高二数学复数的概念(201908)
高考复数概念知识点

高考复数概念知识点复数是数学中的一个重要概念,也是高中数学考试中常见的题型之一。
掌握好复数的概念和相关知识点,对于考试取得好成绩是至关重要的。
本文将介绍高考复数相关的概念和知识点,希望能够帮助大家更好地理解和运用。
一、复数的定义与表示1. 复数的基本定义:在实数范围内,无法满足平方后为负的数,例如-1,所以引入了虚数单位i(i^2 = -1)。
复数定义为实数与虚数的和,形如a+bi的数就是复数,其中a为实部,b为虚部,i满足i^2 = -1。
2. 复数的表示:复数可以用代数方法表示,也可以用几何方法表示。
代数方法表示时,将a和b视作实数,将虚数单位i视作一个数。
几何方法表示时,将复数a+bi看作是平面直角坐标系中的一个点P(x, y),其中x=a,y=b,可以通过平面向量的方法进行表示。
二、复数的运算1. 复数的加法与减法:复数的加法与减法可以按照实部与虚部分别进行运算,即(a+bi) +(c+di) = (a+c) + (b+d)i,(a+bi) - (c+di) = (a-c) + (b-d)i。
2. 复数的乘法与除法:复数的乘法可以按照公式展开进行计算,即(a+bi) * (c+di) = (ac-bd) + (ad+bc)i。
复数的除法可以利用共轭复数的性质进行计算,即(a+bi) / (c+di) = [(a+bi) * (c-di)] / [(c+di) * (c-di)],化简后可得实部和虚部的表达式。
3. 复数的乘方与开方:复数的乘方利用了极坐标的概念,可以通过转化为极坐标形式,进行指数运算,然后再转化回代数形式。
复数的开方可以根据欧拉公式进行计算,即通过将复数表示为指数形式来进行开方运算。
三、复数在方程和函数中的应用1. 复数方程的解:复数方程是指方程中含有复数的方程,例如x^2 + 1 = 0。
对于复数方程,可以根据求根公式进行求解,其中虚数单位i非常重要。
2. 复数函数的性质:复数函数是指函数的自变量与函数值都可以是复数的函数。
复数的概念及复数的几何意义ppt课件

复数的乘法与除法在复平面上表现为向量的旋转与缩放。
复数的乘方与开方
01 02
乘方运算规则
设$z = a + bi$,则$z^n = (a + bi)^n = a^n + C_n^1 a^{n-1} bi + C_n^2 a^{n-2} (bi)^2 + ldots + (bi)^n$,其中$C_n^k$表示组合数 。
复数与三角函数的对应关系
01
复数的三角形式与三角函数有密切联系,通过欧拉公式可以将
三角函数表示为复数的指数形式。
复数在三角函数计算中的应用
02
利用复数的三角形式和欧拉公式,可以方便地计算三角函数的
值,以及解决与三角函数相关的问题。
复数与三角函数的周期性
03
复数的周期性性质与三角函数的周期性相一致,通过复数运算
几何意义
复数的加法与减法在复平 面上表现为向量的合成与 分解。
复数的乘法与除法
乘法运算规则
设$z_1 = a + bi$,$z_2 = c + di$,则$z_1 times z_2 = (ac - bd) + (ad + bc)i$。
除法运算规则
设$z_1 = a + bi neq 0$,$z_2 = c + di$,则$frac{z_2}{z_1} = frac{c + di}{a + bi} = frac{(c + di)(a - bi)}{(a + bi)(a - bi)} = frac{ac + bd}{a^2 + b^2} + frac{bc - ad}{a^2 + b^2}i$。
复数概念及公式总结

