山西省晋中市2017届高考适应性调研考试数学试题(理)有答案

合集下载

山西省2017届高三数学第二次适应性试题含答案

山西省2017届高三数学第二次适应性试题含答案

山西省2017届高三数学第二次适应性试题(含答案)绝密★启用前2016-2017年度山西重点中学协作体高三适应性考试(二)数学试卷(文理通用)第I卷(选择题60分)一、选择题:共12题每题5分共60分1.若tanθ+=4,则sin2θ=A.B.C.D.2.“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1x2),则(x2)-B.f(x1)0,f(x2)-C.f(x1)0,f(x2)-D.f(x1)0,f(x2)-4.某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是A.B.C.D.5.点O是△ABC所在平面上的一点,且满足,则点O是△ABC的A.重心B.垂心C.内心D.外心6.下列在曲线,为参数)上的点是A.B.C.D.7.甲、乙两人各抛掷一次骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x,y则满足复数x+yi的实部大于虚部的概率是A.B.C.D.8.已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA,PB,PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为A.18B.24C.18D.249.?过双曲线-=1(a0,b0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若=,则双曲线的离心率是A.B.C.D.10.复数z=+(a∈R,i为虚数单位)在复平面上对应的点不可能位于A.第一象限B.第二象限C.第三象限D.第四象限11.一射手对同一目标独立地射击四次,已知至少命中一次的概率为,则此射手每次射击命中的概率为A.B.C.D.12.已知a,b,c为△ABC的三个内角A,B,C的对边,向量m=(,-1),n=(cosA,sinA).若m⊥n,且acosB+bcosA=csinC,则角A,B的大小分别为A.,B.,C.,D.,第II卷(非选择题)评卷人得分二、填空题:共4题每题5分共20分(每题5分,20分)13.若圆x2+y2=r2和圆(x-2)2+(y-2)2=R2相交,其中的一个交点的坐标为(1,3),则另一个交点的坐标为. 14.如图所示,已知A,B,C,D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α(=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是_定义运算“□”:a□b=.设F(x)=f(x)□g(x),若f(x)=sinx,g(x)=cosx,x∈R,则F(x)的值域为.16.已知在数列中,a1=1,且对于任意正整数n,都有an+1=an+n,则a100=.三、解答题:共8题共70分请考生在第17、18、19三题中任选一道做答,注意:只能做所选定的题目。

【配套K12】山西省2017届高考数学3月考前适应性测试(一模)试题 理

【配套K12】山西省2017届高考数学3月考前适应性测试(一模)试题 理

山西省2017届高三3月高考考前适应性测试(一模)理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足12iz i =+,则z 的共轭复数z 的虚部是( ) A .i B .i - C .1- D .12.已知实数集R ,集合3{|log 3}M x x =<,2{|450}N x x x =-->,则()R MC N =( )A .[1,8)-B .(0,5]C .[1,5)-D .(0,8)3.已知函数2,0,()1,0,x e a x f x x a x ⎧+≤=⎨++>⎩a 为实数,若(2)()f x f x -≥,则x 的取值范围为( ) A .(,1]-∞ B .(,1]-∞- C .[1,)-+∞ D .[1,)+∞4.若双曲线:C 22221x y a b-=(0,0)a b >>的中心为O ,过C 的右顶点和右焦点分别作垂直于x 轴的直线,交C 的渐近线于A ,B 和M ,N ,若OAB ∆与OMN ∆的面积比为1:4,则C 的渐近线方程为( )A .y x =±B .y = C.2y x =± D .3y x =±5.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了3局的概率为( ) A .13 B .25 C.23 D .456.已知P 是圆222x y R +=上的一个动点,过点P 作曲线C 的两条互相垂直的切线,切点分别为M ,N ,MN 的中点为E .若曲线:C 22221x y a b-=(0)a b >>,且222R a b =+,则点E 的轨迹方程为2222x y a b-=若曲线:C 22221x y a b -=.(0)a b >>,且222R a b =-,则点E 的轨迹方程为( )A .2222x y a b -=.2222x y a b -=C.2222x y a b+=D .2222x y a b +=7.21)x+的展开式中3x 的系数为( ) A .-1 B .1 C. -7 D .78.已知椭圆:C 22221x y a b-=(0)a b >>与直线3y x =+只有一个公共点,且椭圆的离心率为5.则椭圆C 的方程为( )A .221169x y += B .22154x y += C.22195x y += D .2212520x y += 9.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的部分图象如图所示,将函数()y f x =的图象向左平移43π个单位,得到函数()y g x =的图象.则函数()y g x =在区间5[,]22ππ上的最大值为( )A .3B D10.如图,在ABC ∆中,AB BC ==90ABBC ∠=°,D 为AC 的中点,将ABD ∆沿BD 折起到PBD ∆的位置,使PC PD =,连接PC ,得到三棱锥P BCD -,若该三棱锥的所有顶点都在同一球面上,则该球的表面积为( )A .7πB .5π C.3π D .π11.运行如图所示的程序框图,输出的数称为“水仙花数”. (算术符号MOD 表示取余数,如1121MOD =).下列说法正确的个数是( )①“水仙花数”是三位数; ②152是“水仙花数”; ③407是“水仙花数”.A .0B .1 C. 2 D .3 12.已知函数()cos sin sin af x x x x x x=--,(,0)(0,)x k k ππ∈-(其中k 为正整数,a R ∈,0a ≠),则()f x 的零点个数为( ) A .22k - B .2k C.21k - D .与a 有关第Ⅱ卷二、填空题:本大题共4小题,每题5分.13.命题“x N ∀∈,21x >”的否定是 .14.在ABC ∆中,已知2AB =,1AC =,60A ∠=︒,D 为AB 的中点,则向量AD 在BC 上的投影为 .15.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b =C (sin )sin A A B =+,则AC 边上的高的最大值为 .16.某几何体的三视图如图所示,则该几何体的体积是 .三、解答题 :解答应写出文字说明、证明过程或演算步骤. 17. 已知数列{}n a 满足222cos 2n n a π=+,等差数列{}n b 满足112a b =,22a b =. (1)求n b ;(2)记212122n n n n n c a b a b --=+,求n c ; (3)求数列{}n n a b 的前2n 项和2n S .18. 将某质地均匀的正十二面体玩具的十二个面上分别标记数字1,2,3,…,12.抛掷该玩具一次,记事件A :向上的面标记的数字是完全平方数(即能写成整数的平方形式的数,如293=,9是完全平方数).(1)甲、乙二人利用该玩具进行游戏,并规定:①甲抛掷该玩具一次,若事件A 发生,则向上一面的点数的6倍为甲的得分;若事件A 没有发生,则甲得0分;②乙抛掷该玩具一次,将向上的一面对应数字作为乙的得分. (1)甲、乙二人各抛掷该玩具一次,求二人得分的期望; (2)甲、乙二人各抛掷该玩具一次,求甲的得分不低于乙的概率;(3)抛掷该玩具一次,记事件B ;向上一面的点数不超过(112)k k ≤≤.若事件A 与B 相互独立,试求出所有的整数k .19. 在三棱柱111ABC A B C -中,2AC BC ==,120ACB ∠=︒,D 为11A B 的中点.(1)证明:1//AC 平面1BC D ; (2)若11A A A C =,点1A 在平面ABC 的射影在AC 上,且BC 与平面1BC D 所成角的正弦值为111ABC A B C -的高. 20. 已知抛物线:C 24y x =和直线:l 1x =-.(1)若曲线C 上存在一点Q ,它到l 的距离与到坐标原点O 的距离相等,求Q 点的坐标; (2)过直线l 上任一点P 作抛物线的两条切线,切点记为A ,B ,求证:直线AB 过定点. 21. 已知函数1()ln f x x ax b x=+-+. (1)若函数2()()g x f x x=+为减函数,求a 的取值范围. (2)若()0f x ≤恒成立,证明:1a b ≤-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程 已知曲线1C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩(0a b >>,θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为(0)r r ρ=>.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程,并讨论两曲线公共点的个数; (2)若b r a <<,求由两曲线1C 与2C 交点围成的四边形面积的最大值. 23.选修4-5:不等式选讲已知关于x 的不等式||2x x m m --≥. (1)当0m =时,求该不等式的解集;(2)当[2,3]x ∈时,该不等式恒成立,求m 的取值范围.2017年山西省高考考前适应性测试理科数学参考答案及评分标准一、选择题1-5:DBABB 6-10:ADBCA 11、12:CC 二、填空题13. 0x N ∃∈,201x ≤. 14.2-163三、解答题17.解:(1)由题意知2,3cos =4,.n n a n n π⎧=+⎨⎩为奇数,为偶数于是11112b a ==,224b a ==,故数列n b 的公差为3, 故13(1)32n b n n =+-=-.(2)2[3(21)2]4[3(2)2]n c n n =--+-3618n =-. (3)由(Ⅱ)知,数列{}n c 为等差数列,21122212122n n n n n S a b a b a b a b --=++++1212()2n n c c c c c +=+++=218n =.18.解:(1)设甲、乙二人抛掷该玩具后,得分分别为X ,Y . 1)易得X ,Y 的分布列分别为:故7EX =,132EY =. 2)(6,16)(24)(54)P P X Y P X P X ==≤≤+=+= 161151212121224=⨯++=. (2)易知抛掷该玩具一次,基本事件总数共有12个,事件A 包含3个基本事件(1点,4点,9点). 记()n AB ,()n B 分贝表示事件AB ,B 包含的基本事件数, 由()()()P AB P A P B =及古典概率模型,得()3()121212n AB n B =⋅,()4()n B n AB ∴=①, 故B 事件包含的基本事件数必为4的倍数,即{4,8,12}k ∈,当4k =时,()4n B =,{1,4}AB =,()2n AB =,不符合①, 当8k =时,()8n B =,{1,4}AB =,()2n AB =,符合①, 当12k =时,()12n B =,{1,4,9}AB =,()3n AB =,符合①, 故k 的所有可能值为8或12.19. 解:(1)证明:连接1B C 交1BC 于点E ,连接DE .则E 为1B C 的中点,又D 为11A B 的中点,所以1//DE A C ,且DE ⊂平面1BC D ,则1//AC 平面1BC D .(2)解:取AC 的中点O ,连接1A O ,因为点1A 在平面ABC 的射影在AC 上,且11A A A C =,所以1A O ⊥平面ABC ,则可建立如图所示的空间直角坐标系O xyz =.设1AO a =. 又ABC ∆中,2AC BC ==,120ACB ∠=︒,则(B -,(1,0,0)C -,1(2,0,)C a -,3()2D a -,所以(1,BC =,1(0,)BC a =,11(2C D =. 设(,,)n x y z =为平面1BC D 的法向量,则1100n BC n C D ⎧⋅=⎪⎨⋅=⎪⎩,即0,10.22az x y ⎧+=⎪⎨+=⎪⎩ 取y a =-,则(3,,n a a =-为平面1BC D 的一个法向量. 由3|cos ,|||n BC =5=可得a =即三棱柱111ABC A B C -.20.解:(1)设(,)Q x y ,则222(1)x x y +=+,即221y x =+.由22214y x y x⎧=+⎪⎨=⎪⎩,解得1(,2Q .(2)设过点(1,)t -的直线方程为(1)(0)y t k x k -=+≠,代入24y x =得24440ky y t k -++=,由0∆=得210k kt +-=,特别地,当0t =时,1k =±,这时切点为(1,2)A ,(1,2)B -, 显然AB 过定点(1,0)F .一般地方程210k kt +-=有两个根, ∴12k k t +=-,121k k =-•. ∴两切点分别为21112(,)A k k ,22211(,)B k k , ∴21112(1,)FA k k =-,22212(1,)FB k k =-. 又2212221212(1)(1)k k k k ---=12121112(1)()0k k k k +-=, ∴//FA FB ,∴AB 过点(1,0)F . 综上,直线AB 过定点(1,0)F . 21.解:(1)∵2()()g x f x x =+=1ln x ax b x+++,0x >. ∴211'()g x a x x=+-,0x >. ∵()g x 为减函数,∴'()0g x ≤,即2211111()24a x x x ≤-=--.∴14a ≤-. (2)211'()f x a x x=++221(0)ax x x x ++=>,令21y ax x =++, 当0a ≥时,'()0f x >,函数()f x 在(0,)+∞上单调递增,不满足()0f x ≤恒成立; 当0a <时,140a ∆=->,由210ax x ++=,得0x =>,或0x =<,设0x =函数()f x 在0(0,)x 上单调递增;在0(,)x +∞上单调递减. 又()0f x ≤恒成立,所以0()0f x ≤,即0001ln 0x ax b x +-+≤. 由上式可得0001ln b ax x x ≤--.由20010ax x ++=得0201x a x +=-. 所以00020011ln x a b ax x x x ++≤---020011ln 1x x x =-+-+. 令01t x =,0t >. 2()ln 1h t t t t =+-+.212(21)(1)'()t t t t h t t t+--+-==.当01t <<时,'()0h t >,函数()h t 在(0,1)上单调递增, 当1t ≥时,'()0h t ≤,函数()h t 在(1,)+∞上单调递减,()(1)1h t h ≤=,故而1a b +≤,即1a b ≤-.22.解:(1)22122:1(0)x y C a b a b+=>>,2222:(0)C x y r r +=>.当r a =或b 时,两曲线有两个公共点; 当b r a <<时,两曲线有四个公共点; 当0r b <<或r a >时,两曲线无公共点.(2)由于曲线1C 与曲线2C 关于x 轴、y 轴以及原点对称, 所以四边形也关于x 轴、y 轴以及原点对称. 设四边形位于第一象限的点为(cos ,sin )a b θθ, 则四边形的面积为4cos sin S a b θθ==•2sin 2ab ab θ≤.当且仅当sin 21θ=,即4πθ=时,等号成立.23.解:(1)当0m =时,原不等式化为||20x x -≥,等价于202x x ≥⎧⎨≥⎩或202x x <⎧⎨-≥⎩,解得x ≥所以所求的不等式的解集为{|x x ≥.(2)∵[2,3]x ∈,∴0x >,∴原不等式化为2||m x m x+-≥①. 当2m ≤-,即20m +≤时,①式恒成立,所以2m ≤-. 当2m >-,即20m +>时,①式化为2m x m x +-≥,或2m x m x+-≤-. 化简得22(1)x m x -≥+,或22(1)x m x +≤-. ∵[2,3]x ∈,∴10x +>,10x ->,∴221x m x -≤+或221x m x +≥-.又221111x x x x -=--++,2231211x x x x +=-++--, 所以当[2,3]x ∈时,2min 22()13x x -=+,2max 2()61x x +=-, 所以23m ≤,或6m ≥. 所以223m -<≤,或6m ≥.综上实数m 的取值范围为2{|3m m ≤或6}m ≥.教育配套资料K12 教育配套资料K12。

