阿伏加德罗定律及其推论
阿伏加德罗定律及其推论

阿伏加德罗定律及其推论阿伏加德罗定律及其推论概述:阿伏加德罗定律(Avogadro's Law),是一个力学与物理学上的重要定律,由意大利化学家坎波尔博士阿伏加德罗在1811年提出的。
该定律指出,在相同温度和压力下,一个物质的摩尔质量的体积,不管是什么物质,都是一样的。
也就是说,在相同的压力下,相同的量的同种物质的分子,体积都是相同的。
1. 阿伏加德罗定律的形式化定义:阿伏加德罗定律的形式定义是“在相同的温度和压力下,体积相等的两个物质,其分子数是相等的”。
表述更简单一点,就是在等温和等压条件下,不论物质分子是什么,其体积都相等。
2. 阿伏加德罗定律的证明:阿伏加德罗定律的证明,有两个。
一个是通过物理学中关于体积变化的热力学方程来证明,另一个是通过化学学中关于组成物质的理论判断来证明。
3. 阿伏加德罗定律的推论:(1)它的推论就是“泊松定律”,它指出:在一定的温度和压力下,给定容积内的质量是相等的。
因此,我们可以用这个定律来计算物质体积,并以此为依据进行化学实验;(2)它的推论之二是“摩尔质量定律”,它指出:物质的摩尔质量可以由它的物质的量的体积来计算。
它的意思是:一定的体积的物质的摩尔质量是相等的,不管它是哪种物质;(3)它的推论之三是“动能定律”,它指出某物质的体积的变化,是伴随着这物质的温度的变化而变化的,且这两者之间存在着一定的关系,即温度一定程度上可以用来说明它的体积的变化;(4)它的推论之四是“分子量定理”,它认为某物质的摩尔重量按体积分子数重量之商,且这个商不受温度和压力的影响。
4. 阿伏加德罗定律的现实意义:它给物理学、化学学等这五门科学学科带来了新的启发。
首先,它使我们可以用相同的条件来计算物质的体积,建立温度和压力的等式,从而为分子的力学定义和化学概念的发展提供依据;其次,它所推论出来的各种体积关系,为化学实验的准确性提供了依据,使我们可以对质量的改变进行更精确的分析;最后,它也为热力学、气体力学等相关学科的发展奠定了基础。
阿伏加德罗定律及推论

答:8.5g氨在标准状况时的体积是11.2L。
2.利用气体摩尔体积,进行有关 式量的计算
【例题2】在标准状况时,0.2L的容器里所含一氧化碳 的质量为0.25g,计算一氧化碳的式量。
分析:M=m/n
【解】
n=V/Vm
答:一氧化碳的式量是28。
练一练
1.同温同压下,等质量的二氧化硫和二氧化 AD 碳相比较,下列叙述中,正确的是( ) (A)密度比为16:11 (B)密度比为11:16 (C)体积比为1:1 (D)体积比为11:16 2.在相同温度和压强下,下列气体密度最小的 是( B ) A. CO2 B.H2 C.O2 D.Cl2
小结: 根据克拉泊龙方程导出阿伏加德罗定律的推 论:
练一练
1.同温同压下,相同体积的下列气体中, 质量最大的是(A ) (A)氯气 (B)氢气 (C)氧气 (D)氮气 2.同温同压下,同物质的量的CH4气体 与CO体积比是(B) (A)3:1 (B)1:1 (C)1:3 (D)2:3
理想气体的状态方程: PV=nRT
气体Ⅰ 气体Ⅱ P1V1 P2V2 = P1V1=n1RT1 P2V2=n2RT2 n1RT1 n2RT2
V1=V2
同温同体积: T1=T2
P 1 n1 同 T、V: = P2 n2
推论2:同温、同体积,气体的压强之比等于分
子数之比
T、V相同
P1 n1 —— = — P2 n2
练一练
1. 同温同体积下,相同压强的氢气和甲烷 的原子个数之比是(A ) A.2:5 B.1:1 C.1:5 D.1:8 2. 一个密闭容器中盛有11gCO2时,压强为 1×104Pa.如果在相同温度下,把更多的CO2充 入容器中,使容器内压强增至5×104Pa,这时容 器内气体的分子数约为( C) A.3.3×1025 C. 7.5×1023 B. 3.3×1024 D. 7.5×1022
阿伏加德罗定律及其推论