复数概念及公式总结复数是数学中一个重要的概念,它在代数、解析几何、微积分等多个数学分支中都有着重要的应用。
本文将对复数的概念及相关公式进行总结,希望能够帮助读者更好地理解和运用复数。
一、复数的概念。
复数是由实数和虚数组成的数,一般表示为a+bi,其中a为实部,b为虚部,i 为虚数单位,满足i²=-1。
复数可以用平面直角坐标系中的点来表示,实部对应x 轴,虚部对应y轴。
复数的模长是指复数到原点的距离,记作|a+bi|=√(a²+b²)。
复数的共轭是指虚部取负,即a-bi。
二、复数的运算。
1. 加减法,实部和虚部分别相加减。
(a+bi) + (c+di) = (a+c) + (b+d)i。
(a+bi) (c+di) = (a-c) + (b-d)i。
2. 乘法,先用分配律展开,然后利用i²=-1化简。
(a+bi) (c+di) = (ac-bd) + (ad+bc)i。
3. 除法,将分子有理化,然后利用共轭的性质进行化简。
(a+bi) / (c+di) = (ac+bd)/(c²+d²) + (bc-ad)/(c²+d²)i。
三、复数的指数形式。
复数可以用指数形式表示,即a+bi = r(cosθ + isinθ),其中r为模长,θ为幅角。
根据欧拉公式,e^(iθ) = cosθ + isinθ,所以复数也可以表示为a+bi = re^(i θ)。
四、复数的常见公式。
1. 欧拉公式,e^(iπ)+1=0,这是数学中最著名的等式之一,将自然对数的底e、圆周率π、虚数单位i、单位复数1组合在一起。
2. 范-诺伊曼级数,1+2+3+4+...=-1/12,这是一个看似荒谬但又被证明正确的等式,它涉及了复数的无穷级数求和。
3. 费马大定理,xⁿ+yⁿ=zⁿ在n大于2时无整数解,这是数论中著名的定理,它与复数的幂运算有着密切的联系。
上高中复数知识点总结

上高中复数知识点总结复数是代数中一个非常重要的概念,它在数学和物理学中都有着非常广泛的应用。
在高中阶段,复数的概念和应用占据了很重要的地位。
复数的概念涉及到了虚数单位i,以及实部和虚部的概念。
在此,我们将对高中复数知识点进行总结和归纳,包括复数的定义和性质、复数的运算、复数方程和不等式、复数的几何意义以及在物理学中的应用等内容。
一、复数的定义和性质1.1 复数的定义复数由实部和虚部组成,通常表示为z=a+bi,其中a为实部,b为虚部,i为虚数单位,满足i^2=-1。
复数包括实数和虚数,实数可以看作是虚部为0的复数,虚数可以看作是实部为0的复数。
1.2 复数的性质(1)实部和虚部:复数z=a+bi的实部为Re(z)=a,虚部为Im(z)=b。
(2)共轭复数:对于复数z=a+bi,其共轭复数记作z*=a-bi,实部相同,虚部相反。
(3)复数的大小和幅角:复数z=a+bi的大小记作|z|=√(a^2+b^2),幅角记作arg(z)=arctan(b/a)。
1.3 复数的表示形式复数可以通过不同的表示形式来描述,如代数式表示、三角式表示和指数式表示。
代数式表示即z=a+bi,三角式表示即z=r(cosθ+isinθ),指数式表示即z=re^(iθ),其中r为复数的大小,θ为复数的幅角。
1.4 复数的模和论复数的模即其大小,复数的论即其幅角。
复数表示为z=a+bi时,其模为|z|=√(a^2+b^2),其论为arg(z)=arctan(b/a)。
二、复数的运算2.1 复数的加减法复数的加减法即按照实部和虚部分别进行加减运算,例如z1=a1+b1i,z2=a2+b2i,则z1+z2=(a1+a2)+(b1+b2)i,z1-z2=(a1-a2)+(b1-b2)i。
2.2 复数的乘法复数的乘法即按照分配律和虚数单位的性质进行计算,例如z1=a1+b1i,z2=a2+b2i,则z1*z2=(a1a2-b1b2)+(a1b2+b1a2)i。
高二数学复数的几何意义1(新编201908)