晋中市2017年3月高考适应性调研考试数学(理)答案

晋中市2017年3月高考适应性调研考试数学(理)答案
分 由(1)得:代入(2)消去,整理得: ,关于的方程有唯一解…………8分 令 方程组有 解时,,所以在单调递减,在单调递增 所以 只需………………………………10分 令 在为单减函数 且时,,即 所以时,关于的方程有唯一解 此时,公切线方程为………………………………12分
22.【解析】 (Ⅰ)曲线是以为圆心,以为半径的圆;
由,得,即, ∴ ∴.……………5分 (Ⅱ)由(Ⅰ)知,,∴ ∴,得.………………7分 ∴. 设数列的前项和为 ∴ ① ②……………8分 ①-②,得……………10分 ∴ ………………12分 18(Ⅰ)解析:因为四棱锥的体积为2, 即,所以 又,所以,即点是靠近点的四等分点…………2分 过点作交于点,所以 又,所以且……………4分 所以四边形为平行四边形, 所以,所以直线.………………6分
所以.……………10分 所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的 期望值为万元。 ………………………12分 20解:(Ⅰ)设M(p,q),N(-p,-q),,则,………………2分

两式相减得
,即 , ………………4分
.………………5分 (Ⅱ)设直线与轴相交于点, .………………7分 由于且,得 ,(舍去)或.……………8分 即直线经过点.设, ①当直线垂直于轴时,弦中点为;……………9分 ②当直线与轴不垂直时,设的方程为,则 . .………………10分 . 消去,整理得. 综上所述,点的轨迹方程为.………………12分
晋中市2017年3月高考适应性调研考试
数学理科答案
一、选择题: 1-5CDCAB 6-10 BBACD 11-12DA
二、填空题
13. 16
.
15. 30°
16
三、解答题:(解答题只给出一种或两种答案,在评卷过程中遇到的 不同答案,请参照此标准酌情给分) 17.解:(Ⅰ)由已知得,……………1分 且, 设数列的公差为,则有, ∴……………3分

山西省晋中市高三3月高考适应性调研考试理数试题

山西省晋中市高三3月高考适应性调研考试理数试题

2017年3月高考适应性调研考试高三数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U R =,{3,2,1,0,1,2}A =---,{|1}B x x =≥,则U AC B =( )A .{1,2}B .{1,0,1,2}-C .{3,2,1,0}---D .{2}2.在复平面中,复数421(1)1i i +++对应的点在( ) A .第一象限 B .第二象限 C . 第三象限 D .第四象限3.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,则“sin sin A B >”是“a b >”的( ) A .充分不必要条件 B .必要不充分条件 C . 充要条件 D . 既不充分也不必要条件4.若1sin()3πα-=,且2παπ≤≤,则sin 2α的值为( )A .9-B .9- C. 9 D .95.执行下面的程序框图,则输出K 的值为( )A . 98B . 99 C. 100 D .1016.李冶(1192~1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边形到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算) A .10步,50步 B .20步,60步 C.30步,70步 D .40步,80步7.某几何体的三视图如图所示,则该几何体的体积是( )A . 16B . 20 C. 52 D .60 8.已知函数()sin(2)12f x x π=+,'()f x 是()f x 的导函数,则函数'2()()y f x f x =+的一个单调递减区间是( ) A .7[,]1212ππ B .5[,]1212ππ-C. 2[,]33ππ- D .5[,]66ππ- 9.若332(||)a x x dx -=+⎰,则在a的展开式中,x 的幂函数不是整数的项共有( )A .13项B . 14项 C. 15项 D .16项10.在平面直角坐标系中,不等式组22200x y x y x y r ⎧+≤⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为( )A . -1 B.17-C. 13 D .75- 11.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,过点1F 且垂直于x 轴的直线与该双曲线的左支交于,A B 两点,22,AF BF 分别交y 轴于,P Q 两点,若2PQF ∆的周长为12,则ab 取得最大值时该双曲线的离心率为( )A B 12.已知函数22()1xf x eax bx =-+-,其中,a b R ∈,e 为自然对数的底数,若(1)0f =,'()f x 是()f x 的导函数,函数'()f x 在区间(0,1)内有两个零点,则a 的取值范围是( )A .22(3,1)e e -+ B .2(3,)e -+∞ C. 2(,22)e -∞+D .22(26,22)e e -+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设样本数据122017,,,x x x 的方差是4,若21(1,2,,2017)i i y x i =-=,则122017,,,y y y 的方差为 .14.在平面内将点(2,1)A 绕原点按逆时针方向旋转34π,得到点B ,则点B 的坐标为 .15.设二面角CD αβ--的大小为45,A 点在平面α内,B 点在CD 上,且45ABC ∠=,则AB 与平面β所成的角的大小为 . 16.非零向量,m n 的夹角为3π,且满足||||(0)n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若112233x y x y x y ++所有可能值中的最小值为24m ,则λ= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,若14m S -=-,0m S =,214m S +=(2m ≥ 且*m N ∈).(1)求m 的值; (2)若数列{}n b 满足2log 2nn a b =*()n N ∈,求数列{(6)}n n a b +的前n 项和.18. 如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且3ABE π∠=,2BC =,四棱锥F ABED -的体积为2,点F 在平面ABED 内的正投影为G ,且G 在AE 上点M 是线段CF 上,且14CM CF =.(1)证明:直线//GM 平面DEF ; (2)求二面角M AB F --的余弦值.19. 交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题: (1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950a =,记X 为某同学家的一辆该品牌车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元: ①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.20. 设,,M N T 是椭圆2211612x y +=上三个点,,M N 在直线8x =上的射影分别为11,M N . (1)若直线MN 过原点O ,直线,MT NT 斜率分别为12,k k ,求证:12k k 为定值; (2)若,M N 不是椭圆长轴的端点,点L 坐标为(3,0),11M N L ∆与MNL ∆面积之比为5,求MN 中点K 的轨迹方程.21. 已知函数()ln(1)f x m x =+,()(1)1xg x x x =>-+. (1)讨论函数()()()F x f x g x =-在(1,)-+∞上的单调性;(2)若()y f x =与()y g x =的图象有且仅有一条公切线,试求实数m 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0a >,β为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos()32πρθ-=.(1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()|1||21|f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.试卷答案一、选择题1-5:CDCAB 6-10:BBACD 11、12:DA二、填空题13. 16 14. ()22-15. 30 16. 83三、解答题17.(1)由已知得:14m m m a S S -=-=, 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d =,由0m S =,得1(1)202m m ma -+⨯=,即11a m =- ∴1(1)214m a a m m =+-⨯=-= ∴5m =(2)由(1)知,14a =-,2d =,∴26n a n =-,∴23log n n b -=,得32n n b -=. ∴32(6)222n n n n a b n n --+=⨯=⨯设数列{(6)}n n a b +的前n 项和为n T∴10321222(1)22n n n T n n ---=⨯+⨯++-⨯+⨯① 012121222(1)22n n n T n n --=⨯+⨯++-⨯+⨯②①–②,得:1212222n n n T n ---=+++-⨯112(12)212n n n ---=-⨯-111222n n n --=--⨯∴1*1(1)2()2n n T n n N -=-+∈ 18.(1)因为四棱锥F ABED -的体积为2,即14223F ABED V FG -=⨯⨯=,所以FG =又2BC EF ==,所以32EG =,即点G 是靠近A 的四等分点, 过点G 作//GK AD 交DE 于点K ,所以3344GK AD CF == 又34MF CF =,所以MF GK =且//MF GK 所以四边形MFKG 为平行四边形所以//GM FK ,所以直线//GM 平面DEF .(2)设,AE BD 的交点为O ,OB 所在直线为x 轴,OE 所在直线为y 轴,过点O 作平面ABED 的垂线为z 轴,建立空间直角坐标系,如图所示,(0,1,0)A -,B,1(0,2F -,5(44M -,(1,0)BA =-,5(44BM =--,1(2BF =-, 设平面ABM ,ABF 的法向量为,m n ,00m BA m BM ⎧=⎪⎨=⎪⎩,则(1,1)m =-,0n BA n BF ⎧=⎪⎨=⎪⎩,则1(1,3,)2n =- 785cos 85||||m n m n θ==,即为所求. 19.(1)由题意可知:X 的可能取值为0.9,0.8,0.7,,1.1,1.3a a a a a a 由统计数据可知:1(0.9)6P X a ==,1(0.8)12P X a ==,1(0.7)12P X a ==,1()3P X a ==, 1( 1.1)4P X a ==,1( 1.3)12P X a ==所以X 的分布列为:所以11111111.9113050.90.80.7 1.1 1.39426121234121212a EX a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯==≈(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为13,三辆车中至多有一辆事故车的概率为3123112(1)()333P C =-+2027=②设Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为-5000,10000 所以Y 的分布列为:所以500010000500033EY =-⨯+⨯= 所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为10050EY ⨯=万元20.(1)设(,)M p q ,(,)N p q --,00(,)T x y ,则22012220y q k k x p-=- 又2222001161211612p q x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得:22220001612x p y q --+=, 即22022034y q x p -=-- 1234k k =-(2)设直线MN 与x 轴相交于点(,0)R r ,1|3|||2MNL M N S r y y ∆=-- 111115||2M N L M N S y y ∆=- 由于115M N L MNL S S ∆∆=且11||||M N M N y y y y -=-,得11115||5|3|||22M N M N y y r y y -=--,4r =(舍去)或2r = 即直线MN 经过点(2,0)F ,设1122(,),(,)M x y N x y ,00(,)K x y ①当直线MN 垂直于x 轴时,弦MN 中点为(2,0)F②当直线MN 与x 轴不垂直时,设MN 的方程为(2)y k x =-,则2211612(2)x y y k x ⎧+=⎪⎨⎪=-⎩2222(34)1616480k x k x k ⇒+-+-=21221634k x x k +=+,2122164834k x x k -=+,202834k x k =+,02634ky k-=+, 消去k ,整理得:22004(1)1(0)3y x y -+=≠ 综上所述,点K 的轨迹方程为224(1)1(0)3y x x -+=>. 21.(1)'''221(1)1()()()1(1)(1)m m x F x f x g x x x x +-=-=-=+++,1x >-, 当0m ≤时,'()0F x <,函数()F x 在(1,)-+∞上单调递减; 当0m >时,令'()0F x <11x m ⇒<-+,函数()F x 在1(1,1)m--+上单调递减; '()0F x >11x m ⇒>-+,函数()F x 在1(1,)m-++∞上单调递增,综上所述,当0m ≤时,()F x 的单减区间是(1,)-+∞;当0m >时,()F x 的单减区间是1(1,1)m--+; 单增区间是1(1,)m-++∞. (2)函数()ln(1)f x m x =+在点(,ln(1))a m a +处的切线方程为ln(1)()1my m a x a a -+=-+, 即ln(1)11m may x m a a a =++-++ 函数()1x g x x =+在点1(,1)1b b -+处的切线方程为211(1)()1(1)y x b b b --=-++, 即2221(1)(1)b y x b b =+++. ()y f x =与()y g x =的图象有且仅有一条公切线所以2221(1)1(1)ln(1)(2)1(1)m a b ma b m a a b ⎧=⎪++⎪⎨⎪+-=⎪++⎩有唯一一对(,)a b 满足这个方程组,且0m >由(1)得:21(1)a m b +=+代入(2)消去a ,整理得: 22ln(1)ln 101m b m m m b +++--=+,关于(1)b b >-的方程有唯一解 令2()2ln(1)ln 11g b m b m m m b =+++--+ '22222[(1)1]()1(1)(1)m m b g b b b b +-=-=+++方程组有 解时,0m >,所以()g b 在1(1,1)m --+单调递减,在1(1,)m -++∞单调递增 所以min 1()(1)ln 1g b g m m m m=-+=-- 因为b →+∞,()g b →+∞,1b →-,()g b →+∞,只需ln 10m m m --=令()ln 1m m m m σ=--'()ln m m σ=-在0m >为单减函数且1m =时,'()0m σ=,即max ()(1)0m σσ==所以1m =时,关于b 的方程22ln(1)ln 101m b m m m b +++--=+有唯一解 此时0a b ==,公切线方程为y x =22.(1)曲线C 是以(,0)a 为圆心,以a 为半径的圆直线l的直角坐标方程为30x +-=由直线l 与圆C 只有一个公共点,则可得|3|2a a -= 解得:3a =-(舍),1a =所以:1a =(2)曲线C 的极坐标方程为2cos a ρθ=(0a >)设A 的极角为θ,B 的极角为3πθ+,则21||||sin 2cos ||2cos()||cos cos()|2333OAB S OA OB a a πππθθθθ∆==+=+21cos cos()cos cos 32πθθθθθ+=1cos 21222θθ+=111(cos 22)2224θθ=-+11cos(2)234πθ=++ 所以当6πθ=-时,11cos(2)234πθ++取得最大值34. OAB ∆的面积最大值24a . 23.(1)12,21()3,122,1x x f x x x x x ⎧+≤-⎪⎪⎪=--<<⎨⎪--≥⎪⎪⎩画出图象如图,(2)由(1)知,32m =∵2222222323()2()242m a c b a b c b ab bc ==++=+++≥+, ∴324ab bc +≤,∴2ab bc +的最大值为34, 当且仅当12a b c ===时,等号成立.。

