最短路问题专题
数学建模最短路问题

设链W=v0e1v1e2…eivi已选定,则从E\{e1,e2,…,ei}中选取一条与ei相邻的边ei+1,除非已无选择余地,否则不要选G\{e1,e2,…,ei}的桥。
直到(2)不能进行为止,算法终止时得到的是Euler回路。
欧拉图与Fleury算法
01
02
如果G不是连通的Euler图,则G中含有奇度顶点(但奇度顶点的个数为偶数),此时图G的一条邮递路线必定在某些街着上重复走了一次或多次,它等价于在这些边上加一条或多条重复边,使新图G' 不含奇度顶点,并且所加边的总权为最小。
01
Dijkstra Algorithm
02
Dijkstra算法所需时间与n2成正比。
最短路问题求解算法
用Dijkstra求解最短路问题
例 求从顶点u0到其余顶点的最短路。
解:先写出距离矩阵(实际应为对称矩阵)
Dijkstra算法的迭代步骤如下
u0 u1 u2 u3 u4 u5 u6 u7
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 2 1 8 ∞ ∞ ∞ ∞ 3 2 8 ∞ ∞ 10 ∞ 4 8 3 ∞ 10 ∞ 5 8 6 10 12 6 7 10 12 7 9 12 8 12
第11章 最短路问题
添加副标题
1 问题的提出
STEP2
STEP1
图论是离散数学的重要分支,在物理学、化学、系统控制、电力通讯、编码理论、可靠性理论、科学管理、电子计算机等各个领域都具有极其广泛的应用。
1
图论的历史可以追溯到1736年,这一年发表了图论的第一篇论文,解决了著名的哥尼斯堡(Königsberg)七桥问题。
02
1 匹配与覆盖
基本概念
定义1设若M的边互不相邻,则称M是G的一个匹配。M的边称为匹配边,E\M的边称为自由边,若(u, v)∈M,则称u(或v)是v(或u)的配偶。若顶点v与M的一条边关联,则称v是M-饱和的;否则称为M-非饱和的。若M使G中每个顶点都是M-饱和的,称M是G的完美(理想)匹配。设M是G的一个匹配,若不存在M' 使|M'|>|M|,则称M为G的最大匹配。
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册

13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册题型一、两定点一动点作图问题1.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()A.B.C.D.2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.3.如图,直线l是一条公路,A、B是两个村庄.欲在l上的某点处修建一个车站,直接向A、B两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是()A.B.C.D.4.为了促进A,B两小区居民的阅读交流,区政府准备在街道l上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.5.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点题型二、两定点一动点求线段和最小值1.如图,在△ABC中,∠ABC=60°,AD⊥BC于D点,AB=12,.若点E、F分别是线段AD、线段AB上的动点,则BE+EF的最小值是()A.6B.12C.D.2.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E、F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.6D.3.53.如图,在△ABC中,∠A=90°,AB=6,AC=8,BC=10,CD平分∠BCA交AB于点D,点P,Q分别是CD,AC上的动点,连接AP,PQ,则AP+PQ的最小值是()A.6B.5C.4.8D.44.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4B.4C.5D.4.85.如图,点N在等边△ABC的边BC上,CN=6,射线BD⊥BC,垂足为点B,点P是射线BD上一动点,点M是线段AC上一动点,当MP+NP的值最小时,CM=7,则AC的长为()A.8B.9C.10D.126.如图,已知等边△ABC的边长为4,点D,E分别在边AB,AC上,AE=2BD.以DE为边向右作等边△DEF,则AF+BF的最小值为()A.4B.4C.4D.47.数形结合是重要的数学思想,借助图形,求解的最小值为.8.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.9.如图,A,B两个小镇在河流CD的同侧,到河的距离分别为AC=6千米,BD=14千米,且CD=15千米,现要在河边建一自来水厂,同时向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD上选择水厂的位置M,使铺设水管的费用最省,并求出总费用是多少?题型三、两定点一动点求周长最小值1.如图,在△ABC中,直线m是线段BC的垂直平分线,点P是直线m上的一个动点.若AB=7,AC=4,BC=5,则△APC周长的最小值是()A.12B.11C.9D.72.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.8B.3C.6D.43.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,D、E、F分别是AB、BC、AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.65.