高炉耐火材料的性能指标剖析

合集下载

高炉热风炉用耐火材料分析共25页文档

高炉热风炉用耐火材料分析共25页文档
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
高炉热风炉用耐火材料分析
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三

耐火材料指标解析

耐火材料指标解析

耐火材料指标解析
结构性质指标 1) 封闭气孔; 封闭在制品中不与外界相通; 2) 开口气孔: —端封闭, 另一端与外界相通, 能为流体填充; 3) 贯通气孔: 贯通制品的两面, 能为流体所通 过。
结构性质指标
耐火材料指标解析
1、显气孔率: 即开口气孔与贯通 气孔的体积之和占制品总体积的百 分率表示该指标。
按化学组成分类
中性耐火材料按其严密含意来说是碳质耐火材 料, 高铝质耐火材料 (Al2O345% 以上) 是偏 酸而趋于中性的耐火材料, 铬质耐火材料是偏 碱而趋于中性的耐火材料。 碱性耐火材料含有相当数量的 MgO和CaO 等, 镁质和白云石质耐火材料是强碱性的, 铬镁 系和镁徽榄石质耐火材料以及尖晶石耐火材料 属于弱碱性耐火材料。
热学性质
耐火材料指标解析
1、热膨胀:
热学性质
耐火材料指标解析
热学性质
耐火材料指标解析
热学性质
耐火材料指标解析
常用耐火砖的热膨胀曲线曲线
1—镁砖;2—硅砖; 3—铬镁砖;4—半硅 砖;5—粘土砖;6— 高铝砖;7—莫来石 砖
热学性质
耐火材料指标解析
2、热导率:是表征耐火材料导热特性的 一个物理指标,是指单位温度梯度下, 单位时间内通过单位垂直面积的热量。 直接影响制品热震稳定性的重要因素。 耐火材料的导热能力与其化学矿物组成, 组织结构及温度有密切关系。
耐火材料指标解析
耐火砖尺寸标准
耐火材料指标解析
概 述
耐火材料的质量取决于其性质、 它是评价制品 质量的标准, 在生产中是制定和改进生产工 艺, 检查生产过程是否正确稳定的依据。正确 合理地选用耐火材料, 也是以其性质作为主要 依据的。
耐火材料指标解析

高炉本体耐材

高炉本体耐材

高炉本体耐火材料1、高炉内型简介高炉炉体自上而下依次为:炉吼:<400 ℃炉身:400-1100 ℃炉腰:1100-1200 ℃炉腹:1200-1450 ℃炉缸、炉底:1450-1600℃2、炉料在炉内分布主要特征:焦与矿交替分布层状,皆为固体状态主要反应:矿石间接还原,硫酸盐分解。

主要特征:矿石呈软熔状,对煤气阻力大。

主要反应:矿石的直接还原、渗碳和交谈的气化反应主要特征:焦炭下降,其间夹杂渣铁液滴。

主要反应:非铁元素还原、脱硫、渗碳、焦炭的气化反应主要特征:焦炭作回旋运动。

主要反应:鼓风中的氧和蒸汽与焦炭及喷入的辅助燃料发生燃烧反应。

主要特征:渣铁相对静止,并暂存于此。

主要反应:最终的渣铁反应。

固相区(块状带):固体料软熔前所分布的区域。

软融区(软融带):炉料从开始软化到融化所占的区域。

滴落区(低落带):渣铁全部融化低落,穿过焦炭层下到炉缸的区域。

回旋区(燃烧带):风口前燃料燃烧的区域。

炉缸区(渣铁带):形成最终渣、铁的区域。

3高炉用耐火材料,必须对炉内的反应保持物理和化学上的稳定,应达到以下要求:(1)在高温下不软化、不熔化、不挥发;(2)应具有能在高温、高压条件下保持炉体结构完整的强度;(3)耐热冲击,耐磨损;(4)具有对铁水、炉渣和炉内煤气等的化学稳定性;(5)具有适当的导热率,同时又不影响冷却效果。