山西省晋中市2017届高三全真模拟数学(理)试题Word版含答案

山西省晋中市2017届高三全真模拟数学(理)试题Word版含答案

山西省晋中市2017届高三全真模拟试题(理科数学)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数21iz i=+,则z z ⋅= A. 2i B. 2 C. 4i D.i2.已知角α的顶点与坐标原点重合,始边与x 轴的非法半轴重合,终边经过点()1,2P -,则sin 2α= A. B. C. D.3.已知函数()()2,31,32x f x x f x x +<⎧⎪=⎨⎛⎫≥⎪ ⎪⎝⎭⎩,则()4f -=A. 12B.14C. 18D.1164.若实数,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则6z x y =+的最大值是A. 40B. 18C. 4D. 35.现有4张卡片,正面分别标有1,2,3,4,背面完全相同.将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽取一张,抽取后不放回,甲先抽,若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是 A.23 B.712 C. 12 D. 5126.定义a b ad bc c d =-,如121423234=⨯-⨯=-,那么21312xdx =⎰A. 6B. 3C.32D. 0 7.在()()()()23111111x x x x ++++++++ 的展开式中,2x 的系数是A. 220B. 165C. 66D. 558.若向量1,a b c ===1a b ⋅=- ,则a c b c ⋅+⋅ 的最大值是9.已知抛物线()2:20C y px p =>的焦点为F,点(Q ,射线FQ 与C 交于点E ,与C 的准线交于点P ,且2PE EF =,则点E 到y 轴的距离是A. 1B. 12C. 13D.1410.已知A,B 是半径为AB 作相互垂直的两个平面,αβ,若,αβ截该球所得的两个截面的面积之和为16π,则线段AB 的长度是A. 4B.11.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是个半径为R 的水车,一个水斗从点()3A -出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒t 后,水斗旋转到P 点,设P 的坐标为(),x y ,其纵坐标满足()()sin 0,0,2y f t R t t πωϕωϕ⎛⎫==+≥>< ⎪⎝⎭,则下列叙述错误的是A.6,,306R ππωϕ===-B.当[]25,55t ∈时,点P 到x 轴的距离的最大值为6C. 当[]10,25t ∈时,函数()y f t =单调递减D. 当20t =时,PA =12.若关于x 的不等式()1ln 2x x k kx ++>的解集为A ,且()2,A +∞⊆,则整数k 的最大值是A. 6B. 5C. 4D. 3二、填空题:本大题共4小题,每小题5分,共20分. 13.已知集合(){}31|log 5,|22xA x Z y xB x R ⎧⎫=∈=+=∈<⎨⎬⎩⎭,则A B = .14.过双曲线()2222:10,0x y C a b a b-=>>的右焦点且垂直于x 轴的直线与C 的渐近线相交于A,B 两点,若AOB ∆(O 为坐标原点)为正三角形,则C 的离心率为 .15.现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品,如图所示的程序框图表示统计20个样本中的优质品数,其中m 表示每件药材的重量,则图中①,②两处依次应该填写的整数分别是 .16.如图,已知正方体1111ABCD A BC D -的棱长为2,点E 为线段11A B 的中点,点F,G 分别为线段1A D 与1BC 上的动点,当三棱锥E FGC-的俯视图的面积最大值,该三棱锥的正视图的面积为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知数列{}n a 和{}n b 满足,()1112,1,2,n n a b a a n N *+===∈12311111,.23n n b b b b b n N n*+++++=-∈ (1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .18.(本题满分12分)某印刷厂为了研究印刷单册书籍的成本y (单位:元)与印刷册数x (单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲:(1)(2)24 6.4ˆˆ1.1, 1.6.yyx x=+=+为了评价两种模型的拟合效果,完成以下任务: (1)(ⅰ)完成下表(计算结果精确到0.1):(ⅱ)分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较1Q ,2Q 的大小,判断哪个模型拟合效果更好.(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)19.(本题满分12分)如图(1)五边形ABCDE 中,,//,2,ED EA AB CD CD AB ==150EDC ∠= ,将EAD ∆沿AD 折到PAD ∆的位置,得到四棱锥P ABCD -,如图(2),点M 为线段PC的中点,且BM ⊥平面PCD .(1)求证:平面PAD ⊥平面ABCD ; (2)若直线PC AB 与所成角的正切值为12,求直线BM 与平面PDB 所成角的正弦值.20.(本题满分12分)已知椭圆()2222:10x y E a b a b +=>>的离心率为2,且过点.⎛ ⎝⎭(1)求E 的方程;(2)若直线():0l y kx m k =+>与E 相交于,P Q 两点,且OP 与OQ (O 为坐标原点)的斜率之和为2,求点O 到直线l 的距离的取值范围.21.(本题满分12分)已知函数().xf x e =(1)讨论函数()()g x f ax x a =--的单调性; (2)证明:()3ln f x xx ++>请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

