m S /)。 []1 另外,压力、光和热等一些物理因素对导体的电阻会有影响,其引起的效应得到广泛的应用。例如:应变片、热敏电阻、光敏电阻。[]2 此外,导体电阻与温度也有密切关系,通过实验我们可得出 如下的普适公式:[]1 式中R --导体在C t 0时的电阻;0R --导体在C 00时的电阻;α--电阻温度系数,由材料决定。

2.电阻的电特性: 研究导电媒质中恒定电流场的一个重要问题是计算电极间的电 阻(或电导)。由欧姆定律知导体两端电压和通过导体的电流成正比,其比值称为电阻: 而这一公式也为我们计算各种导体的电阻提供了科学的方法。比如,计算单位长度的同轴电缆的绝缘电阻,在此假设电流分布对称:[]3 内外导体之间的电位差为: 式中I --单位长度漏电流;δ--电流密度;E --电场强度。 如果我们引入热功当量还可以用焦耳定律来定义电阻:它等于热耗功率除以电流的二次方即2I P R =。如果把从焦耳热中的热耗散P 推广,使其包括从电功率经不可逆转而产生的其它形式的功率就可得到各种相应的广义等效电阻。例如,导体通过交流电时,由于集肤效应造成交流电产生的热损耗ac P ,故导体的有效电阻2I P R ac ac =;在 变压器电路的模型中,用铁损耗电阻o R 反映铁芯中的磁滞损耗hf P 和涡流损耗ed P 即 2I P P R ed hf o +=[]2 同样,在输电线路中用电阻R 来反映电力线路的发热效应,用电倒G 来反映电晕损耗和泄漏损耗。 3.电阻的分类: 遵从欧姆定律的电阻叫线性电阻;不遵从欧姆定律的电阻其伏安特性是一条曲线,这种电阻叫非线性电阻[]2。其中非线性电阻又有电流控制型电阻和电压控制型电阻。

厚膜电阻硫化

厚膜电阻硫化 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空气中的硫---电阻杀手 有一批现场仪表在某化工厂使用一年后,仪表纷纷出现故障。经分析发现仪表中使用的厚膜贴片电阻阻值变大了,甚至变成开路了。把失效的电阻放到显微镜下观察,可以发现电阻电极边缘出现了黑色结晶物质,进一步分析成分发现,黑色物质是硫化银晶体。原来电阻被来自空气中的硫给腐蚀了。 (电极边缘的硫化银晶体光颉供图) 那么这个过程是怎样发生的呢。通常厚膜电阻的结如下:

(图片来源:风华高科) 其中面电极是连接二氧化钌电阻体和焊接端头用的内部电极。这种电极一般是银钯合金。由于电阻表面的二次保护层和焊接端头不是严丝合缝的。导致面电极部分暴露在空气中。因此当空气中含有大量硫化气体时,银被硫化物反应成硫化银。由于硫化银不导电,所以随着电阻被硫化,电阻值逐渐增大,直至最终成为开路。 实际上,并非只有用在化工厂的电阻会被硫化,在矿业、火力发电厂中的电阻同样存在被硫化的危险,甚至在某些场合仅仅因为在封闭环境中使用了含硫的橡胶、油也会导致在高温下释放的硫导致电阻硫化。因此汽车电子中也逐渐开始重视电阻的硫化。 为了防止电阻的硫化人们开始进行抗硫化电阻的研制。一般说来,薄膜电阻是由镍铬合金或氮化钽制成,这种薄膜电阻中不含银,所以天生就具有良好的抗硫化能力。所以一般而言,抗硫化电阻常常指的是厚膜电阻。厚膜电阻的抗硫化设计一般采用调整面电极成分和调整厚膜电阻结构的方法进行。