阿伏加德罗定律及其推论一、阿伏加德罗定律(1)内容: 在相同的温度和压强下,相同体积的任何气体都含有相同 数目的粒子。
这就是阿伏加德罗定律。
(2)表示:二、阿伏加德罗定律的推论1、同温同压下,任何气体的体积之比等于物质的量(或分子数) 之比。
即 V 1 :V 2 = n 1 :n 2 = N 1 :N 22、同温同压下,气体密度之比等于摩尔质量之比。
即 ρ1 :ρ2 = M 1 :M 23、同温同体积的任何气体的压强之比等于物质的量之比。
即 p 1 :p 2 = n 1 :n 24、同温同压下,同体积的气体的质量之比等于密度之比。
即 m 1 :m 2 = ρ1 :ρ25、同温同压下,同质量的气体的体积之比等于相对分子质量的 反比。
即 V 1 :V 2 = M 2 :M 16、同温同体积同质量的任何气体的压强之比等于相对分子质量 的反比。
即 p 1 :p 2 = M 2 :M 1【练习巩固】1、同温同压下,等质量的二氧化碳和二氧硫相比,下列叙述中正确的( )A 、密度之比为16 :11B 、密度之 比为11 :16C 、体积之比为11 :16D 、物质的量之比为16 :112、在标准状况下,下列气体体积最大的是( )A 、14gCOB 、32gO 2C 、44gCO 2D 、4gH 23、在同温同压下,1mol 氩气和1mol 氟气具有相同的( )A 、质子数B 、质量C 、原子数D 、体积4、在标准状况下,相同质量的下列气体中体积最大的是( )A 、O 2B 、N 2C 、Cl 2D 、CO 2T PV 同 N同 任何气体5、相同条件下,下列气体中所含分子数最多的是()A、10g O2B、71g Cl2C、34g NH3D、1g H2三、气体的密度和相对密度1、定义式:ρ = m/V2、标状下:ρ= m/V= M g·mol-1 /22.4 L·mol-13、相对密度:(1)含义:物质的密度与参考物质的密度在各自规定的条件下之比(2)符号:D(3)使用范围:一般,相对密度只用于气体(4)表达式:D = ρA/ρB = M A / M B四、气体摩尔质量的求算方法1、定义式:2、用标状下气体的密度求解:3、用相对密度求解:4、利用各组分的摩尔质量及体积分数求解:【应用】1、448mL某气体在标状下的质量为 1.28g,求该气体的相对分子质量。
必修一阿伏加德罗定律及其推论

二、阿伏加德罗定律的推论
同温同压下:V1=V2 即 N1=N2
推论1
n1=n2
同温同压下,任何气体的体积与物质的量、
分子数成正比
即:V1∶V2 = n1 ∶ n2 = N1 : N2
练习: 在 所含标分准子状数况之下比,为22.41L:1CO所和含17原g子NH数3的之体比积为之1比:2为 1:1
气体摩尔体积 专题讲解
❖有关阿伏伽德罗定律的 几个推论
理想气体状态方程
pV=nRT(克拉伯龙方程)
p为气体压强,单位Pa,V为气体体积,单 位m3。n为气体的物质的量,单位mol,T为体 系温度,单位K。
R为比例系数,在摩尔表示的状态方程中, R为比例常数,对任意理想气体而言,R是一 定的。
在相同的温度和压强下, 相同体积的任何气体 都含有相同数目的分子
80g/mol
同温同压下:若m1=m2
推论3
则n1xM1=n2xM2
V1 xM1=
Vm
V2 Vm
x M2
V1 = M2
V2
M1
同温同压下,相同质量的任何气体的体积比
等于它们的相对分子质量的反比。
练习:
即:V1∶V2=M 2∶M 1
同温同压下,等质量的下列气体的体积由大
到小排列顺序
①CO2②H2③Cl2④HCl⑤SO2 ②④①⑤③
推论5
恒温恒容下,
气体的压强比等于它们的物质的量之比。
即:p1∶p2=n1∶n2
同温同压下:若V1=V2
推论2
n1=n2
即 N1=N2 m1 = m2 M1 M2
则n1=n2
m1 m2
=
M1 M2
同温同压下,同体积的任何气体的质量比
阿伏伽德罗定律及其推论