山西省晋中市2017届高考数学一模试卷(理科) Word版含解析

山西省晋中市2017届高考数学一模试卷(理科) Word版含解析

2017年山西省晋中市高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.设U=R,A={﹣3,﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1,2}C.{﹣3,﹣2,﹣1,0}D.{2}2.在复平面中,复数+i4对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.在△ABC中,角A,B,C的对边分别为a、b、c,则“sinA>sinB”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若sin(π﹣α)=,且≤α≤π,则sin2α的值为()A.﹣B.﹣C.D.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.1016.李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步、50步B.20步、60步C.30步、70步D.40步、80步7.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.608.已知函数f(x)=sin(2x+),f′(x)是f(x)的导函数,则函数y=2f(x)+f′(x)的一个单调递减区间是()A.[,] B.[﹣,]C.[﹣,]D.[﹣,]9.若a=2(x+|x|)dx,则在的展开式中,x的幂指数不是整数的项共有()A.13项B.14项C.15项D.16项10.在平面直角坐标系中,不等式组(r为常数)表示的平面区域的面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.﹣C.D.﹣11.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A .B .C .2D .12.已知函数f (x )=e 2x ﹣ax 2+bx ﹣1,其中a ,b ∈R ,e 为自然对数的底数,若f (1)=0,f′(x )是f (x )的导函数,函数f′(x )在区间(0,1)内有两个零点,则a 的取值范围是( ) A .(e 2﹣3,e 2+1) B .(e 2﹣3,+∞) C .(﹣∞,2e 2+2)D .(2e 2﹣6,2e 2+2)二、填空题(本小题共4小题,每小题5分,共20分)13.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i ﹣1(i=1,2,…,2017),则y 1,y 2,…y 2017的方差为 .14.在平面内将点A (2,1)绕原点按逆时针方向旋转,得到点B ,则点B的坐标为 .15.设二面角α﹣CD ﹣β的大小为45°,A 点在平面α内,B 点在CD 上,且∠ABC=45°,则AB 与平面β所成角的大小为 .16.非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若•+•+•所有可能值中的最小值为42,则λ= .三、解答题(本题共6题,70分)17.(12分)已知等差数列{a n }的前n 项和为S n ,若S m ﹣1=﹣4,S m =0,S m +2=14(m ≥2,且m ∈N*). (1)求m 的值;(2)若数列{b n }满足=log a b n (n ∈N*),求数列{(a n +6)•b n }的前n 项和.18.(12分)如图,三棱柱ABC ﹣DEF 中,侧面ABED 是边长为2的菱形,且∠ABE=,BC=,四棱锥F ﹣ABED 的体积为2,点F 在平面ABED 内的正投影为G ,且G 在AE 上,点M 是在线段CF 上,且CM=CF . (Ⅰ)证明:直线GM ∥平面DEF ;(Ⅱ)求二面角M﹣AB﹣F的余弦值.19.(12分)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.20.(12分)设M、N、T是椭圆+=1上三个点,M、N在直线x=8上的摄影分别为M1、N1.(Ⅰ)若直线MN过原点O,直线MT、NT斜率分别为k1,k2,求证k1k2为定值.(Ⅱ)若M、N不是椭圆长轴的端点,点L坐标为(3,0),△M1N1L与△MNL 面积之比为5,求MN中点K的轨迹方程.21.(12分)已知函数f(x)=mln(x+1),g(x)=(x>﹣1).(Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.[选修4-4:坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a >0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣)=.(Ⅰ)若曲线C与l只有一个公共点,求a的值;(Ⅱ)A,B为曲线C上的两点,且∠AOB=,求△OAB的面积最大值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(1)作出函数f(x)的图象;(2)若a2+2c2+3b2=m,求ab+2bc的最大值.2017年山西省晋中市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.设U=R,A={﹣3,﹣2,﹣1,0,1,2},B={x|x≥1},则A∩∁U B=()A.{1,2}B.{﹣1,0,1,2}C.{﹣3,﹣2,﹣1,0}D.{2}【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解:因为全集U=R,集合B={x|x≥1},所以∁U B={x|x<1}=(﹣∞,1),且集合A={﹣3,﹣2,﹣1,0,1,2},所以A∩∁U B={﹣3,﹣2,﹣1,0}故选:C【点评】本题考查了集合的定义与计算问题,是基础题目.2.在复平面中,复数+i4对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数+i4=+1=+1=﹣i对应的点(,﹣)在第四象限.故选:D.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.在△ABC中,角A,B,C的对边分别为a、b、c,则“sinA>sinB”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】在三角形中,结合正弦定理,利用充分条件和必要条件的定义进行判断.【解答】解:在三角形中,若a>b,由正弦定理=,得sinA>sinB.若sinA>sinB,则正弦定理=,得a>b,则“sinA>sinB”是“a>b”的充要条件.故选:C【点评】本题主要考查了充分条件和必要条件的应用,利用正弦定理确定边角关系,是解决本题的关键..4.若sin(π﹣α)=,且≤α≤π,则sin2α的值为()A.﹣B.﹣C.D.【考点】二倍角的正弦.【分析】由已知利用诱导公式可求sinα,利用同角三角函数基本关系式可求cosα,进而利用二倍角正弦函数公式即可计算得解.【解答】解:∵sin(π﹣α)=,∴sinα=,又∵≤α≤π,∴cosα=﹣=﹣,∴sin2α=2sinαcosα=2×(﹣)=﹣.故选:A.【点评】本题主要考查了诱导公式,同角三角函数基本关系式,二倍角正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.5.执行如图的程序框图,则输出K的值为()A.98 B.99 C.100 D.101【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的K,S的值,观察规律,可得当K=99,S=2,满足条件S≥2,退出循环,输出K的值为99,从而得解.【解答】解:模拟程序的运行,可得K=1,S=0S=lg2不满足条件S≥2,执行循环体,K=2,S=lg2+lg=lg3不满足条件S≥2,执行循环体,K=3,S=lg3+lg=lg4…观察规律,可得:不满足条件S≥2,执行循环体,K=99,S=lg99+lg=lg100=2满足条件S≥2,退出循环,输出K的值为99.故选:B.【点评】本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.6.李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步、50步B.20步、60步C.30步、70步D.40步、80步【考点】三角形中的几何计算.【分析】根据水池的边缘与方田四边之间的面积为13.75亩,即方田面积减去水池面积为13.75亩,方田的四边到水池的最近距离均为二十步,设圆池直径为m,方田边长为40步+m.从而建立关系求解即可.【解答】解:由题意,设圆池直径为m,方田边长为40步+m.方田面积减去水池面积为13.75亩,∴(40+m)2﹣=13.75×240.解得:m=20.即圆池直径20步那么:方田边长为40步+20步=60步.故选B.【点评】本题考查了对题意的理解和关系式的建立.读懂题意是关键,属于基础题.7.某几何体的三视图如图所示,则该几何体的体积是()A.16 B.20 C.52 D.60【考点】由三视图求面积、体积.【分析】由三视图得到几何体为三棱柱与三棱锥的组合体,根据图中数据,计算体积即可.【解答】解:由题意,几何体为三棱柱与三棱锥的组合体,如图体积为=20;故选B.【点评】本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体,利用三视图的数据求体积.8.已知函数f(x)=sin(2x+),f′(x)是f(x)的导函数,则函数y=2f(x)+f′(x)的一个单调递减区间是()A.[,] B.[﹣,]C.[﹣,]D.[﹣,]【考点】利用导数研究函数的单调性;正弦函数的单调性.【分析】求出函数的导数,利用两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用三角函数的单调性求解函数的求解函数单调减区间.【解答】解:函数f(x)=sin(2x+),f′(x)是f(x)的导函数,则函数y=2f(x)+f′(x)=2sin(2x+)+2cos(2x+)=sin(2x++)=2sin(2x+),由2kπ+≤2x+≤2kπ+,k∈Z,可得:kπ+≤x≤kπ+,k∈Z,所以函数的一个单调减区间为:[,].故选:A.【点评】本题考查函数的导数的应用,三角函数的化简以及单调区间的求法,考查转化思想以及计算能力.9.若a=2(x+|x|)dx,则在的展开式中,x的幂指数不是整数的项共有()A.13项B.14项C.15项D.16项【考点】二项式系数的性质.【分析】a=2(x+|x|)dx=+2=18.再利用通项公式即可得出.【解答】解:a=2(x+|x|)dx=+2=18.==(﹣1)则在的通项公式:T r+1r.(r=0,1,2,…,18).只有r=0,6,12,18时x的幂指数是整数,因此x的幂指数不是整数的项共有19﹣4=15.故选:C.【点评】本题考查了二项式定理的通项公式、微积分基本定理,考查了推理能力与计算能力,属于中档题.10.在平面直角坐标系中,不等式组(r为常数)表示的平面区域的面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.﹣C.D.﹣【考点】简单线性规划.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由,解得k=0或k=﹣.∴z=的最小值为1﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.11.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A.B.C.2D.【考点】双曲线的简单性质.【分析】由题意,△ABF2的周长为24,利用双曲线的定义,可得=24﹣4a,进而转化,利用导数的方法,即可得出结论.【解答】解:由题意,△ABF2的周长为24,∵|AF2|+|BF2|+|AB|=24,∵|AF2|+|BF2|﹣|AB|=4a,|AB|=,∴=24﹣4a,∴b2=a(6﹣a),∴y=a2b2=a3(6﹣a),∴y′=2a2(9﹣2a),0<a<4.5,y′>0,a>4.5,y′>0,∴a=4.5时,y=a2b2取得最大值,此时ab取得最大值,b=,∴c=3,∴e==,故选:D.【点评】本题考查双曲线的定义,考查导数知识的运用,考查学生分析解决问题的能力,知识综合性强.12.已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是()A.(e2﹣3,e2+1)B.(e2﹣3,+∞) C.(﹣∞,2e2+2)D.(2e2﹣6,2e2+2)【考点】利用导数研究函数的极值;函数零点的判定定理.【分析】利用f(1)=0得出a,b的关系,根据f′(x)=0有两解可知y=2e2x与y=2ax+a+1﹣e2的函数图象在(0,1)上有两个交点,做出两函数图象,根据图象判断a的范围.【解答】解:∵f(1)=0,∴e2﹣a﹣b﹣1=0,即b=e2﹣a﹣1,∴f(x)=e2x﹣ax2+(e2﹣a﹣1)x﹣1,∴f′(x)=2e2x﹣2ax+e2﹣a﹣1,令f′(x)=0得2e2x=2ax+a+1﹣e2,∵函数f′(x)在区间(0,1)内有两个零点,∴y=2e2x与y=2ax+a+1﹣e2的函数图象在(0,1)上有两个交点,作出y=2e2x与y=2ax+a+1﹣e2的函数图象,如图所示:当a+1﹣e2≥2即a≥e2+1时,直线y=2ax与y=2e2x最多只有1个交点,不符合题意;∴a+1﹣e2<2,即a<e2+1,排除B,C,D.故选A.【点评】本题考查的知识点是函数零点与函数图象的关系,转化思想,分类说讨论思想,中档题.二、填空题(本小题共4小题,每小题5分,共20分)13.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则y1,y2,…y2017的方差为16.【考点】极差、方差与标准差.【分析】根据题意,设数据x1,x2,…,x2017的平均数为,由方差公式可得=[(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=4,进而对于数据y i=2x i ﹣1,可以求出其平均数,进而由方差公式计算可得答案.【解答】解:根据题意,设样本数据x1,x2,…,x2017的平均数为,又由其方差为4,则有= [(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=4,对于数据y i=2x i﹣1(i=1,2,…,2017),其平均数=(y1+y2+…+y2017)=[(2x1﹣1)+(2x2﹣1)+…+(2x2017﹣1)]=2﹣1,其方差= [(y1﹣)2+(y2﹣)2+(y3﹣)2+…+(y2017﹣)2]= [(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x2017﹣)2]=16,故答案为:16.【点评】本题考查数据的方差计算,关键是掌握方差的计算公式.14.