面电极是银钯合金,提高钯的含量可以增强抗硫化性能。但是增加钯后银钯合金的熔点会升高,会对工艺产生一定影响。所以目前主要生产抗硫化电阻的厂家都在调整电阻结构上下足了功夫。 防止面电极直接暴露在空气中是目前通过调整电阻结构来实现抗硫化设计的主要方法。这种方法是在面电极上再使用一种不易被腐蚀的材料做成一个保护性中间层。中间层填补了二次保护膜和焊接端头之间的空隙,以避免面电极直接暴露。最常见的一种结构是采用金质材料做中间层。如下为AAC公司出品的抗硫化电阻结构。 如图所示,在内部的面电极(图中为Inner Electrode)外部使用了金质导电层作为面电极的保护层。由于金属于贵金属所以这种抗硫化电阻的成本比较高。 为了降低成本,电阻厂商在这层中间保护层成分上开始想办法,比如而Rohm公司的抗硫化电阻是用特殊的树脂材料代替金,另外一些公司则根据自己技术、工艺的特点使用镍铬作为金的替代品。 而风华高科在结构上不仅采用了中间层保护面电极,而且还改进工艺,将焊接端头包裹住二次保护膜的边缘,以防止内部电极的暴露。目前抗硫化电阻价格较普通厚膜电阻要昂贵,一般抗硫化电阻用于前文所述的化工、矿业、火力发电、汽车电子外,还用于某些对可靠性要求严格的高端应用中,如电信等行业。

铅酸钡厚膜电阻

铅酸钡厚膜电阻 前言:不同稀土元素或过渡元素,而用半导体化金属BaPbO3和碱性玻璃粉料制作的厚膜电 阻成本很低。利用指数等式估算玻璃含量与电阻率间的关系。提出三种导电隧道组成的导电 模型来解释掺杂曲线和电阻温度系数特性。原材料中P含量较高时可从根本上避免由字湿度 而引起的电阻器性能的降低。银是TCR调节剂,能够提高BaP6O3电阻的稳定性。 关键词:厚膜电阻,导电隧道,掺杂曲线-简介 大部分厚膜电阻浆料由下列材料组成:钯、Pa、钌Ru、铑Rn、铱Ir等元素的化合物或者氧 化物。这些系列的电阻有很好的性能,但这些元素如Pd、Ru、Rn、Ir不仅价格昂贵而且也很 稀少,因此人们把注意力转回了其他非过渡性金属化合物上,如BaP6O3、BaP6O3系钙钛矿 结构,其正交晶格为a=6.024A、b=6.065A、C=8.506A,尽管BaP6O3是标准的原子价化合物, 但他仍有金属的某些特性,电阻率低且是正温度系数。BaP6O3和RuO2常作为半导化金属,BaP6O3在TC=0.38K时具有低温超导性,加入适量的铋,Tc可升高至13k,除此之外,它还 被作为陶瓷电极、导体浆料、防腐颜料及烧结体电阻等。 本文将利用陶瓷合金的导电原理来制作铅酸钡陶瓷电阻器和厚膜电阻。如果铅酸钡作为厚膜 电阻的功能相,将测量和研究他们的特性。加入少量Ag2O来调整其电阻温度系数,并提出 了相应的导电模型来解释掺杂曲线和TCR特性。 二实验 A:BaPbO3粉末预制 将高纯度BaCO3,PbO(99%纯度)粉料以合适的比例混和,湿磨5h,在880℃氧气氛中干燥和 烧结4h,然后粉碎并在220Kg/㎝2压力下压制成小圆片,这些成型片子置于氧化锆托盘上,在空气中940℃烧结7h,然后把这些烧结体(BaP6O3陶瓷)粉碎、研末,过220钼丝网筛,获得BaP6O3粉末。 B:BaP6O3陶瓷电阻的制作 自制碱玻璃(71%SiO2-18%Na2O-8%CaO-3%Al2O3)粉,同BaP6O3粉料以合适比例混合,玻 璃料含量从15%到5%WT,用丙酮作溶剂湿磨5h,然后干燥并在400kg/㎝2条件下压制成条(0.5*0.5*2㎝3),把这些成型物置于氧化锆托盘上,空气气氛中烧结,峰值温度范围在 760-810℃约10分钟,传统的银导体作为烧结体陶瓷电阻的电。 C:BaP6O3厚膜电阻的制作 适当量的BaP6O3粉末和碱玻璃料不加或者加2%wtAg2O混合后作为电阻浆料的固体相,这 些粉料然后同适量的有机载体混合,如乙基纤维素、丁基熔汗剂,萜品醇等,制成厚膜浆料。用200目的丝网印制BaP6O3厚膜电阻,基片是清洗后预烧过并烧好Ag-Pd电极的氧化铝基片,干燥后,在空气气氛中烧结,烧结条件和前面烧结体电阻的条件一样。 对样品用数字万用表测量了电阻率和表面电阻率,在温度箱中测得高温TCR(25-125℃)和 低温TCR(25-55℃),在40℃下将样品置于相对湿度为95%的湿度箱中100h已检验其湿度 稳定性,并测得了阻值漂移5时间的关系曲线。 三结果讨论 烧结体BaP6O3陶瓷是黑色的,在室温下其电阻率约是3mΩ/㎝,电阻温度系数为 1350PPm/℃。