砌筑的炉衬材料应该具有较低的气孔率,较高的机械强度,能够抵抗炉料和上升气流的磨损,同时还应具有良好的抗碱金属侵蚀性,并且要求材料中的氧化铁含量要低,避免与上升的C O发生氧化还原反应。

4、炉身上部和中部用耐火材料侵蚀原因及对耐材的基本性能要求选用耐火材料:粘土砖、硅线石砖、致密粘土砖、高铝砖等。

5、炉身下部、炉腰用耐火材料从炉身下部到炉腰的砖衬, 既受下降炉料和上升高温高压煤气的 磨损以及温度变化引起的热冲击, 又受高 FeO 高碱度初渣的化学侵蚀, 更为严重的是碱金属和锌蒸汽造成的碳素沉积和化学反应, 使耐火砖组织脆化,失去强度。

高炉各部位用耐火材料

高炉各部位用耐火材料

高炉各部位使用的耐火材料(1)炉缸炉缸的主要作用之一是安全地容纳铁水,炉缸耐火材料在温度大于1500℃时,必须保持足够的稳定。

因而炉缸炉底部位要选用抗铁水渗透、熔蚀性好、抗碱金属侵蚀、导热性好的炭砖,可用热压小块碳砖取代大块碳砖,或在碳砖上面砌筑陶瓷环,陶瓷杯材料主要技术性能碱表1。

另外,半石墨产品已经用于炉缸、炉墙。

半石墨砖具有较强的应力吸收特性和较高的导热性,可以大大减少耐火材料炉衬的径向温度梯度。

表1国外新建及新近大修的大型高炉炉底、炉缸结构形式主要有以下几种:在炉底炭块上砌陶瓷垫材料,炉缸采用热压小块碳砖;典型的陶瓷杯结构,炉底碳砖上砌莫来石砖,炉缸侧壁砌筑刚玉质大型预制块或塞隆结合刚玉砖,炉缸砌筑优质碳砖或微孔碳砖;炉底、炉缸耐火材料主要采用大块碳砖,石墨碳化硅砖和大块碳砖的主要技术性能见表2.关键部位采用微孔或超微孔碳砖,炉底碳砖上砌1~2层陶瓷砖。

表2(2)风口区和炉腹风口区和炉腹是高炉内温度最高的区域。

风口前产生的高温煤气以很高的速度上升,其温度在1600℃以上。

1450~1550℃的高温铁水和炉渣经炉腹流向炉缸,各种冶金反应在这个区域剧烈进行,这个区域要求耐火材料耐高温、耐炉渣的侵蚀、抗碱性好、抗二氧化碳和水的氧化。

用于这个部位的耐火材料有:刚玉砖、铝碳砖、热压半石墨碳砖、SiC砖、Si3N4结合SiC砖、Sialon结合SiC砖、Sialon结合刚玉砖。

现在SiC系列砖表现出了较长的使用寿命。

(3)炉腰和炉身下部炉腰的炉身下部是高炉软熔带根部所在位置,这里温度高,但形不成渣皮或形不成稳定的渣皮“自我保护”。

耐火材料经受剧烈的温度波动、初成渣的侵蚀、碱金属、锌的侵蚀、高温煤气流的冲刷、下降炉料的磨损、二氧化碳、水的氧化、一氧化碳的侵蚀等,要求耐火材料热震稳定性好、耐高温、抗碱性好、抗胡渣侵蚀能力强、抗氧化、耐磨、导热性号。

曾用于该部位耐火材料有高铝砖、刚玉砖、铝碳砖、SiC砖、Si3N4结合SiC砖、Sialon结合SiS砖、热压石墨碳砖、半石墨碳-碳化硅砖、Sialon结合刚玉砖等。

450m3高炉技术指标简述

450m3高炉技术指标简述

450m3高炉系统1 设计原则及指导思想1) 高炉建设总的设计原则是:设计中采用成熟、可靠、经济、实用的工艺和设备,采用精料、高风温、大喷煤量等实用技术,使高炉生产达到高效、低消耗的目的。