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC 外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若BC=5,∠CAB=30°,点P是直线DE 上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.206.如图,在平面直角坐标系中,点P的坐标为(2,3),P A⊥x轴,PB⊥y轴,C是OA的中点,D是OB上的一点,当△PCD的周长最小时,点D的坐标是()A.(0,1)B.C.D.(0,2)7.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为______8.如图,点A(1,﹣1),B(2,﹣3)(1)点A关于x轴的对称点的坐标为.(2)若点P为坐标轴上一点,当△APB的周长最小时,点P的坐标为.三、一定点二动点线段或周长问题1.如图,在五边形中,∠BAE=140°,∠B=∠E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当△AMN的周长最小时,求∠AMN+∠ANM的值是()A.100°B.140°C.120°D.80°2.如图,∠AOB=30°,P是∠AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则△CPD周长的最小值为.3.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,则MQ+PQ+PN的最小值为.四、一定点二动点角度问题1.如图,在四边形ABCD中,∠C=40°,∠B=∠D =90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°2,如图,∠MON=45°,P为∠MON内一点,A 为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°3.如图,点P为∠AOB内一点,点M,N分别是射线OA,OB上一点,当△PMN的周长最小时,∠OPM=50°,则∠AOB的度数是()A.55°B.50°C.40°D.45°4.已知点P在∠MON内.如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.(1)若∠MON=50°,求∠GOH的度数;(2)如图2,若OP=6,当△P AB的周长最小值为6时,求∠MON的度数.五、二定点二动点1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE的周长的最小值为.3.如图,锐角∠MON内有一定点A,连结AO,点B、C分别为OM、ON边上的动点,连结AB、BC、CA,设∠MON=α(0°<α<90°),当AB+BC+CA取得最小值时,则∠BAC=.(用含α的代数式表示)4.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)5.已知B,C是平面直角坐标系中与x轴平行且距离x轴1个单位长度的直线上的两个动点(点B在点C左侧),且BC=2,若有点A(0,5)和点D(3,3),则当AB+BC+CD的值最小时,点C的坐标为.6.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.7.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°8.如图,∠MON=α,α<30°,点A为ON上一定点,点C为ON上一动点,B,D为OM上两动点,当AB+BC+CD最小时,∠BCD+∠ABC=()A.5αB.6αC.90°﹣αD.180°﹣α9.如图,直线l 1,l 2表示一条河的两岸,且l 1∥l 2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄A 经桥过河到村庄B 的路程最短,应该选择路线( )A .B .C .D .10.如图,直线l 1、l 2表示一条河的两岸,且l 1∥l 2,现要在这条河上建一座桥,使得村庄A 经桥过河到村庄B 的路程最短,现两位同学提供了两种设计方案,下列说法正确的是( )方案一:①将点A 向上平移d 得到A ';②连接A 'B 交l 1于点M ;③过点M 作MN ⊥l 1,交l 2于点N ,MN 即桥的位置.方案二:①连接AB 交l 1于点M ;②过点M 作MN ⊥l 1,交l 2于点N .MN 即桥的位置.A .唯方案一可行B .唯方案二可行C .方案一、二均可行D .方案一、二均不可行六、线段差的最大值1.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.2.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.七、多条线段和的最小值1.如图所示,已知A、B、C、D,请在图中找出一点P,使P A+PB+PC+PD最小.2.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.若将这个“L”形沿y轴上下平移,当AD+DE+BE 的值最小时,E点坐标为;若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为.。
《最短路问题》课件

3 最短路问题的历史
渊源
最短路问题最早由荷兰 数学家 Edsger Dijkstra 在 1956 年提出。
最短路问题的定义
图论中的最短路问 题指什么?