在平面内将点A(2,1)绕原点按逆时针方向旋转,得到点B,则点B的坐标为(﹣,).【考点】两角和与差的余弦函数.【分析】AC⊥x轴于C点,BD⊥x轴于D点,由点A的坐标得到AC,OC,可求sin∠AOC,cos∠AOC,再根据旋转的性质得到∠BOC=∠AOC+,OA=OB,利用两角和的正弦函数,余弦函数公式即可得到B点坐标.【解答】解:如图,作AC⊥x轴于C点,BD⊥x轴于D点,∵点A的坐标为(2,1),∴AC=1,OC=2,∴OA==,∴sin∠AOC=,cos∠AOC=,∵OA绕原点按逆时针方向旋转得OB,∴∠AOB=,OA=OB=,∴∠BOC=∠AOC+,∴sin∠BOC=sin(∠AOC+)=sin∠AOCcos+cos∠AOCsin=×(﹣)+×=,cos∠BOC=cos(∠AOC+)=cos∠AOCcos﹣sin∠AOCsin=×(﹣)﹣×=﹣,∴DB=OBsin ∠BOC=×=,OD=OBcos ∠BOC=×(﹣)=﹣,∴B 点坐标为:(﹣,).故答案为:(﹣,).【点评】本题考查了坐标与图形变化﹣旋转:把点旋转的问题转化为直角三角形旋转的问题,根据直角三角形的性质确定点的坐标.也考查了两角和与差的正弦函数公式的应用,考查了数形结合思想,属于中档题.15.设二面角α﹣CD ﹣β的大小为45°,A 点在平面α内,B 点在CD 上,且∠ABC=45°,则AB 与平面β所成角的大小为 30° . 【考点】直线与平面所成的角.【分析】先根据题意画出相应的图形,然后找出AB 与面β的所成角,在直角三角形ABD 中进行求解即可.【解答】解:根据题意先画出图形作AD ⊥β交面β于D , 由题意可知∠ABC=45°,∠ACD=45°,设AD=1,则CD=1,AC=,BC=,AB=2,而AD=1,三角形ABD 为直角三角形, ∴∠ABD=30°. 故答案为:30°.【点评】本题主要考查了直线与平面所成角的度量,解题的关键是通过题意画出相应的图形,属于中档题.16.非零向量,的夹角为,且满足||=λ||(λ>0),向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若•+•+•所有可能值中的最小值为42,则λ=.【考点】平面向量数量积的运算;数量积表示两个向量的夹角.【分析】列出向量组的所有排列,计算所有可能的值,根据最小值列出不等式组解出.【解答】解: =||×λ||×cos=2,=λ22,向量组,,共有3种情况,即(,,),(),(),向量组,,共有3种情况,即(),(),(,),∴•+•+•所有可能值有2种情况,即++=(λ2+λ+1),3=,∵•+•+•所有可能值中的最小值为42,∴或.解得λ=.故答案为.【点评】本题考查了平面向量的数量积运算,属于中档题.三、解答题(本题共6题,70分)17.(12分)(2017•晋中一模)已知等差数列{a n}的前n项和为S n,若S m﹣1=﹣4,S m=0,S m+2=14(m≥2,且m∈N*).(1)求m的值;(2)若数列{b n}满足=log a b n(n∈N*),求数列{(a n+6)•b n}的前n项和.【考点】数列的求和;等差数列的性质.【分析】(1)计算a m,a m+1+a m+2,利用等差数列的性质计算公差d,再代入求和公式计算m;(2)求出a n,b n,得出数列{(a n+6)•b n}的通项公式,利用错位相减法计算.【解答】解:(1)∵S m﹣1=﹣4,S m=0,S m+2=14,∴a m=S m﹣S m﹣1=4,a m+1+a m+2=S m+2﹣S m=14.设{a n}的公差为d,则2a m+3d=14,∴d=2.∵S m==0,∴a1=﹣a m=﹣4.∴a m=a1+(m﹣1)d=﹣4+2(m﹣1)=4,∴m=5.(2)由(1)可得a n=﹣4+2(n﹣1)=2n﹣6.∵=log a b n,即n﹣3=log a b n,∴b n=a n﹣3,∴(a n+6)•b n=2n•a n﹣3,设数列{(a n+6)•b n}的前n项和为T n,则T n=2•a﹣2+4•a﹣1+6•a0+8•a+…+2n•a n﹣3,①∴aT n=2•a﹣1+4•a0+6•a+8•a2+…+2n•a n﹣2,②①﹣②得:(1﹣a)T n=2a﹣2+2a﹣1+2a0+2a+…+2a n﹣3﹣2n•a n﹣2,=﹣2n•a n﹣2=﹣,∴T n=﹣.【点评】本题考查了等差数列,等比数列的性质,数列求和,属于中档题.18.(12分)(2017•石家庄二模)如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=,四棱锥F﹣ABED的体积为2,点F在平面ABED内的正投影为G,且G在AE上,点M是在线段CF上,且CM=CF.(Ⅰ)证明:直线GM∥平面DEF;(Ⅱ)求二面角M﹣AB﹣F的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)由四棱锥锥F﹣ABED的体积为2求出FG,进一步求得EG,可得点G是靠近点A的四等分点.过点G作GK∥AD交DE于点K,可得GK=.又MF=,得到MF=GK且MF∥GK.则四边形MFKG为平行四边形,从而得到GM∥FK,进一步得到直线GM∥平面DEF;(Ⅱ)设AE、BD的交点为O,OB所在直线为x轴,OE所在直线为y轴,点O作平面ABED的垂线为z轴,建立空间直角坐标系,求出平面ABM,ABF的法向量,由两法向量所成角的余弦值得二面角M﹣AB﹣F的余弦值.【解答】(Ⅰ)证明:∵四棱锥锥F﹣ABED的体积为2,=,∴FG=.即V F﹣ABCD又BC=EF=,∴EG=,即点G是靠近点A的四等分点.过点G作GK∥AD交DE于点K,∴GK=.又MF=,∴MF=GK且MF∥GK.四边形MFKG为平行四边形,∴GM∥FK,∴直线GM∥平面DEF;(Ⅱ)设AE、BD的交点为O,OB所在直线为x轴,OE所在直线为y轴,过点O作平面ABED的垂线为z轴,建立空间直角坐标系,如图所示:A(0,﹣1,0),B(,0,0),F(0,﹣,),M().,,.设平面ABM,ABF的法向量分别为,.由,则,取y=﹣,得,同理求得.∴cos<>=,∴二面角M﹣AB﹣F的余弦值为.【点评】本题考查线面平行的判定,考查了空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)(2017•石家庄二模)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)由题意可知X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.由统计数据可知其概率及其分布列.(II)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为,三辆车中至多有一辆事故车的概率为P=+.②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为﹣5000,10000.即可得出分布列与数学期望.【解答】解:(Ⅰ)由题意可知X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.…(2分)由统计数据可知:P(X=0.9a)=,P(X=0.8a)=,P(X=0.7a)=,P(X=a)=,P(X=1.1a)=,P(X=1.3a)=.所以X的分布列为:…(4分)所以EX=0.9a×+0.8a×+0.7a×+a×+1.1a×+1.3a×==≈942.(Ⅱ)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为,三辆车中至多有一辆事故车的概率为P=+=.…(8分)②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为﹣5000,10000.所以Y的分布列为:所以EY=﹣5000×+10000×=5000.…(10分)所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为100EY=50万元.…(12分)【点评】本题考查了随机变量的分布列与数学期望、相互独立与互斥事件的概率计算公式,考查了推理能力与计算能力,属于中档题.20.(12分)(2017•石家庄二模)设M、N、T是椭圆+=1上三个点,M、N在直线x=8上的摄影分别为M1、N1.(Ⅰ)若直线MN过原点O,直线MT、NT斜率分别为k1,k2,求证k1k2为定值.(Ⅱ)若M、N不是椭圆长轴的端点,点L坐标为(3,0),△M1N1L与△MNL 面积之比为5,求MN中点K的轨迹方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设M(p,q),N(﹣p,﹣q),T(x0,y0),则h1h2=,又即可得h1h2(Ⅱ)设直线MN与x轴相交于点R(r,0),根据面积之比得r即直线MN经过点F(2,0).设M(x1,y1),N(x2,y2),K(x0,y0)分①当直线MN垂直于x轴时,②当直线MN与x轴不垂直时,设MN的方程为y=k(x﹣2)x0=.消去k,整理得(x0﹣1)2+=1(y0≠0).【解答】解:(Ⅰ)设M(p,q),N(﹣p,﹣q),T(x0,y0),则h1h2=,…(2分)又两式相减得,即h1h2==﹣,…(…=×|r﹣3|•|y M﹣y N|(Ⅱ)设直线MN与x轴相交于点R(r,0),s△MNL=|.由于△M1N1L与△MNL面积之比为5且|y M﹣y N|=|,得=5,r=4(舍去)或r=2.…(8分)即直线MN经过点F(2,0).设M(x1,y1),N(x2,y2),K(x0,y0)①当直线MN垂直于x轴时,弦MN中点为F(2,0);…(9分)②当直线MN与x轴不垂直时,设MN的方程为y=k(x﹣2),则联立.⇒(3+4k2)x2﹣16k2x+16k2﹣48=0.…(10分)x0=.消去k,整理得(x0﹣1)2+=1(y0≠0).综上所述,点K的轨迹方程为(x﹣1)2+=1(x>0).…(12分)【点评】本题考查了轨迹方程的求法,及直线与椭圆的位置关系,属于中档题.21.(12分)(2017•石家庄二模)已知函数f(x)=mln(x+1),g(x)=(x>﹣1).(Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(Ⅰ)求得F(x)的导数,讨论当m≤0时,当m>0时,由导数大于0,可得增区间;导数小于0,可得减区间,注意定义域;(Ⅱ)分别求出f(x),g(x)在切点处的斜率和切线方程,化为斜截式,可得y=f(x)与y=g(x)的图象有且仅有一条公切线等价为=(1),mln(a+1)﹣=(2),有唯一一对(a,b)满足这个方程组,且m>0,消去a,得到b的方程,构造函数,求出导数和单调性,得到最值,即可得到a=b=0,公切线方程为y=x.【解答】解:(Ⅰ)F′(x)=f′(x)﹣g′(x)=﹣=(x>﹣1),当m≤0时,F′(x)<0,函数F(x)在(﹣1,+∞)上单调递减;…(2分)当m>0时,令F′(x)<0,可得x<﹣1+,函数F(x)在(﹣1,﹣1+)上单调递减;F′(x)>0,可得>﹣1+,函数F(x)在(﹣1+,+∞)上单调递增.综上所述,当m≤0时,F(x)的减区间是(﹣1,+∞);当m>0时,F(x)的减区间是(﹣1,﹣1+),增区间是(﹣1+,+∞)…(4分)(Ⅱ)函数f(x)=mln(x+1)在点(a,mln(a+1))处的切线方程为y﹣mln(a+1)=(x﹣a),即y=x+mln(a+1)﹣,函数g(x)=在点(b,)处的切线方程为y﹣=(x﹣b),即y=x+.y=f(x)与y=g(x)的图象有且仅有一条公切线所以=(1),mln(a+1)﹣=(2),有唯一一对(a,b)满足这个方程组,且m>0…(6分)由(1)得:a+1=m(b+1)2代入(2)消去a,整理得:2mln(b+1)++mlnm﹣m﹣1=0,关于b(b>﹣1)的方程有唯一解…(8分)令t(b)=2mln(b+1)++mlnm﹣m﹣1,t′(b)=﹣=,方程组有解时,m>0,所以t(b)在(﹣1,﹣1+)单调递减,在(﹣1+,+∞)上单调递增.所以t(b)min=t((﹣1+)=m﹣mlnm﹣1.由b→+∞,t(b)→+∞;b→﹣1,t(b)→+∞,只需m﹣mlnm﹣1=0…(10分)令u(m)=m﹣mlnm﹣1,u′(m)=﹣lnm在m>0为单减函数,且m=1时,u′(m)=0,即u(m)min=u(1)=0,所以m=1时,关于b的方程2mln(b+1)++mlnm﹣m﹣1=0有唯一解.此时a=b=0,公切线方程为y=x…(12分)【点评】本题考查导数的运用:求切线的方程和单调性、极值和最值,考查分类讨论和转化思想的运用,以及构造函数法,考查化简整理的运算能力,属于难题.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•石家庄二模)在平面直角坐标系xOy中,曲线C的参数方程为(a>0,β为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程ρcos(θ﹣)=.(Ⅰ)若曲线C与l只有一个公共点,求a的值;(Ⅱ)A,B为曲线C上的两点,且∠AOB=,求△OAB的面积最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)根据sin2β+cos2β=1消去β为参数可得曲线C的普通方程,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2,直线l的极坐标方程化为普通方程,曲线C与l只有一个公共点,即圆心到直线的距离等于半径,可得a的值.(Ⅱ)利用极坐标方程的几何意义求解即可.【解答】(Ⅰ)曲线C是以(a,0)为圆心,以a为半径的圆;直线l的直角坐标方程为由直线l与圆C只有一个公共点,则可得解得:a=﹣3(舍)或a=1所以:a=1.(Ⅱ)由题意,曲线C的极坐标方程为ρ=2acosθ(a>0)设A的极角为θ,B的极角为则:==∵cos=所以当时,取得最大值∴△OAB的面积最大值为.解法二:因为曲线C是以(a,0)为圆心,以a为半径的圆,且由正弦定理得:,所以|AB=由余弦定理得:|AB2=3a2=|0A|2+|OB|2﹣|OA||OB|≥|OA||OB|则:≤×=.∴△OAB的面积最大值为.【点评】本题考查参数方程、极坐标方程、普通方程的互化,以及应用,属于中档题[选修4-5:不等式选讲]23.(2017•晋中一模)设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(1)作出函数f(x)的图象;(2)若a2+2c2+3b2=m,求ab+2bc的最大值.【考点】绝对值三角不等式.【分析】(1)分类讨论,作出函数f(x)的图象;(2)求出函数的值域,即可求m的值,利用基本不等式求ab+2bc的最大值.【解答】解:(1)当x≤﹣时,f(x)=(1﹣x)+2x+1=x+2;当﹣<x<1时,f(x)=(1﹣x)﹣2x﹣1=﹣3x:当x≥1时,f(x)=(x﹣1)﹣2x﹣1=﹣x﹣2,函数f(x)的图象,如图所示;(2)由题意,当x=﹣时,f(x)取得最大值m=1.5,∴a2+2c2+3b2=1.5,∴ab+2bc≤(a2+2c2+3b2)=,即ab+2bc的最大值为.【点评】本题考查绝对值不等式,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.。