2)为有效地控制投资,全部设备和材料立足国内配套生产。

3)认真贯彻执行国家有关政策、法规、规程、规范、标准和行业政策,特别是环保、能源、安全卫生、消防等政策和法规。

2设计特点及新技术1)采用无料钟炉顶装料设备。

2)采用大型冷却模块薄炉衬结构,减薄炉衬、降低投资。

3)高炉软水系统加强脱汽功能,在每个区设置脱气罐,有效提高了炉体的寿命。

4)采用富氧喷煤工艺,并罐喷吹,浓相输送,烟煤无烟煤混喷。

富氧率4%。

5)采用旋流顶然式热风炉,热风炉寿命长,风温高。

3高炉主要技术经济指标高炉主要技术经济指标4物料平衡表450m3高炉物料平衡表:5炼铁工艺5. 1概述炼铁车间主要设计内容包括:·矿、焦槽及上料系统;·炉顶装料系统;·高炉本体系统;·风口平台及出铁场系统;·热风炉系统;·煤气粗除尘系统;·煤粉喷吹系统;·水渣处理系统。

5. 2高炉本体5.2.1炉型合理的炉型对高炉长寿,高炉生产实现高产、优质、低耗非常重要。

高炉的炉型在比较国内同级高炉炉型的基础上,结合高炉入炉料的具体条件进行设计。

设计特点是:适当地加深了死铁层,选择了适中的高径比,加大了炉缸高度,并把炉腹角控制在80.52°左右,以有利于炉体寿命的延长和能耗的降低。

高炉炉型尺寸见下表:5.2.2高炉采用全冷却结构,水冷炉底;炉底炉缸采用光面铸铁冷却壁,材质为普通铸铁,内铸单进单出的蛇行无缝钢管;炉腹、炉腰为带肋镶嵌式冷却壁,内双层冷却水管;炉身下部采用冷却板、壁结合的结构。

5.2.3风口冷却设备高炉设14个风口,每个风口有风口小套、中套及大套。

小套采用长寿灌流式风口。

5.2.4渣口设备设渣口一个, 由小套、中套及大套组成。

高炉本体耐火材料砌筑检查验收标准

高炉本体耐火材料砌筑检查验收标准
项次
项目
砖缝厚度(mm)≤
1
炭砖砌体
垂直缝
1.5
水平缝
2
2
其他耐火材料砖砌体
2
三、炉底砌体的允许误差
项次
项目
允许误差(mm)
炭砖砌体
其他耐火砖砌体
1
表面
平整
误差

炉底砖层表面错牙
2

炉底炭素料找平层,炉底各砖层和炉底最上层砌筑炉缸墙的地点
2
5

炉底炭素料找平层和各砖层上表面各点的相对标高差
5
8
2
垂直误差
2
炉腹和炉腰
2.5
3
炉身
3
六、炉腹及其以上部位砌体的允许误差
项次
项目
允许误差(mm)
炭砖砌体
其他耐火砖砌体
1
各砖层上表面平整误差
2
10
2
厚壁炉腰和炉身半径误差
±15
±15
3
径向倾斜度误差
2
5
高炉本体耐火材料砌筑检查验收标准
(工业炉砌筑工程质量验收规范GB 50309–‐2007)
一、炉底砌体的砖缝厚度
项目
砖缝厚度(mm)≤
备注
炭砖砌体
垂直缝
1.5
刚玉莫来石砖立砌时,水平缝为1mm,竖直缝为1mm,环砌时,水平缝为1.2mm,竖直缝为1mm。
水平缝
2
其他耐火砖砌体
垂直缝
2
水平缝
2.5
二、炉缸砌体的砖缝厚度
炉底的每块砖
2
3