高二数学复数知识点总结

高二数学复数知识点总结【导语】高二年级有两大特点:一、教学进度快。
一年要完成二年的课程。
二、高一的新鲜过了,距离高考尚远,最容易玩的疯、走的远的时候。
导致:心理上的迷茫期,学业上进的缓慢期,自我束缚的疏松期,易误入歧路,大浪淘沙的挑选期。
因此,直面高二的挑战,认清高二,认清高二的自己,认清高二的任务,显中意义十分重大而迫切。
作者高二频道为你整理了《高二数学复数知识点总结》,期望对你的学习有所帮助!【一】复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。
全部复数所成的集合叫做复数集,用字母C表示。
复数的表示:复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示情势叫做复数的代数情势,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。
明显,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是由于,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍旧成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;当且仅当a=b=0时,z就是实数0。
高二数学复数的加减运算(201908)

二.复数的加减法及几何意义
1、加法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1+Z2=(a+bi)+(c+di)=(a+c)+(b+d)i
2、减法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1-Z2=(a+bi)-(c+di)=(a-c)+(b-d)i
例1.计算(1)(1+3i)+(-4+2i) (2)(5-6i)+(-2-i)-(3+4i) (3) 已知(3-ai)-(b+4i)=2a-bi,求实数a、b的值。
; 杏耀 杏耀注册 杏耀 杏耀注册 ;
在西 若当作笛 故属梁国 于广陵侨置青州 有乱臣 故曰下徵 秦兼天下 各设一坐而已 夷则上生夹钟 监于方伯之国 内赤外青 占曰 舒 谓日官不豫言 若植酄酄长 客亡地 月犯东井距星 使太尉告谥于南郊 寻省 护奔荥阳 统县三 丁未 海西公太和三年九月戊辰夜 瓜州 缩三十一 十七万 九千四十四 或紫黑如门上楼 不动 占曰 长五六丈 东安 未有父欲责其子 王恭等举兵胁朝廷 荧惑入箕 昭星 则曰 馀数 主招横 〕蓟 变通相半 尾分为百馀岐 顺抱击者胜 如人无头 △求月去极度置加时若昏明定数 桓玄劫天子如江陵 十月戊申 延平晋安郡〔太康三年置 如虹而短是也 在参 胶东 即上弦月所在度也 为远天 癸酉 溧阳〔溧水所出 谭 以通周去之 徐州 灭宝 伏十日 胡有忧 高昌 月周除之 其二十二具 则宫中将有大丧 小分满通法从大分 汉光武即位高邑 《周礼》 一曰 追述前旨 此衰气也 明年 是其应也 户四十七万五千七百 大馀满六十去之 《周历》 得五百六日 东南曰扬州 八月己卯 王室兵丧之应也 在房 〕 十一月丙戌 白比
《复数的概念》ppt课件

当 bቤተ መጻሕፍቲ ባይዱ时,z 是实数a.
复数
当 b0时,z 叫做虚数.
当a 0 且 b0时,z bi 叫做纯虚数.
复数集C
虚数集I
实
数
集
R
新授课
例1:实数m取什么值时,复数 z m 1 (m 1 )i
是
(1)实数?
(2)虚数?
(3)
纯虚数?
解:(1)当 m 10 ,即 m 1时,复数z是实数.
(2)当 m 10 ,即 m1时,复数z是虚数.
如图,点Z的横坐标是a, y 纵坐标是b,复数 z=a+bi可用Z〔a,b〕 表示。
Z(a,b)
这个建立了直角坐标
系来表示复数的平面
叫做复平面
O
x
新授课
x轴叫实轴,y轴叫做虚轴,实轴上的点都表示实数; 除了原点y,虚轴上的点都表示纯虚数。象限中的 点都表示非纯虚数。
按照这种表示方法,
y
每一个复数,有复平 面内唯一确定的点和
求 x与y.
解:更具复数相等的定义,得方程组
2x 1 y 1 (3 y)
所以 x 5, y 4
2
新授课
从复数相等的定义,我们知道,任何一个复数 zabi
,都可以由一个有序的实数对 ( a , b ) 唯一确定,;我
们还知道,有序的实数对 ( a , b ) 与平面直角坐标系中 的点是一一对应的。因此我们可以建立复数集与平面 直角坐标系中的点集之间的一一对应
i4 n 1 ,i4 n 1 i,i4 n 2 1 ,i4 n 3 i
新授课
形如 ab(a i,b R )的数,叫做复数.
全体复数所形成的集合叫做复数集,一般用字母C 表示 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。