m=ρV
m1 M 1 m2 M2
例5. 化合物A是一种不稳定的物质,它的分子组成 可用OxFy表示。10 mL A气体能分解生成15 mL O2和10 mL F2(同温、同压下)。
[解析]
⑤SO2
V1 n1 T 、P相同: V2 n 2
m n M
例2. 在两个密闭容器中,分别充有质量相同的甲、 乙两种气体,若两容器的温度和压强均相同, 且甲的密度大于乙的密度,则下列说法正确 的是(
B )
A. 甲的分子数比乙的分子数多 B. 甲的物质的量比乙的物质的量少 C. 甲的摩尔体积比乙的摩尔体积小 D. 甲的相对分子质量比乙的相对分子质量小
例8. 在标准状况下, 11.2 L CO和CO2混合气体的
质量为20.4 g,则混合气体中CO和CO2的体
1 : 4 ,质量比为_______ 7 : 44 。 积比为__________
[解析] 标准状况下,Vm = 22.4 L· mol-1
V 11.2L n 0.5mol 1 Vm 22.4L mol
O3F2 (1)A的化学式是________
推断理由是
阿伏加德罗定律和质量守恒定律 ______________________________________ 。
V n 1 1 [解析] T、P相同: V2 n 2
10mL
A = O2 + F2
15mL
10mL
例6、同温同压下,某容器充满O2重116 g,若充满
阿伏加德罗定律及推论公式

阿伏加德罗定律及推论公式
阿伏加德罗定律及推论公式是化学领域中最重要的定律之一。
它描述了气体在一定温度和压力下的体积与分子数量之间的关系。
阿伏加德罗定律是化学领域的基础,对于研究气体的性质和行为有着重要的影响。
阿伏加德罗定律可以写作PV = nRT,其中P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示理想气体常数,T表示气体的温度(以开尔文度为单位)。
根据这个公式,当压强和摩尔数不变时,气体的体积与温度成正比。
根据阿伏加德罗定律,我们可以得出一些推论公式。
比如,当气体的温度不变时,气体的压强与体积成反比。
这意味着,如果气体的体积增加,压强将减少;如果气体的体积减小,压强将增加。
另一个推论公式是,当温度和压强不变时,气体的体积与摩尔数成正比。
这意味着,如果气体的摩尔数增加,体积也会增加;如果气体的摩尔数减少,体积也会减少。
阿伏加德罗定律及其推论公式的应用非常广泛。
它们在化学实验室中经常被用来计算气体的性质和行为。
此外,阿伏加德罗定律也被用于工业生产中,例如在石油化工工程中用来计算反应器中气体的体积和压强。
总之,阿伏加德罗定律及推论公式是化学领域中不可或缺的基础知识。
它们描述了气体在一定温度和压力下的体积与分子数量之间的关系,为我们理解和研究气体的性质提供了重要的依据。
阿伏伽德罗定律ppt课件.ppt

(1)“三同”定“一同”。
(2)适用于气态物质。既适用于单一气体, 又适用于混合气体。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
理想气体的状态方程:PV=nRT P---压强 V---体积 n---物质的量 R---常数 T---热力学温度(T=273+t)
V1 = n1 Vn
(推论一已得) 则:Βιβλιοθήκη m1r1 m2r22
2
所以
r 1
=
M1
r 2
M2
= m1M1
m2M2
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
[练习3]
• 同温同压下,体积相同的下列气体,
密度与其它三者不同的是( ) D
(2)m(A)= m3–m1(g),设气体A的摩尔质量为M, 则:n(A)= (m3–m1)/M mol
(3)因气体A与氧气的体积相等,由推论:V1/V2=n1/n2得: (m2–m1)/32 mol = (m3–m1)/M mol
则:M= 32(m3–m1)/ (m2–m1) (g/mol)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
阿伏加德罗定律的推论三
依据:PV=n RT 或 PV= m RT 以及 ρ=m/V M
阿伏伽德罗定律及其推论