在无向连通图或有向连通图 中,从某一起点到其余各顶 点的最短路径。
什么是路径长度?
路径长度是指路径上边或弧 的权值之和。
什么是无环图?
无环图指不存在环的图,可 以用拓扑排序求解最短路。
《最短路问题》PPT课件
欢迎来到最短路问题的世界。在本课件中,我们将介绍四种最短路算法及其 应用,并分析它们的优缺点。
问题背景
1 什么是最短路问题? 2 为什么需要解决最
短路问题?
最短路问题是计算从源 节点到目标节点的最短 路径的问题。它是图论 中的一个经典算法问题。
很多实际问题都涉及到 最短路径的计算,比如 电网、交通、通信等领 域。
Floyd-Warshall算法解决的是所有点对之间 的最短路径问题,可以处理有向图或负边权 图。
Bellman-Ford算法
Bellman-Ford算法解决的是有向图中含有负 权边的单源最短路径问题。
A*算法
A*算法综合了贪心和广度优先搜索,在启发 函数的帮助下,可以高效解决带权图上的单 源最短路径问题。
算法示例
1
Step 1
假设我们要求从 A 点到其他各点的最
Step 2
2
短路径。
首先初始化 A 点到其他各点的距离为
无穷大,A 点到自身的距离为 0。
3
Step 3
找到 A 点的直接邻居,更新其距离值。
Step 4
4
重复 Step 3,直到所有节点的距离值 都已经更新。
总结
中考最短路径问题专题训练(将军饮马-胡不归-瓜豆原理-辅助圆-费马点)

最短路径问题专题训练一、将军饮马问题特征:定直线上找一动点到两定点距离之和最小. 解法:做不动点对称点 如图,在直线上找一点P 使得P A +PB 最小?例1.(一动点两定点)如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.例2.(一定点两动点)如图,点P 是△AOB 内任意一点,△AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.例3.(一定点两动点)已知P 为△AOB 内部一定点,在OA 、OB 上分别取M 、N 使得PM +MN 最小。
二、费马点问题若点P 满足∠PAB =∠BPC =∠CPA =120°,则PA +PB +PC 值最小,P 点称为该三角形的费马点. 在∠ABC 内找一点P ,使得PA +PB +PC 最小.PBAP OBAMNP'M NAPOOPBMABCDMN例1.如图,在△ABC 中,△BAC =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.例2.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.三、胡不归问题从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V 的值最小.ABCPCABCDME2驿道2MM【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.【问题解决】构造射线AD 使得sin △DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH △AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.例1. 如图,△ABC 中,AB =AC =10,tanA =2,BE △AC 于点E ,D 是线段BE上的一个动点,则CD 的最小值是_______.例2. 如图,平行四边形ABCD 中,△DAB =60°,AB =6,BC =2,P 为边CD上的一动点,则PB 的最小值等于________.总结:在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.四、瓜豆原理引例:如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点. 考虑:当点P 在圆O 上运动时,Q 点轨迹是?考虑到Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,ABCDEABCDP任意时刻,均有△AMQ △△AOP ,QM :PO =AQ :AP =1:2. 【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”. 此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比. 按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.例1 如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.例2 如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.