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

电阻的定义,分类和参数

电阻 1. 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中

有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。 电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R 常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。但不管电阻是什么种类,它都有一个基本的表示字母“R”。 电阻的单位用欧姆(Ω)表示。它包括?Ω(欧姆),KΩ(千欧),MΩ(兆欧)。其换算关系为: 1MΩ=1000KΩ ,1KΩ=1000Ω。 电阻的阻值标法通常有色环法,数字法。色环法在一般的的电阻上比较常见。由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即: 101——表示100Ω的电阻;102——表示1KΩ的电阻;103——表示10KΩ的电 阻;104——表示100KΩ的电阻;105——表示1MΩ的电阻;106——表示10MΩ的电阻。 如果一个电阻上标为223,则这个电阻为22KΩ。电阻在手机机板上一般的外观示意图如图5所示,其两端为银白色,中间大部分为黑色。 通常来说,使用万用表可以很容易判断出电阻的好坏:将万用表调节在电阻挡的合适挡位,并将万用表的两个表笔放在电阻的两端,就可以从万用表上读出电阻的阻值。应注意的是,测试电阻

电阻器的参数:电阻率的定义

电阻器的参数:电阻率的定义 电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方 毫米的导线的电阻,叫做这种材料的电阻率。 电阻率的单位 国际单位制中,电阻率的单位是欧姆·米(Ω·m或ohmm),常用单位是欧姆·平方毫米/米。 电阻率的计算公式 电阻率的计算公式为:ρ=RS/L。p为电阻率,s为横截面积,R为电阻值,L为导线的长度。 电阻率的说明 ①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。 ②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V ,1OO W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。 ③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用。 4 电阻率的使用,电阻率除以金属膜的厚度得到所谓方块电阻,工程应用中常用衡量电阻的

量一个是电阻率一个是方块电阻;电阻大小为方块电阻乘以金属块的长度和宽度之比。 金属导体的电阻率(表) 几种金属导体在20℃时的电阻率 材料电阻率(Ω m) (1)银 1.6 × 10-8 (5)铂 1.0 × 10-7 (9)康铜 5.0 × 10-7 (2)铜 1.7 × 10-8 (6) 铁 1.0 × 10-7 (10)镍铬合金 1.0 × 10-6 (3)铝 2.9 × 10-8 (7)汞 9.6 × 10-7 (11)铁铬铝合金1.4 × 10-6 (4)钨 5.3 × 10-8 (8)锰铜 4.4 × 10-7 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘体的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做半导体。 总结:常态下(由表可知)导电性能最好的依次是银、铜、铝,这三种材料是最常用的,常被用来作为导线等,其中铜用的最为广,几乎现在的导线都是铜的(精密仪器,特殊场合除外)铝线由于化学性质不稳定容易氧化已被淘汰。银导电性能最好但由于成本高很少被采用,只有在高要求场合才被使用,如精密仪器、高频震荡器、航天等。顺便说下金,在某些场合仪器上触点也有用金的,那是因为金的化学性质稳定故采用,并不是因为其电阻率小所至。另外一些金属的电阻率 金属温度(0℃)ραo , 100 锌 20 ×10-3 ×10-3 5.9 4.2 铝(软) 20 2.75 4.2

线圈电阻计算方法

计算电阻公式为: S L R *ρ= 其中,ρ为铜的电阻率,值为:mm *24.17Ωμ(m *01724.0Ωμ),L 为导线长度,S 为导线的横截面积。 1. 导线长度的求法:方法有两种。 第一种,估算: K D D n L ++≈2*21π 式中 n 为圈数,D 1、D 2分别为内外径,K 为不足一圈的长度 其中,误差有:2 21D D E +≤π 由我们的线圈n=32,D 1=4.8mm ,D 2=24.4mm ,K=0。 算得L=1467mm ,E=45.8,则L 应该大于1421.1mm ,而小于1512.8mm 第二种,精确计算: 设螺线的方程为θπ *2d r =,式中,d 代表相邻螺线间的距离,在本文中,指代间距(d )和一半线宽(b ,8mil )之和(4mil+4mil=8mil=0.203mm ) 则[] d D d D K In d L M M N N N M π?π?θθθθπ??==+++++=,)1(1422 式中,D N 是外径,D M 是开始时的内径。d 也可表示为(D N -D M )/2n 带入算得:[]0)1(1122.0250 4922+++++=θθθθIn L ,