山西省晋中市2017届高考数学二模试卷(理科)(解析版)

山西省晋中市2017届高考数学二模试卷(理科)(解析版)

山西省晋中市2017届高考数学二模试卷(理科)(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=()A.(﹣2,0)B.(0,2)C.(﹣1,2)D.(﹣2,﹣1)2.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.33.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.334.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣5.函数的图象大致为()A.B.C.D.6.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π7.执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(A.1 B.2 C.3 D.48.某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.9.已知D=,给出下列四个命题:P 1:∀(x ,y )∈D ,x +y +1≥0; P 2:∀(x ,y )∈D ,2x ﹣y +2≤0;P 3:∃(x ,y )∈D ,≤﹣4;P 4:∃(x ,y )∈D ,x 2+y 2≤2.其中真命题的是( )A .P 1,P 2B .P 2,P 3C .P 2,P 4D .P 3,P 410.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A 、B 两点,O 为坐标原点,若△AOB 的面积为,则|AB |=( ) A .24 B .8 C .12 D .1611.已知函数f (x )=sinωx ﹣cosωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )A .(,]B .(,]C .(,]D .(,]12.已知集合M={(x ,y )|y=f (x )},若对于任意实数对(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”,给出下列四个集合:①M={(x ,y )|y=};②M={(x ,y )|y=sinx +1};③={(x ,y )|y=2x ﹣2};④M={(x ,y )|y=log 2x }其中是“垂直对点集”的序号是( )A .②③④B .①②④C .①③④D .①②③二、填空题若两个非零向量满足,则向量与的夹角是 .14.已知双曲线经过点,其一条渐近线方程为y=2x ,则该双曲线的标准方程为.15.我们可以利用数列{a n}的递推公式a n=(n∈N+),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a64+a65=.=2a n+3n﹣1(n∈N*),则其前n项和S n=.16.已知数列{a n}中,a1=﹣1,a n+1三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足=.(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.18.(12分)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X 的分布列与期望.19.(12分)如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.20.已知椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P 两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1(1)求椭圆C的方程;(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.21.已知函数f(x)=2lnx+ax﹣(a∈R)在x=2处的切线经过点(﹣4,ln2)(1)讨论函数f(x)的单调性;(2)若不等式>mx﹣1恒成立,求实数m的取值范围.22.(14分)已知椭圆的长轴长为6,离心率为,F2为椭圆的右焦点.(Ⅰ)求椭圆的标准方程;(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.23.已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.2017年山西省晋中市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=()A.(﹣2,0)B.(0,2)C.(﹣1,2)D.(﹣2,﹣1)【考点】交集及其运算.【分析】求解对数型函数的定义域化简集合A,然后直接利用交集运算求解.【解答】解:由x+1>0,得x>﹣1∴A=(﹣1,+∞),B={x||x|<2}=(﹣2,2)∴A∩B=(﹣1,2).故选:C【点评】本题考查了交集及其运算,考查了对数函数的定义域,是基础题.2.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.3【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数的乘法求出复数z,然后求解结果即可.【解答】解:复数z满足zi=﹣1+i,可得z===1+i.复数z的实部与虚部的和是:1+1=2.故选:C.【点评】本题考查复数的基本运算以及基本概念,考查计算能力.3.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.33【考点】等差数列的前n项和.【分析】利用等差数列的通项公式与性质与求和公式即可得出.【解答】解:由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.则S11==11×3=33.故选:D.【点评】本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.4.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣【考点】几何概型.【分析】由题意,直接看顶部形状,及正方形内切一个圆,正方形面积为4,圆为π,即可求出“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率.【解答】解:由题意,正方形的面积为22=4.圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1﹣,故选:A.【点评】本题考查概率的计算,考查学生分析解决问题的能力,属于中档题.5.函数的图象大致为()A.B.C.D.【考点】函数的图象.【分析】先判断函数的奇偶性,再判断函数值的变化趋势.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D【点评】本题考查了函数图象的识别,关键是判断函数的奇偶性和函数值得变化趋势,属于基础题6.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π【考点】球内接多面体;球的体积和表面积.【分析】由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,根据三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,求出半径即可求出球的表面积.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,r==,球的表面积4πr2=4π×=π.故选:B.【点评】本题考查了由三视图求三棱柱的外接球的表面积,利用棱柱的几何特征求外接球的半径是解题的关键.7.执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(A.1 B.2 C.3 D.4【考点】程序框图.【分析】根据流程图所示的顺序知:该程序的作用是计算一个分段函数的函数值,由条件t的取值范围得分段函数的分类标准,由已知分类讨论即可得解.【解答】解:模拟执行程序,可得程序框图的功能是计算并输出分段函数S=的值,做出函数的图象,由题意可得:输出的s∈[0,4],当m=0时,n∈[2,4],n﹣m∈[2,4],当n=4时,m∈[0,2],n﹣m∈[2,4],所以实数n﹣m的最大值为4.故选:D.【点评】本题考查了程序框图的应用问题,考查了数形结合思想和分类讨论思想,是基础题目.8.某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.【考点】由三视图求面积、体积.【分析】由题意,几何体为圆柱与圆锥的组合体,即可求出该几何体的表面积.【解答】解:由题意,几何体为圆柱与圆锥的组合体,该几何体的表面积为2π•1•2+π•12+++1=,故选D.【点评】本题考查三视图,考查学生的计算能力,确定几何体的形状是关键.9.已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y+1≥0;P2:∀(x,y)∈D,2x﹣y+2≤0;P3:∃(x,y)∈D,≤﹣4;P4:∃(x,y)∈D,x2+y2≤2.其中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P4【考点】二元一次不等式(组)与平面区域.【分析】画出约束条件不是的可行域,利用目标函数的几何意义,求出范围,判断选项的正误即可.【解答】解:不等式组的可行域如图,p1:A(﹣2,0)点,﹣2+0+1=﹣1,故∀(x,y)∈D,x+y≥0为假命题;p2:A(﹣1,3)点,﹣2﹣3+2=﹣3,故∀(x,y)∈D,2x﹣y+2≤0为真命题;p3:C(0,2)点,=﹣3,故∃(x,y)∈D,≤﹣4为假命题;p4:(﹣1,1)点,x2+y2=2故∃(x,y)∈D,x2+y2≤2为真命题.可得选项p2,p4正确.故选:C.【点评】本题考查线性规划的解得应用,命题的真假的判断,正确画出可行域以及目标函数的几何意义是解题的关键.10.已知抛物线y2=4x的焦点为F,过焦点F的直线交抛物线于A、B两点,O为坐标原点,若△AOB的面积为,则|AB|=()A.24 B.8 C.12 D.16【考点】抛物线的简单性质.【分析】设出直线方程,求出A,B两点的纵坐标的差,利用△AOB的面积.求出直线的斜率,然后求解|AB|,【解答】解:抛物线y2=4x焦点为F(1,0),设过焦点F的直线为:y=k(x﹣1),由,可得y2﹣y﹣4=0,y A+y B=,y A y B=﹣4,|y A﹣y B|=△AOB的面积为2,可得:×1×|y A﹣y B|=2,解得k2=,|AB|=×|y A﹣y B|=24.故选:A.【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键.属于中档题11.已知函数f(x)=sinωx﹣cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,]B.(,]C.(,]D.(,]【考点】根的存在性及根的个数判断.【分析】化简f(x)的解析式,作出f(x)的函数图象,利用三角函数的性质求出直线y=﹣1与y=f(x)在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间.【解答】解:f(x)=2sin(ωx﹣),作出f(x)的函数图象如图所示:令2sin(ωx﹣)=﹣1得ωx﹣=﹣+2kπ,或ωx﹣=+2kπ,∴x=+,或x=+,k∉Z,设直线y=﹣1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,则x A=,x B=,∵方程f(x)=﹣1在(0,π)上有且只有四个实数根,∴x A<π≤x B,即<π≤,解得.故选B.【点评】本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.12.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③【考点】集合的表示法.【分析】利用数形结合的方法解决,根据题意,若集合M={(x,y)|y=f(x)}是“垂直对点集”,就是在函数图象上任取一点A,得直线OA,过原点与OA垂直的直线OB,若OB总与函数图象相交即可.【解答】解:由题意,若集合M={(x,y)|y=f(x)}满足:对于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此.所以,若M是“垂直对点集”,那么在M图象上任取一点A,过原点与直线OA垂直的直线OB总与函数图象相交于点B.对于①:M={(x,y)|y=},其图象是过一、二象限,且关于y轴对称,所以对于图象上的点A,在图象上存在点B,使得OB⊥OA,所以①符合题意;对于②:M={(x,y)|y=sinx+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故②符合题意;对于③:M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.