五、辅助圆(轨迹圆/隐圆) 定直线对定角/四点共圆例1 如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,△APB =90°,l 不经过点C ,则AB 的最小值为________.例2 如图,在边长为2的菱形ABCD 中,△A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A’MN ,连接A ’C ,则A ’C 长度的最小值是__________.O yxA BCM POABCDEF例3 如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42 ,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为__________.例4 如图,∠A O B =45°,边O A 、OB 上分别有两个动点C 、D ,连接C D ,以CD 为直角边作等腰Rt △CDE ,且CD =CE ,当CD 长保持不变且等于2cm 时,OE 最大值为__________.综合练习1. 如图,菱形ABCD 中,AB =2,△A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为__________.2. 如图,在Rt △ABC 中,△C =90°,AB =17,AC =8,D 为AB 边上的一动点,E 、F 分别为AC 、BC 上两点,且DE △DF ,则EF 的最小值为__________.3. 如图,△MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为__________.4. 已知正方形ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为 2 +6,则正方形的边长 .5. 如图,在四边形ABCD 中,AB =2,BC =5,若AC =AD 且△ACD =60°,则当对角线BD 取得最大值时,对角线AC 的长是_________.lPO CBA A'NMABCD6. 在等边△ABC 中,AB =4,点D 是BC 的中点,连接AD ,P 为AD 上一动点,则CP +12BP 最小值为____.7. 如图,在等腰直角△ABC 中,BC =8,D 为BC 中点,E 为DC 中点,P 为AD 上一动点,则2PE +2AP 的最小值________.8. 如图,在△ABC 中,AB =AC =10,tan △A =2,BE △AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值为________.9.如图,已知正方形ABCD 的边长为4.点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,则PC 长的最小值为________.10. 如图,AC 为边长为4的菱形ABCD 的对角线,∠ABC =60°,点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 运动.连接AM 和BN ,交于点P ,则PC 长的最小值为________.11. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.。
最短路问题实际案例

最短路问题实际案例介绍最短路问题是图论中的一个经典问题,其目标是找到两个顶点之间的最短路径。
这个问题在日常生活中有着广泛的应用,例如导航系统、网络路由以及物流配送等场景中都需要解决最短路问题。
本文将通过实际案例来深入探讨最短路问题及其应用。
什么是最短路问题?最短路问题是指在一个给定的图中,找到两个顶点之间的最短路径。
通常情况下,路径的长度可以通过边的权重来衡量。
最短路问题可以分为单源最短路问题和全源最短路问题,前者是指从一个固定的起点出发,求到图中其他所有顶点的最短路径;后者是指求图中任意两个顶点之间的最短路径。
实际案例:导航系统导航系统是最短路问题的一个典型应用。
当我们使用导航系统来规划路线时,系统需要找到最短路径以优化我们的行车时间。
下面以一个具体案例来说明导航系统如何解决最短路问题。
案例场景假设我们身处一座陌生的城市,想要前往城市中心的一个著名景点。
我们打开导航系统,输入起点和终点信息。
导航系统会根据地图数据自动生成最短路径,并提供导航指引。
导航系统的实现导航系统实现最短路径规划的过程可以分为以下几个步骤:1.构建路网图:将城市中的道路以及交叉口等信息转化为图的形式。
图中的节点表示交叉口,边表示道路,边的权重可以表示行驶距离、时间等。
2.选择算法:根据实际需求选择合适的最短路径算法。
常见的算法有Dijkstra算法、Bellman-Ford算法和A*算法等。
3.计算最短路径:根据选定的算法,在路网图上计算起点到终点的最短路径。
算法会考虑边的权重以及路径的方向等因素。