一、理想气体状态方程:PV=nRT 2、已知两种气体在等温、等容时: 根据 PV=nRT P与n成正比, 即推论1 P1/P2=n1/n2 3、已知两种气体在等温、等压时: V=m/ ρ ,n=m/ M, PV=nRT可以改成PM= ρRT,M与ρ成正比 即推论2 M1/M2=ρ1/ρ2
练习1. 依照阿伏加德罗定律,下列叙述中正 确的是( ) A.同温同压下,两种气体的体积之比等于摩 尔质量之比 B.同温同压下,两种气体的物质的量之比等 于密度之比 C.同温同压下,两种气体的摩尔质量之比等 于密度之比 D.同温同体积下,两种气体的物质的量之比 等于压强之比
练ห้องสมุดไป่ตู้2 下列条件下,两瓶气体所含原子数一
定相等的是 (
)
A.同温度、同体积的H2和N2 B.同压强、同体积的N2O和CO2 C.同体积、同密度的C2H4和C3H6 D.同质量、不同密度的N2和CO
理想气体状态方程的应用
——阿伏伽德罗定律及推论
一、理想气体状态方程:PV=nRT P: 气体的压强; V:气体的体积; n:气体的物质的量; T:气体的温度,单位是开尔文。 R:常数。
一、理想气体状态方程:PV=nRT 五个量中有四个是变量,已知两个量相等 能推出另两个的关系,这就是阿伏伽德罗 定律及其推论的由来。 1、已知两种气体在等温、等压时: 根据 PV=nRT V与n成正比, 即阿伏伽德罗定律:V1/V2=n1/n2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿伏加德罗定律及其推论
1.理想气体状态方程
我们设定:T .温度;p .气体夺强;n .物质的量;V .气体的体积;m .气体的质量;M .气体的摩尔质量; .气体的密度N .气体的分子数。
理想气体状态方程为:
(1)111T V p =222T V p ;(2)pV =nRT =RT M
m (R 为常数)。
对(2)若p 的单位为大气压(atm ),V 为升(L ),T 为绝对温度时,R =0.082。
若p 为帕斯卡(Pa ),V 为立方米(m 3),T 为绝对温度时,R =8.31。
2.阿伏加德罗定律
在相同温度和压强下,相同体积.............
的任何气体都含有相同数目的分子数。
这是意大利科学家阿伏加德罗最早提出的,因此称为“阿伏加德罗定律”。
理解时注意:
在该定律中有“四同”:同温、同压、同体积、同分子数目,有“三同”就可定“一同”。
如,同温同压下,同体积的两种气体必含有相同数目的分子;同温同压下,同分子数目的两种气体必然同体积;再如,在同温下,两种气体同体积又同分子数目,则必然同压。
3.阿伏加德罗定律的推论
根据阿伏加德罗定律及气态方程(pV =nRT )限定不同的条件,便可得到阿伏加德罗定律的多种形式,熟练并掌握了它们,解答有关问题时,可达到事半功倍的效果。
条件结论语言叙述
T 、p 相同 21N N =2
1V V 同温同压下,气体的分子数与其体积成正比 T 、V 相同21p p =21N N 温度、体积相同的气体,压强与其分子数成正比 n 、p 相同21V V =2
1T T 分子数相等、压强相同的气体,体积与其温度成正比 n 、T 相同
21p p =12V V 分子数相等、温度相同的气体,压强与其体积成反比
T 、p 、m 相同
21M M =1
2V V 同温同压下,等质量的气体相对分子质量与其体积成反比
如有侵权请联系告知删除,感谢你们的配合!。