新人教版七年级下册数学知识点整理汇编
人教版七年级数学下册知识点总结归纳

人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
同位角相等,两直线平行。
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题。
题设成立时,不能保证结论一定成立,这样的命题中做假命题。
新人教版七年级下册数学知识点整理

一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。
二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。
三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。
四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。
五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。
六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。
以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。
新人教版初一下册数学重要考点知识总结

新人教版初一下册数学重要考点知识总结
1. 整数的加减
- 同号相加、异号相减
- 加法逆元、减法逆元
2. 整数的乘除
- 同号相乘为正、异号相乘为负
- 乘法逆元、除法逆元
3. 小数的运算
- 小数的加减乘除
- 小数的相互转换(小数转换为百分数、分数;百分数、分数转换为小数)
4. 分数的运算
- 分数的加减乘除
- 分数的化简与约分
- 分数的相互转换(分数转换为小数、百分数;小数、百分数转换为分数)
5. 百分数与它们之间的关系
- 百分数与分数的转化
- 百分数与小数的转化
- 百分数与整数的转化
6. 数列的概念与运算
- 数列的定义
- 等差数列、等比数列
- 数列的前n项和与通项公式
7. 图形的认识与性质
- 几何图形的基本概念(点、线、面)
- 常见的几何图形及其性质(三角形、四边形、圆等)
- 图形的相似与全等
8. 空间与立体图形
- 空间的基本概念
- 空间图形的表面积和体积
9. 一次函数与图像
- 一次函数的定义与性质
- 一次函数的图像特点(斜率、截距等)
10. 解一元一次方程
- 一元一次方程的定义与性质
- 解一元一次方程的方法(平移、分式等)
以上仅为初一下册数学重要考点的总结,具体内容还需要参考教材中的详细内容进行学习和理解。
人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
新版新人教版七年级数学下册全册知识点总结

新版新人教版七年级数学下册全册知识点总结新版新人教版七年级数学下册全册知识点总结第五章相交线与平行线知识点总结素材一.知识框架二.知识概念1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
第六章实数知识点总结素材1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
新人教版七年级数学下册知识点归纳

新人教版七年级数学下册知识点归纳
本文档旨在为七年级学生提供数学下册知识点的简洁归纳,方便学生进行研究和复。
第一章有理数
有理数基础知识
- 有理数的概念及表示方法
- 有理数的大小关系及比较
- 有理数的加减运算法则
有理数的乘除法
- 正数、负数、0之间的乘除
- 有理数的乘方
- 有理数的开方
第二章代数式
代数式的基本概念
- 代数式的定义及基本元素- 代数式的分类及例子
- 代数式的值及求值
代数式的运算
- 代数式的加减运算
- 代数式的乘除运算
- 代数式的乘方运算
第三章方程与不等式方程的基本概念
- 方程的定义及基本元素- 方程与等式的关系
- 一元一次方程的解法
不等式的基本概念
- 不等式的定义及基本元素
- 不等式的性质及解法
- 一元一次不等式的解法
第四章图形的认识
图形的基本概念
- 点、线、面的区别及联系
- 基本图形的名称及性质
- 平面图形的分类及例子
视图与投影
- 视图的基本概念及种类
- 正视图和俯视图的概念和绘制方法- 投影的基本概念及种类
第五章几何变换
平移
- 平移的定义及性质- 平移的向量表示- 平移的作用及实例
旋转
- 旋转的定义及性质- 旋转的角度表示- 旋转的作用及实例
对称
- 对称的定义及性质- 对称的种类及例子- 对称的作用及实例
以上为新人教版七年级数学下册的知识点归纳。
希望本文档能够帮助同学们更好地掌握数学知识,取得更好的研究成绩。
七年级下册数学知识点总结人教版

七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。
- 无理数:不能表示为分数形式的实数,如√2、π等。
2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。
- 减法:减去一个数等于加上它的相反数。
- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。
- 除法:除以一个数等于乘以它的倒数。
- 乘方:求一个数的幂。
3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。
- 平方根:一个数的平方根有两个,一个正数和一个负数。
4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。
- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。
二、代数1. 代数式- 单项式:只含有乘法运算的代数式。
- 多项式:由若干个单项式相加或相减组成的代数式。
2. 代数式的运算- 加法和减法:合并同类项。
- 乘法:单项式与单项式相乘,多项式与单项式相乘。
- 除法:多项式除以单项式。
3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。
- 公式法:使用平方差公式、完全平方公式等进行分解。
4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。
5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。
- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。
三、几何1. 平面图形- 点、线、面的基本性质。
- 直线、射线、线段的定义和性质。
- 角的定义、分类和性质,包括邻角、对顶角、同位角等。
2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。
- 三角形的内角和定理:三角形内角和为180度。
- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。
七年级下学期数学全部知识点 人教版