4.导航指引:根据计算得到的最短路径,导航系统会生成具体的导航指引,包括行驶指示、路口转向、距离和预计时间等信息。
优化策略导航系统通过不断的优化,提高了最短路径的计算效率和准确性。
以下是几种常见的优化策略:1.路网数据更新:导航系统会及时更新路网数据,包括道路信息、交通状况等。
这样可以保证计算得到的最短路径更准确。
2.平行算法:为了加快计算速度,导航系统采用并行算法来计算最短路径。
最短路问题例题

问题:求出A-F之间最短路线;(1)写出思路于算法;(2)Matlab 编程找出最短路径。
答案:A-F之间的最短路线有A-B3-D3-E1-F,A-B3-D3-E1-E2-F;A-B2-C1-D1-D2-E2-F 这三条路线的最短距离均为8。
方案一:思路:对于是否返回的分析:如图可以看出只有B端才能跨越C端的点直接到达D端的,其余的各端点都是必须按照字母顺序一路下来。
若如D端返回到C端或B端这是不可能的,因为这样无疑增加了路程,如图可以看出C端的点能到达D端的各个点,所以要求的直接命中想到达的该点;而D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E 端的各点是相通的,也没必要再返回D端;同样B端到达C端或D端的,因为B2,B2到能直接到达C端的各点,只有B1只能到达C1,但B1它到D1的距离和B1点到C1的距离同样为4但也不可能经过C1后返回B端的,因为C1也是联系D端的各点,而且你要返回B 段端,还不如在A端的时候就选择好一个理想的B点,这样距离会更加短。
所以不能进行返回。
如图将我们本来所需要的的路线分成两半,以D字母的为中间端。
后半部分:后半部分主要由D端连接到E端最后才连接到F端的,同时D端无法越过E端直接连接到F端。
更为重要的是前半部分,也必须要经过D端才能与F端相接,所以构成他们之间的枢纽定在D端是最好不过的。
首先的是先分析D端的三个点D1,D2,D3分别到点F的最短距离。
一、已经从D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E端的各点是相通的,也没必要再返回D端;二、由图可以看出E端到点F最好的路线是E2-F距离为1,除E2外的E1,E3他们到F点的方式(E1-F, E1-E2-F ,E3-F ,E3-E2-F)的距离均为2;所以如果能先到达E2则可以只考虑E2到F这条路线。
若先到达了E1,或E3、则这路线的最短路径必定变化为两条。
最短路问题实际案例

最短路问题实际案例最短路问题是指在图中找出两个顶点之间的最短路径的问题,其中图可以是有向图或无向图,并且每条边可以有权重。
这个问题是在许多实际案例中都会遇到的。
以下是几个实际案例,其中涉及到最短路问题:1. 导航系统:导航系统是最常见的利用最短路问题的实例。
当用户输入起点和终点时,导航系统会计算出最短路径,并显示给用户。
这个过程中,导航系统需要考虑路程的时间或距离,同时还需要考虑道路的限速和交通情况等因素。
2. 物流配送:物流配送涉及到从一个地点到另一个地点的最短路径。
物流公司需要计算出从货物的起始点到目标点的最短路径,以最快速度将货物送达目的地。
在这个问题中,可能还会有其他限制条件,如运输工具的载重量、路段的通行能力等。
3. 电信网络:电信网络是一个复杂的网络,其中存在着许多节点和边,每个节点代表一个通信设备,边代表设备之间的通信连接。
在设计电信网络时,需要考虑到从一个节点到另一个节点的最短路径,以最小化通信的时延。
这个问题中,还会有其他因素,如网络拓扑的复杂性、网络流量的负载均衡等。
4. 交通规划:交通规划涉及到城市道路网络的设计和优化。
在设计城市交通规划时,需要考虑到不同节点之间的最短路径,以便在城市中建设高效的道路系统。
这个问题中,需要考虑到人口分布、交通流量、环境因素等复杂变量。
5. 谷歌地图:谷歌地图是一种广泛使用最短路径算法的应用。
当用户在谷歌地图上搜索起点和终点时,谷歌地图会计算出最短路径,并给出导航指引。
这个过程中,谷歌地图需要考虑到道路的限速、交通情况和实时路况等因素。
综上所述,最短路问题在许多实际案例中都有应用。
无论是导航系统、物流配送、电信网络、交通规划还是谷歌地图等,都需要计算出最短路径以满足需求。
因此,研究和解决最短路问题在实际应用中具有重要意义。
第8讲-最短路问题

V={v1 ,v2 , v3 , v4}, E={e1, e2 , e3, e4, e5},
(e1) v1v2 , (e2 ) v1v3, (e3 ) v1v4 , (e4 ) v1v4 , (e5 ) v3v3 .
G 的图解如图.
否则
即当vk被插入任何两点间旳最短 途径时,被统计在R(k)中,依次 求 D时( ) 求得 ,R() 可由 来R() 查找 任何点对之间最短路旳途径.
返回
算法原理—— 查找最短路途径旳措施
若 rij( ) p1 ,则点 p1 是点 i 到点 j 的最短路的中间点.