项目
允许误差(mm)
炭砖砌体
其他耐火砖砌体
1
各砖层上表面平整误差

热风炉耐材理化指标

热风炉耐材理化指标
2、体积密度、显气孔率的检验按照GB/T2997-2000标准进行。
3、常温耐压强度的检验按照YB/T5072-1985标准进行。
4、热震稳定性的检验按照YB/T376.1-1995进行检验。
5、荷重软化温度的检验按照YB/P5989-1998标准进行。
6、常温抗折强度的检验按照YB/P5123-1993标准进行。
0.152-0.20
0.152-0.20
0.164-0.210
理论体积密度< Kg/ m3>
96/128
96/128
96/128
产品规格<mm>
3600/7200/15000×610/1220×10/20/25/30/40/50
(LYGX—422&:10/20/25/30)
抗拉强度<厚度25mm> Mpa
>2.10
A12O3%
>56
SiO2%
<30
残余线变化%110℃
-0.5-0
残余线变化%1000℃
-0.6-0
残余线变化%1300℃
-0.1-1.0
抗折强度(Mpa)110℃
>2.5
抗折强度(Mpa)1000℃
>5.0
抗折强度(Mpa)1300℃
>9.0
导热系数W/m﹒k 1000℃
0.86
7、尺寸要求(GB/T 2988-2004)
7、粘土砖尺寸要求(YB/T 5050-93)
项目
指标
长度尺寸允许偏差
炉底砖
±2.0
其他砖
±1.0
厚度相对偏差
不大于
±1
扭曲
长度≤345
1

高炉用耐火材料

高炉用耐火材料

高炉用耐火材料高炉用耐火材料(refractories for blast furnace)砌筑高炉炉体及有关部位所使用的耐火制品。

高炉是利用鼓入的热风使焦炭燃烧及还原熔炼铁矿石的竖式炉,是在高温和还原气氛下连续进行炼铁的热工设备。

高炉用耐火材料损毁的原因主要是炉料机械磨损、碳素沉积、渣铁侵蚀、碱金属侵蚀和铅锌渗透、热应力和高温荷载等综合因素,其中温度是决定性的因素。

因此,高炉炉体易损部位均设有冷却系统,以提高炉衬的使用寿命。

随着钢铁工业的发展,高炉日趋大型化。

同时,采用了高压炉顶,高风温、富氧鼓风、燃料喷吹和电子计算机控制等新技术以强化冶炼,耐火材料使用条件更为苛刻。

通过采用耐火材料新品种及提高其质量,改进炉体冷却系统以及强化管理,一代高炉炉衬寿命不断延长。

高炉炉体用耐火材料高炉炉体由炉喉、炉身、炉腰、炉腹、炉缸5部分组成。

炉体附设有风口、出渣口、出铁口、冷却系统及集气管与加料装置等设施。

高炉炉衬按其使用损毁特点可分为上、中、下3段:上段包括炉喉、炉身上部和中部;中段包括炉身下部、炉腰和炉腹;下段为炉缸和炉底。

高炉各部位及其侵蚀情况见图。

炉喉、炉身上部及炉身中部用耐火材料炉喉承受炉料下降时的直接冲击和摩擦,极易磨损,多采用高强度的粘土砖和高密度高铝砖砌筑,并采用铸钢板保护。

炉身上部和中部温度不超过700℃,无炉渣形成和炉渣侵蚀,除承受炉料滑行与冲击以及热烟气所携粉尘的摩擦而导致机械磨损外,主要是铅、锌侵入沉积,使衬砖组织变得脆弱,甚至鼓胀,还有碳素沉积及粘结物的作用,使炉衬开裂和结构松散。

整个炉体中该部位损毁较轻,一般采用氧化铁含量较低的致密粘土砖或高铝砖砌筑。

炉身下部、炉腰和炉腹用耐火材料炉身下部承受炉料下降时的摩擦与炉气上升时粉尘的冲刷作用,该部位温度较高并有大量炉渣形成,碱金属蒸气的侵蚀作用较重,因此炉衬损毁速度较快。