L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 2.计算铜线截面积 在PCB工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz(盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz或者更厚的敷铜,则厚度倍增。计算时假设是1oz敷铜,设计时导线宽度为8mil(0.2032mm)所以横截面积为 S=0.2032*0.035=0.007112mm2 μ,大概3.55欧姆 由此算得:R=17.24*1466.6/0.007112=Ω 那么两个线圈串联电阻约为2*3.55=7.1欧姆

电阻说课稿

电阻说课稿 一、教材分析 电阻是义务教育课程标准实验教科书八年级下册第六章内容,电阻是重要的电学概念之一,它是导体本身的一种性质,学习了电阻之后,可以探究电流、电压、电阻三者之间的关系,进而探究欧姆定律,因此电阻的学习在教材中占有重要的承上启下的作用。本课十分重视探究方法教育,重视科学探究的过程。让学生在认知过程中体验实验方法、学习方法,了解什么是电阻和影响电阻大小的因素。教学内容的编排是根据提出的问题,设计实验方案,通过实验和对实验现象分析、处理得到相应的结论。为了开阔学生的视野,以科学世界栏目展示了生活中应用广泛的半导体和超导体,体现了新课标从生活走向物理,从物理走向生活的教学理念。它既符合学生认识规律,又保持了知识的结构性、系统性。 为尽可能体现出“探究的意义在于发现和提出问题、猜想与假设、制定计划与设计实验、进行实验与收集证据、分析与论证、应用与创新”等新课程理念,结合实际条件和情况,对教材做如下处理: 第一环节:打开探究和学习之门。 第二环节:学习、探究与发现。 第三环节:实践与创新。 第四环节:多维度建构课堂教学:拓展与延伸。 二、教学目标 传统意义上教学目标确定比较粗糙,可操作性不强,而且侧重对知识的传授,新课标要求:教学目标具体化,可观察性,指向性和可评价性,强调发展性目标(情感体验,能力培养,智力发展)和过程性目标(经历,体验,探索)基于上述指导思想,本节课的教学目标为: 1)知识与技能:知道电阻的概念,单位及其换算,以及电阻器在电路中的符号,理解决定电阻大小的因素。 2)过程与方法:通过实验探究经历从猜想到制定实验方案,接着进行实验的探究过程,学会用控制变量法研究物理问题,培养学生解决物理问题的思维能力。 3)情感态度与价值观:培养学生善于观察生活的良好习惯,注意用电安全 三、重点、难点分析 新课标中要求通过让学生参与科学探究活动,初步认识科学研究方法的重要性,学习从物理现象和实验中归纳简单的科学规律。据此我如下:把如何探究决定电阻大小的三个因素确定本节的重点 电阻是导体的重要电学性质,是后续学习的必要基础,电阻的概念是比较抽象的,所以理解电阻的概念确定本节的难点 四、学情分析 学生已学过部分电学知识,能够了生活中一些常见的现象,也掌握了一些研究物理的方法,并已基本领悟了“科学探究”的各主要环节,同时也具备一定的实验设计能力及操作能力,但科学探究的真正意义是什么?学生还不甚明了,有必要加强探究学习的指导。利用探究实验,建立学生的思维模型,培养学生的发散性思维和创造性思维。通过教学中的师生互动,学生活动的参与,提高学生动手能力。逐步培养学生主动观察自然,寻找问题,掌握知识,并运用所学知识解决实际问题,培养学生应用知识进行创新实践的能力。 五、教学方法 本节课应该重视探究方法教育,重视让学生参与科学探究的全过程。让学生在认知过程中体验实验方法、学习方法,了解什么是电阻和影响电阻大小的因素。教学内容根据提出的问题,设计实验方案,通过实验和对实验现象分析、处理得到相应的结论。因此我确定本节课的教法学法如下: 采用课前预习、课内教师引导、启发,学生思考、观察、动手操作,师生共同分析讨论,得出结论的学习经历,落实教学目标。 在讨论与评估,进行交流总结知识过程中必须采用以强带弱、以点带面的教学方法,不仅要使学生学到必需的知识和技能,而且要能使基础较好的学生在帮助同伴的过程中深化对知识的理解,提高分析和解决问题的能力以及语言表达能力。

相关文档
最新文档