然后用同样的方法再分头查找.若:
称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
返回
关联矩阵
对无向图G,其关联矩阵M=(mij ) ,其中:
mij 10
若vi与e j相关联 若vi与e j不关联
注:假设图为简朴图
e1 e2 e3 e4 e5
1 0 0 0 1 v1
M= 1 1 0 1 0 v2
d (v4 ) 4
d (v4 ) 2 d (v4 ) 3 d (v4 ) 5
定理1 d (v) 2 (G) vV (G)
推论1 任何图中奇次顶点的总数必为偶数.
例 在一次聚会中,认识奇数个人旳人数一定是偶数。
返回
子图
定义 设图 G=(V,E, ),G1=(V1,E1,1 )
(1) 若 V1 V,E1 E,且当 e E1 时,1 (e)= (e),则称 G1 是 G 的子图.
所以, 可采用树生长旳过程来求指定顶点到其他顶点 旳最短路.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Step3:令T(vji)=min{T(vj)| vj不属于Si}。如果T(vji)<+∞ ,则把vji的 T标号变为P标号,
令Si+1=Si ∪{vji},k=ji,i=i+1,转入step1.
Matlab程序(见附件)
2 算法介绍-floyd算法
算法步骤:
Step1:输入图G的权矩阵W,对所有i,j,有dij=wij,k=1;
Step2:更新dij,对所有i,j,若dij>dik+dkj,则令dij=dik+dkj;
由此可以看出,算法的时间与随问题规模增大呈指数增长,所以最 短路算法不适合大规模配送问题求解。
考虑经过2点的Matlab程序(见附件)
3 应用举例
3.3 多目标运输问题
求次短路 Matlab程序
参考文献: 多目标最短路模型及算法,西南交通大学大学学报
最短路问题算法及应用
主要内容
1 问题描述 2 算法介绍
2.1 dijkstra算法 2.2 floyd算法
3 应用举例
3.1 物流中心选址 3.2 物流配送问题 3.3 多目标运输问题
1 问题描述
ቤተ መጻሕፍቲ ባይዱ
定义1 对简单图G的每一边e赋予一个实数,记为w(e),称为边e的 权,而每边都赋予权的图称为赋权图。 定义2 (u,v)-路的边权之和称为该路的长,而u,v间路长达到最小的 路称顶点u和v的最短路。 在给定赋权图G中,求两个互异顶点间的最短路,简记为最短路问题。
Step3:若dii<0,则存在一条含有顶点vi的负回路,停止;或者k=n停止,否则转入 step2.
Matlab程序(见附件)
3 应用举例
3.1 物流中心选址
步骤: 求出最短路径矩阵U; 矩阵U每一行求和; 最小值行标号为选 址地点。
Matlab程序(见附件)
参考文献: F I oyd最短路径算法在配送中心选址中的应用,湖南农业大学学报
最短路问题是最优化问题之一,广泛应用于生产实践中的许多问 题,如线路安排、厂区选址、设备更新等。
2 算法介绍-dijkstra算法
基本思想:按距离u0由近及远为顺序,依次求得u0到G的各顶 点的最短路和距离,直到v0(或直到G的所有顶点),算法结束。
算法步骤:
初始化(i=0):S0={vs},P(vs)=0, λ(vs)=0,对每一个v≠vs,令T(v)=+∞, λ(v)=M,k=s
3 应用举例
3.2 物流配送问题
问题抽象:物流配送问题可以抽象为必须通过指定点的最短路问题。 分两种情况:车辆回到原点;车辆不回到原点。
举例:考虑2点的情况 由始点k1到终点k2,经过指定点t1、t2的最短路经过4个顶点的 顺序只能是如下两种情况,k1→t1→t2→k2和k1→t2→t1→k2. 若要满 足所求得的路是最短路,那么4个顶点中相邻顶点之间的路也一定 是最短路。 于是分别计算k1→t1,t1→t2,t2→k2和k1→t2,t2→t1,t1→k2 之间的最短路;然后前三者相加得d1,后三者相加得d2,比较d1与 d2之值,取较小者作为最终的输出结果。