七年级下学期数学全部知识点人教版本文档汇总了七年级下学期数学人教版教材中的全部知识点。
单元一:有理数- 1.1 有理数的概念和表示方法- 1.2 有理数的比较和大小- 1.3 有理数的运算(加减乘除)- 1.4 有理数的乘方- 1.5 有理数的混合运算- 1.6 有理数的应用问题单元二:代数初步- 2.1 代数学的基本概念- 2.2 代数式的解法与应用- 2.3 代数式的运算- 2.4 一元一次方程的解法- 2.5 一元一次方程的应用- 2.6 一元一次方程的列式和双方程的解法单元三:平面图形的认识- 3.1 点、线、线段、直线、射线、角的认识- 3.2 三角形的分类- 3.3 三角形的性质与判定- 3.4 四边形的分类- 3.5 四边形的性质与判定- 3.6 平行四边形与菱形的性质与判断单元四:数据的选择和处理- 4.1 统计调查和数据的收集- 4.2 数据的整理和分析- 4.3 统计图的应用- 4.4 数据的概率和预测单元五:立体图形的认识- 5.1 点、线、面、体的认识- 5.2 立体图形的展开图和正视图- 5.3 立体图形的正面图和俯视图- 5.4 立体图形的性质与判定- 5.5 球的认识和性质单元六:数学应用题- 6.1 平均数与加权平均数- 6.2 常量与变量- 6.3 直接与间接概关系- 6.4 几何图形与尺寸的关系- 6.5 面积与周长的关系- 6.6 数据处理与解题方法以上是七年级下学期数学人教版教材中的全部知识点。
请学生们根据教材进行研究和复,加强对数学知识的掌握和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+ =180°; + =180°; + =180°; + =180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
=; =。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直;其中一条叫做另一条的垂线。
如图2所示,当= 90°时,⊥。
平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线43214321____________________________: b垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b 时,==== 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。
图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。
②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。
图3中,共有对内错角:与是内错角;与是内错角。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。
图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:图11342图3a5 7861 342 bc性质1:两直线平行,同位角相等。
如图3所示,如果a∥b,则 = ; = ; = ; = 。
性质2:两直线平行,内错角相等。
如图3所示,如果a∥b,则 = ; = 。
性质3:两直线平行,同旁内角互补。
如图3所示,如果a∥b,则 + =180°;+ =180°。
性质4:平行于同一条直线的两条直线互相平行。
如果a∥b,a∥c,则∥。
8、平行线的判定:判定1:同位角相等,两直线平行。
如图3所示,如果 =或 = 或 = 或 = ,则a∥b。
判定2:内错角相等,两直线平行。
如图3所示,如果 = 或 = ,则a ∥b 。
判定3:同旁内角互补,两直线平行。
如图3所示,如果 + =180°;+ =180°,则a∥b。
判定4:平行于同一条直线的两条直线互相平行。
如果a∥b,a∥c,则∥。
9、判断一件事情的语句叫命题。
命题由题设和结论两部分组成,有真命题和假命题之分。
如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。
真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移后,新图形与原图形的形状和大小完全相同。
平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。
第六章实数【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值 |a|≥0.3.倒数(1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用 (1≤<10,n 为整数)的形式记数的方法叫科学记数法.第七章平面直角坐标系一、知识网络结构用坐标表示平移用坐标表示地理位置坐标方法的简单应用平面直角坐标系有序数对平面直角坐标系二、知识要点1、有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对,记做(a,b )。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P ,过P 分别向x 轴,y 轴作垂线,垂足分别在x 轴,y 轴上,对应的数a,b 分别叫点P 的横坐标和纵坐标,记作P(a ,b)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。
7、坐标轴上点的坐标特点①x 轴正半轴上的点:横坐标 0,纵坐标 0;②x 轴负半轴上的点:横坐标 0,纵坐标 0;③y 轴正半轴上的点:横坐标 0,纵坐标 0;④y 轴负半轴上的点:横坐标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。
(填“>”、“<”或“=”) 8、点P(a ,b)到x 轴的距离是 |b| ,到y 轴的距离是 |a| 。
9、对称点的坐标特点①关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y 轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
10、点P(2,3) 到x 轴的距离是;到y 轴的距离是;点P(2,3) 关于x 轴对称的点坐标为( , );点P(2,3) 关于y 轴对称的点坐标为( , )。
11、如果两个点的横坐标相同,则过这两点的直线与y 轴平行、与x 轴垂直;如果两点的纵坐标相同,则过这两点的直线与x 轴平行、与y 轴垂直。
如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ ∥y 轴,PQ ⊥x 轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ ∥x 轴,PQ ⊥y 轴。
12、平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。
如果点P(a ,b) 在一、三象限角平分线上,则P 点的横坐标与纵坐标相同,即 a = b ;如果点P(a ,b) 在二、四象限角平分线上,则P 点的横坐标与纵坐标互为相反数,即 a = -b 。
13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。
选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。
14、图形的平移可以转化为点的平移。
坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。
如将点P(2,3)向左平移2个单位后得到的点的坐标为( , );将点P(2,3)向右平移2个单位后得到的点的坐标为( , );将点P(2,3)向上平移2个单位后得到的点的坐标为( , );将点P(2,3)向下平移2个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。