故③符合题意;对于④:M={x,y)|y=log2x},对于函数y=log2x,过原点做出其图象的切线OT(切点T在第一象限),则过切点T做OT的垂线,则垂线必不过原点,所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故④不符合题意.故选:D.【点评】本题考查“垂直对点集”的判断,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(2017•晋中二模)若两个非零向量满足,则向量与的夹角是120°.【考点】数量积表示两个向量的夹角.【分析】将已知等式平方得到的模的关系及,然后利用向量的数量积公式求出的夹角.【解答】解:∵==∴,∴(+)•(﹣)=﹣2||2,设的夹角为θcosθ=∵θ∈[0°,180°]∴θ=120°故答案为120°【点评】求两个向量的夹角,一般利用向量的数量积公式来求出夹角的余弦,进一步求出夹角,但一定注意向量夹角的范围为[0°,180°]14.已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为﹣x2=1.【考点】双曲线的简单性质.【分析】根据题意,由双曲线的渐近线方程,可以设其方程为x2﹣=m,又由其过点,将点的坐标代入方程计算可得m的值,即可得其方程,最后将求得的方程化为标准方程即可得答案.【解答】解:根据题意,双曲线的一条渐近线方程为y=2x,则可以设其方程为x2﹣=m,(m≠0),又由其经过点,则有1﹣=m,解可得m=﹣1,则其方程为:x2﹣=﹣1,其标准方程为:﹣x2=1,故答案为:﹣x2=1.【点评】本题考查双曲线的几何性质,注意最后的答案要检验其是否为标准方程的形式.15.我们可以利用数列{a n}的递推公式a n=(n∈N+),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a64+a65=66.【考点】数列递推式.【分析】借助于递推公式知道奇数项的值为其项数,而偶数项的值由对应的值来决定,写出数列前几项,即可得到所求值.【解答】解:由题得:这个数列各项的值分别为1,1,3,1,5,3,7,1,9,5,11,3…∴a64+a65=a32+65=a16+65=a8+65=a4+65=1+65=66.故答案为:66.【点评】本题是对数列递推公式应用的考查,解题时要认真审题,仔细观察,注意寻找规律,避免不必要的错误.16.已知数列{a n}中,a1=﹣1,a n+1=2a n+3n﹣1(n∈N*),则其前n项和S n=2n+2﹣4﹣.【考点】数列的求和.【分析】a n+1=2a n+3n﹣1(n∈N*),a1=﹣1,可得a2=0.n≥2时,a n=2a n﹣1+3n﹣4,相减可得:a n+1﹣a n+3=2(a n﹣a n﹣1+3),利用等比数列的通项公式可得:a n﹣a n﹣1+3,利用“累加求和”方法可得a n.再利用等比数列的求和公式即可得出.【解答】解:∵a n+1=2a n+3n﹣1(n∈N*),a1=﹣1,∴a2=0.n≥2时,a n=2a n﹣1+3n﹣4,相减可得:a n+1﹣a n=2a n﹣2a n﹣1+3,化为:a n+1﹣a n+3=2(a n﹣a n﹣1+3),∴数列{a n﹣a n﹣1+3}为等比数列,首项为4,公比为2.∴a n﹣a n﹣1+3=4×2n﹣2,∴a n﹣a n﹣1=2n﹣3.∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1 =2n﹣3+2n﹣1﹣3+…+22﹣3﹣1,=﹣3(n﹣1)﹣1=2n+1﹣3n﹣2.∴其前n项和S n=﹣3×﹣2n=2n+2﹣4﹣.故答案为:2n+2﹣4﹣.【点评】本题考查了数列递推关系、等比数列的通项公式与求和公式、“累加求和”方法,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•晋中二模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足=.(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【考点】正弦定理;余弦定理.【分析】(I)把条件中所给的既有角又有边的等式利用正弦定理变化成只有角的形式,整理逆用两角和的正弦公式,根据三角形内角的关系,得到结果.(II)利用余弦定理写成关于角A的表示式,整理出两个边的积的范围,表示出三角形的面积,得到面积的最大值.【解答】解:(Ⅰ)∵,所以(2c﹣b)•cosA=a•cosB由正弦定理,得(2sinC﹣sinB)•cosA=sinA•cosB.整理得2sinC•cosA﹣sinB•cosA=sinA•cosB.∴2sinC•cosA=sin(A+B)=sinC.在△ABC中,sinC≠0.∴,.(Ⅱ)由余弦定理,.∴b2+c2﹣20=bc≥2bc﹣20∴bc≤20,当且仅当b=c时取“=”.∴三角形的面积.∴三角形面积的最大值为.【点评】本题考查正弦定理和余弦定理,本题解题的关键是角和边的灵活互化,两个定理的灵活应用和两角和的公式的正用和逆用.18.(12分)(2017•晋中二模)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C 三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X 的分布列与期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)由题意得:P(A)==0.35,P(B)==0.45,P(C)==0.2,利用对立事件概率计算公式能求出甲乙两人采用不同分期付款方式的概率.(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,则X 的可能取值为2,3,4,5,6,分别求出相应的概率,由此能求出X的分布列和E(X).【解答】解:(1)由题意得:P(A)==0.35,P(B)==0.45,P(C)==0.2,∴甲乙两人采用不同分期付款方式的概率:p=1﹣[P(A)•P(A)+P(B)•P(B)+P(C)•P(C)]=0.635.(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,则X的可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.1225,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.∴X的分布列为:E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、相互独立事件概率乘法公式的合理运用.19.(12分)(2017•晋中二模)如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)推导出AC⊥BD,BE⊥AC,从而AC⊥平面BEFD,由此能证明平面ACF⊥平面BEFD.(2)设AC与BD的交点为O,分别以OA,OB为x轴,y轴,建立空间直角坐标系,利用向量法能求出直线AE与平面ABCD所成角的正切值.【解答】证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴BE⊥AC,∴AC⊥平面BEFD,∵AC⊂平面ACF,∴平面ACF⊥平面BEFD.解:(2)设AC与BD的交点为O,由(1)得AC⊥BD,分别以OA,OB为x轴,y轴,建立空间直角坐标系,∵BE⊥平面ABCD,∴BE⊥BD,∵DF∥BE,∴DF⊥BD,∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2.设OA=a,(a>0),由题设得A(a,0,0),C(﹣a,0,0),E(0,),F(0,﹣,2),设m=(x,y,z)是平面AEF的法向量,则,取z=2,得=(),设是平面CEF的一个法向量,则,取,得=(﹣,1,2),∵二面角A﹣EF﹣C是直二面角,∴=﹣+9=0,解得a=,∵BE⊥平面ABCD,∴∠BAE是直线AE与平面ABCD所成的角,∴AB==2,∴tan.∴直线AE与平面ABCD所成角的正切值为.【点评】本题考查面面垂直的证明,考查线面角的正切值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.20.(2017•晋中二模)已知椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,直线l:y=kx+m 与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x 轴的垂涎,垂足分别为A1、B1(1)求椭圆C的方程;(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.【考点】直线与椭圆的位置关系.【分析】(1)由椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)假设存在这样的直线l:y=kx+m,则直线QM的方程为y=﹣3kx+m,由,得(3+4k2)x2+8kmx+4(m2﹣3)=0,由,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件,能求出直线l的方程.【解答】解:(1)∵椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,∴由题意得,解得a2=4,b2=3,∴椭圆C的方程为.(2)假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣,0),∵PM=MN,∴P(,2m),Q(),∴直线QM的方程为y=﹣3kx+m,设A(x1,y1),由,得(3+4k2)x2+8kmx+4(m2﹣3)=0,∴,∴,设B(x2,y2),由,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,∴x2+=,∴x2=﹣,∵点N平分线段A1B1,∴,∴﹣=﹣,∴k=,∴P(±2m,2m),∴,解得m=,∵|m|=<b=,∴△>0,符合题意,∴直线l的方程为y=.【点评】本题考查椭圆方程的求法,考查满足条件的直线方程是否存在的探究与求法,考查推理谁论证能力、数据处理能力、运算求解能力,考查转化思想、化归思想,是中档题.21.(2017•晋中二模)已知函数f(x)=2lnx+ax﹣(a∈R)在x=2处的切线经过点(﹣4,ln2)(1)讨论函数f(x)的单调性;(2)若不等式>mx﹣1恒成立,求实数m的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)求出函数的导数,求出a的值,得到导函数的符号,求出函数的单调区间即可;(2)问题转化为,令,根据函数的单调性求出m的范围即可.【解答】解:(1),令x=2,∴f'(2)=1+a+f'(2),∴a=﹣1,设切点为(2,2ln2+2a﹣2f'(2)),则y﹣(2ln2+2a﹣2f'(2))=f'(2)(x﹣2),代入(﹣4,2ln2)得:2ln2﹣2ln2﹣2a+2f'(2)=﹣6f'(2),∴,∴,∴f(x)在(0,+∞)单调递减;(2)恒成立,令,∴φ(x)在(0,+∞)单调递减,∵φ(1)=0,∴,∴在(0,+∞)恒大于0,∴m≤0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.22.(14分)(2017•晋中二模)已知椭圆的长轴长为6,离心率为,F2为椭圆的右焦点.(Ⅰ)求椭圆的标准方程;(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可知:2a=6,,求得a和c的值,由b2=a2﹣c2,求得b,写出椭圆方程;(Ⅱ)设P(x1,y1),Q(x2,y2),分别求出|F2P|,|F2Q|,结合相切的条件可得|PM|2=|OP|2﹣|OM|2,可得,同理|QF2|+|QM|=3,即可证明;【解答】解:(I)根据已知,设椭圆的标准方程为,∴2a=6,a=3,,c=1;b2=a2﹣c2=8,(4分)(II)△PF2Q的周长是定值,设P(x1,y1),Q(x2,y2),则,,∵0<x1<3,∴,(7分)在圆中,M是切点,∴,(11分)∴,同理|QF2|+|QM|=3,(13分)∴|F2P|+|F2Q|+|PQ|=3+3=6,因此△PF2Q的周长是定值6.…(14分)【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、弦长公式、直线与圆相切性质、勾股定理、三角形的周长问题,考查了推理能力与计算能力,属于中档题.23.(2017•晋中二模)已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.【考点】绝对值三角不等式;函数零点的判定定理.【分析】(1)若不等式f(x)﹣f(x+m)≤1恒成立,利用f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,,可得或,即可求实数a的取值范围.【解答】解:(1)∵,∴,∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,∴|m|≤1,∴﹣1≤m≤1,∴实数m的最大值为1;(2)当时,=∴,∴或,∴,∴实数a的取值范围是.【点评】本题考查绝对值不等式的运用,考查分段函数,考查学生分析解决问题的能力,属于中档题.。