炉腰处温度高,炉渣大量形成,渣蚀严重,碱侵蚀及高温含尘炉气的冲刷均较炉身严重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高炉耐火材料的性能指标剖析
耐火材料的使用性能是影响高炉寿命很重要的一个因素。

根据高炉炉衬的工作条件确定耐火材料的使用性能指标,对于高炉耐火材料新品种的开发以及长寿高炉的设计和建设都有重要意义。

高炉耐火材料的几项重要性能指标如下:
(1)导热率
高炉耐火材料的导热率,特别是对炉缸、炉底的炭砖而言,是一个非常重要的指标。

高炉炉衬靠冷却壁等冷却设备的冷却加以保护,而冷却设备要充分发挥作用需要炉衬耐火材料有较高的传热能力,因此希望炉缸、炉底炭砖在高温下有较高的导热率,以加强冷却效果,减缓砖衬的侵蚀速度。

众所周知,降低炉衬温度对多种原因引起的炉衬侵蚀都有减缓作用。

例如,炉衬受炉渣侵蚀、铁水渗透和溶蚀的程度都会随炉衬温度的降低而降低;碱金属和锌对炉衬的侵蚀主要发生在800~1000℃,若炉衬温度冷却到800℃以下,碱金属和锌对炉衬的侵蚀就会大大缓解。

不过,高炉有些部位的炉衬则不要求高导热率,如陶瓷杯用砖要求保温性能好、导热率低,炉身上部的砖衬也不要求高导热率等。

(2)抗铁水溶蚀性
高炉炉底多用炭砖砌筑,铁水溶蚀是炭砖被侵蚀的主要原因。

在高炉大修时常会发现,炉底炭砖试样中w(Fe)很高,有的甚至高达40%,且呈网络状分布;炉缸炭砖试样中w(Fe)也达到10%以上,呈弥散的颗粒状分布。

这表明铁水对炉缸、炉底炭砖的溶蚀作用很严重。

降低耐火材料的铁水溶蚀指数,对延长高炉寿命至关重要。

(3)抗碱侵蚀性
烧结矿、焦炭等原料带入高炉的碱金属和锌是引起炉衬侵蚀和破坏的重要因素。

很多高炉炉缸、炉底侧墙炭砖中存在环缝,也与碱金属和锌的侵蚀作用有关。

在一定温度下产生的钾蒸气会渗透到砖衬内部,与硅铝质成分发生反应,生成硅酸钾、钾霞石等化合物。

这些反应过程中伴随有体积膨胀,因而会破坏砖衬,特别是炉身到炉腹常用的硅铝质砖衬。

(4)抗渣侵蚀性
在高炉内的矿石软融区域,初渣开始形成,其基本特点是FeO含量较高,对砖衬有很强的侵蚀性。

炉身下部、炉腰、炉腹和炉缸区域的砖衬都会受到炉渣的侵蚀。

如果用于这些部位的砖衬抗渣侵蚀性不好,就会很快被侵蚀。

以前,我国不少高炉炉身下部用高铝砖或粘土砖砌筑,虽然厚度很大,但一般生产2~3年就被侵蚀殆尽,主要原因就是这些耐火材料的抗炉渣侵蚀性很差。

(5)微气孔指标
高炉耐火材料的微气孔指标主要指小于1微米孔容积率和平均孔径。

铁水侵蚀炭砖时首先侵蚀碳质颗粒周围的基料,渗入炭砖的空隙、裂缝,将炭砖割裂成碎块,使炭砖失去强度。

碱金属、锌的化学侵蚀,CO2和水蒸气的氧化侵蚀等也是气体首先渗入砖衬,在适宜的温度条件下沉积并与砖衬发生化学反应,破坏砖衬。

这就是说,不论是碳质或是硅铝质砖衬,它们在高炉内的侵蚀程度都与其微孔结构有很大关系。

因此,微气孔结构是表征高炉耐火材料抗侵蚀性的重要指标。

相关文档
最新文档