山西省2017-2018学年高三高考适应性演练(三)理数试题 Word版含解析

山西省2017-2018学年高三高考适应性演练(三)理数试题 Word版含解析

2017-2018学年一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数ii ++-31014的共轭复数为( ) A .i +5 B .i -5 C .i +-5 D .i --5 【答案】B考点:复数的运算,复数的概念.2. 若集合2{|15}A x x x =<<,},3|{A x x y y B ∈-==,则=B A ( ) A .)2,1( B .)2,2(- C .)5,1(- D .)5,2(- 【答案】D 【解析】试题分析:{|15}A x x =<<,{|22}B y y =-<<,则{|25}A B x x =-<<.故选D .考点:集合的运算.3. ),(11y x P 、),(22y x Q 分别为抛物线x y 42=上不同的两点,F 为焦点,若||2||PF QF =,则( )A .1212+=x xB .122x x =C .1212+=y yD .122y y = 【答案】A 【解析】试题分析:在抛物线24y x =中焦参数为2p =,因此11PF x =+,21QF x =+,所以2112(1)x x +=+,即2121x x =+.故选A .考点:抛物线的定义.4. 设D C B A ,,,四点都在同一个平面上,且BC DC AC 54=+,则( ) A .BD AB 4= B .BD AB 5= C .BD AC 4= D .BD AC 5=【答案】A 【解析】试题分析:由BC DC AC 54=+得4()AC BC BC DC -=-,即4AB BD =.故选A . 考点:向量的线性运算. 5. 将函数)33cos(π+=x y 的图象向左平移18π个单位后,得到的图象可能为( )【答案】D 【解析】试题分析:函数)33cos(π+=x y 的图象向左平移18π个单位后得cos[3()]183y ππ=++cos(3)2x π=+ sin 3x =-,图象为D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省晋中市2017年3月高考适应性调研考试高三数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U R =,{3,2,1,0,1,2}A =---,{|1}B x x =≥,则U AC B =( )A .{1,2}B .{1,0,1,2}-C .{3,2,1,0}---D .{2} 2.在复平面中,复数421(1)1i i +++对应的点在( ) A .第一象限 B .第二象限 C . 第三象限 D .第四象限3.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,则“sin sin A B >”是“a b >”的( )A .充分不必要条件B .必要不充分条件C . 充要条件D . 既不充分也不必要条件 4.若1sin()3πα-=,且2παπ≤≤,则sin 2α的值为( )A .9-B .9- C. 9 D .95.执行下面的程序框图,则输出K 的值为( )A . 98B . 99 C. 100 D .1016.李冶(1192~1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边形到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算) A .10步,50步 B .20步,60步 C.30步,70步 D .40步,80步7.某几何体的三视图如图所示,则该几何体的体积是( )A . 16B . 20 C. 52 D .60 8.已知函数()sin(2)12f x x π=+,'()f x 是()f x 的导函数,则函数'2()()y f x f x =+的一个单调递减区间是( ) A .7[,]1212ππB .5[,]1212ππ-C. 2[,]33ππ- D .5[,]66ππ- 9.若332(||)a x x dx -=+⎰,则在a的展开式中,x 的幂函数不是整数的项共有( ) A .13项 B . 14项 C. 15项 D .16项10.在平面直角坐标系中,不等式组22200x y x y x y r ⎧+≤⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为( )A . -1 B.17-C. 13 D .75- 11.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,过点1F 且垂直于x 轴的直线与该双曲线的左支交于,A B 两点,22,AF BF 分别交y 轴于,P Q 两点,若2PQF ∆的周长为12,则ab 取得最大值时该双曲线的离心率为( )A12.已知函数22()1xf x eax bx =-+-,其中,a b R ∈,e 为自然对数的底数,若(1)0f =,'()f x 是()f x 的导函数,函数'()f x 在区间(0,1)内有两个零点,则a 的取值范围是( )A .22(3,1)e e -+ B .2(3,)e -+∞ C. 2(,22)e -∞+ D .22(26,22)e e -+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设样本数据122017,,,x x x 的方差是4,若21(12,,2017)i i y x i =-=,则122017,,,y y y 的方差为 .14.在平面内将点(2,1)A 绕原点按逆时针方向旋转34π,得到点B ,则点B 的坐标为 . 15.设二面角CD αβ--的大小为45,A 点在平面α内,B 点在CD 上,且45ABC ∠=,则AB 与平面β所成的角的大小为 . 16.非零向量,m n 的夹角为3π,且满足||||(0)n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若112233x y x y x y ++所有可能值中的最小值为24m ,则λ= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,若14m S -=-,0m S =,214m S +=(2m ≥ 且*m N ∈). (1)求m 的值; (2)若数列{}n b 满足2log 2nn a b =*()n N ∈,求数列{(6)}n n a b +的前n 项和.18. 如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且3ABE π∠=,BC =四棱锥F ABED -的体积为2,点F 在平面ABED 内的正投影为G ,且G 在AE 上点M 是线段CF 上,且14CM CF =.(1)证明:直线//GM 平面DEF ; (2)求二面角M AB F --的余弦值.19. 交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950a =,记X 为某同学家的一辆该品牌车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率; ②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.20. 设,,M N T 是椭圆2211612x y +=上三个点,,M N 在直线8x =上的射影分别为11,M N . (1)若直线MN 过原点O ,直线,MT NT 斜率分别为12,k k ,求证:12k k 为定值;(2)若,M N 不是椭圆长轴的端点,点L 坐标为(3,0),11M N L ∆与MNL ∆面积之比为5,求MN 中点K 的轨迹方程.21. 已知函数()ln(1)f x m x =+,()(1)1xg x x x =>-+. (1)讨论函数()()()F x f x g x =-在(1,)-+∞上的单调性;(2)若()y f x =与()y g x =的图象有且仅有一条公切线,试求实数m 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0a >,β为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos()32πρθ-=.(1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()|1||21|f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.试卷答案一、选择题1-5:CDCAB 6-10:BBACD 11、12:DA二、填空题13. 16 14. (,22-15. 30 16. 83三、解答题17.(1)由已知得:14m m m a S S -=-=, 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d =,由0m S =,得1(1)202m m ma -+⨯=,即11a m =- ∴1(1)214m a a m m =+-⨯=-= ∴5m =(2)由(1)知,14a =-,2d =,∴26n a n =-,∴23log n n b -=,得32n n b -=. ∴32(6)222n n n n a b n n --+=⨯=⨯设数列{(6)}n n a b +的前n 项和为n T∴10321222(1)22n n n T n n ---=⨯+⨯++-⨯+⨯① 012121222(1)22n n n T n n --=⨯+⨯++-⨯+⨯②①–②,得:1212222n n n T n ---=+++-⨯112(12)212n n n ---=-⨯-111222n n n --=--⨯∴1*1(1)2()2n n T n n N -=-+∈ 18.(1)因为四棱锥F ABED -的体积为2,即142234F ABED V FG -=⨯⨯⨯⨯=,所以FG =又2BC EF ==,所以32EG =,即点G 是靠近A 的四等分点, 过点G 作//GK AD 交DE 于点K ,所以3344GK AD CF ==又34MF CF =,所以MF GK =且//MF GK 所以四边形MFKG 为平行四边形所以//GM FK ,所以直线//GM 平面DEF.(2)设,AE BD 的交点为O ,OB 所在直线为x 轴,OE 所在直线为y 轴,过点O 作平面ABED 的垂线为z 轴,建立空间直角坐标系,如图所示,(0,1,0)A -,B,1(0,2F -,54M -,(1,0)BA =-,5(4BM =--,1(2BF =-,设平面ABM ,ABF 的法向量为,m n ,00m BA m BM ⎧=⎪⎨=⎪⎩,则(1,1)m =-,0n BA n BF ⎧=⎪⎨=⎪⎩,则1(1,3,)2n =- 785cos 85||||m n m n θ==,即为所求. 19.(1)由题意可知:X 的可能取值为0.9,0.8,0.7,,1.1,1.3a a a a a a 由统计数据可知:1(0.9)6P X a ==,1(0.8)12P X a ==,1(0.7)12P X a ==,1()3P X a ==,1( 1.1)4P X a ==,1( 1.3)12P X a == 所以X 的分布列为:所以0.90.80.7 1.1 1.39426121234121212EX a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯==≈ (2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为13,三辆车中至多有一辆事故车的概率为3123112(1)()333P C =-+2027=②设Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为-5000,10000 所以Y 的分布列为: 所以500010000500033EY =-⨯+⨯= 所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为10050EY ⨯=万元20.(1)设(,)M p q ,(,)N p q --,00(,)T x y ,则22012220y q k k x p-=- 又2222001161211612p q x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得:22220001612x p y q --+=, 即22022034y q x p -=-- 1234k k =-(2)设直线MN 与x 轴相交于点(,0)R r ,1|3|||2MNL M N S r y y ∆=-- 111115||2M N L M N S y y ∆=- 由于115M N L MNL S S ∆∆=且11||||M N M N y y y y -=-,得11115||5|3|||22M N M N y y r y y -=--,4r =(舍去)或2r = 即直线MN 经过点(2,0)F ,设1122(,),(,)M x y N x y ,00(,)K x y①当直线MN 垂直于x 轴时,弦MN 中点为(2,0)F②当直线MN 与x 轴不垂直时,设MN 的方程为(2)y k x =-,则2211612(2)x y y k x ⎧+=⎪⎨⎪=-⎩2222(34)1616480k x k x k ⇒+-+-= 21221634k x x k +=+,2122164834k x x k -=+, 202834k x k =+,02634ky k-=+, 消去k ,整理得:22004(1)1(0)3y x y -+=≠ 综上所述,点K 的轨迹方程为224(1)1(0)3y x x -+=>. 21.(1)'''221(1)1()()()1(1)(1)m m x F x f x g x x x x +-=-=-=+++,1x >-, 当0m ≤时,'()0F x <,函数()F x 在(1,)-+∞上单调递减; 当0m >时,令'()0F x <11x m ⇒<-+,函数()F x 在1(1,1)m--+上单调递减; '()0F x >11x m ⇒>-+,函数()F x 在1(1,)m-++∞上单调递增, 综上所述,当0m ≤时,()F x 的单减区间是(1,)-+∞;当0m >时,()F x 的单减区间是1(1,1)m--+; 单增区间是1(1,)m-++∞. (2)函数()ln(1)f x m x =+在点(,ln(1))a m a +处的切线方程为ln(1)()1my m a x a a -+=-+, 即ln(1)11m may x m a a a =++-++ 函数()1x g x x =+在点1(,1)1b b -+处的切线方程为211(1)()1(1)y x b b b --=-++, 即2221(1)(1)b y x b b =+++.()y f x =与()y g x =的图象有且仅有一条公切线所以2221(1)1(1)ln(1)(2)1(1)ma b ma b m a a b ⎧=⎪++⎪⎨⎪+-=⎪++⎩有唯一一对(,)a b 满足这个方程组,且0m >由(1)得:21(1)a m b +=+代入(2)消去a ,整理得:22ln(1)ln 101m b m m m b +++--=+,关于(1)b b >-的方程有唯一解 令2()2ln(1)ln 11g b m b m m m b =+++--+ '22222[(1)1]()1(1)(1)m m b g b b b b +-=-=+++方程组有 解时,0m >,所以()g b 在1(1,1)m --+单调递减,在1(1,)m-++∞单调递增 所以min 1()(1)ln 1g b g m m m m=-+=-- 因为b →+∞,()g b →+∞,1b →-,()g b →+∞, 只需ln 10m m m --= 令()ln 1m m m m σ=--'()ln m m σ=-在0m >为单减函数且1m =时,'()0m σ=,即max ()(1)0m σσ== 所以1m =时,关于b 的方程22ln(1)ln 101m b m m m b +++--=+有唯一解 此时0a b ==,公切线方程为y x =22.(1)曲线C 是以(,0)a 为圆心,以a 为半径的圆直线l 的直角坐标方程为30x +-= 由直线l 与圆C 只有一个公共点,则可得|3|2a a -= 解得:3a =-(舍),1a = 所以:1a =(2)曲线C 的极坐标方程为2cos a ρθ=(0a >) 设A 的极角为θ,B 的极角为3πθ+,则21||||sin |2cos ||2cos()||cos cos()|23433OAB S OA OB a a πππθθθθ∆==+=+21cos cos()cos sin cos 322πθθθθθ+=-1cos 212224θθ+=-111(cos 22)224θθ=-+11cos(2)234πθ=++所以当6πθ=-时,11cos(2)234πθ++取得最大值34. OAB ∆的面积最大值24a . 23.(1)12,21()3,122,1x x f x x x x x ⎧+≤-⎪⎪⎪=--<<⎨⎪--≥⎪⎪⎩画出图象如图,(2)由(1)知,32m = ∵2222222323()2()242m a c b a b c b ab bc ==++=+++≥+, ∴324ab bc +≤,∴2ab bc +的最大值为34, 当且仅当12a b c ===时,等号成立.。

相关文档
最新文档