转动惯量测量实验报告(共7篇)

合集下载

转动惯量的测定实验报告

转动惯量的测定实验报告

转动惯量的测定实验报告大家好,今天我要给大家分享一下我们实验室的转动惯量测定实验。

让我来给大家普及一下什么是转动惯量。

转动惯量呢,就是物体在旋转过程中,抵抗突然改变方向的能力。

简单来说,就是一个物体转得越快,停下来就越难。

所以说,转动惯量是一个非常重要的物理量,它关系到我们生活中很多方面的问题。

那么,接下来我就给大家详细介绍一下我们实验的过程和结果吧。

我们需要准备的实验器材有:一个圆盘、一根长杆、一个测力计和一些细线。

还有一个最重要的东西,那就是我们的热情和毅力!(哈哈,开玩笑啦)我们要把圆盘固定在一个平面上,然后用细线把长杆和圆盘连接起来。

这样,当圆盘开始旋转时,长杆就会受到一个扭矩的作用。

接下来,我们要用测力计测量这个扭矩的大小。

具体操作方法是:让圆盘以一定的加速度旋转,然后用测力计测量长杆所受的拉力大小。

通过测量不同加速度下的扭矩,我们就可以得到圆盘的转动惯量了。

在我们的实验过程中,我们发现了一个非常有趣的现象。

那就是随着圆盘旋转速度的增加,长杆所受的扭矩也越来越大。

这说明什么呢?这说明转动惯量越大,物体抵抗突然改变方向的能力就越强。

换句话说,一个物体转得越快,停下来就越难。

这就是转动惯量的神奇之处!在实验过程中,我们还遇到了一些困难。

比如说,有时候圆盘会突然停下来,导致我们无法准确地测量扭矩。

为了解决这个问题,我们想了很多办法。

我们决定在圆盘上加一个小风扇,让它在旋转过程中不断地吹气。

这样一来,即使圆盘突然停下来,气流也会帮助它继续旋转,从而保证我们能够准确地测量扭矩。

经过多次实验和总结,我们终于得出了圆盘的转动惯量为100克·厘米^2/秒^2。

虽然这个数值看起来有点复杂,但是它告诉我们了一个非常重要的信息:这个圆盘在旋转过程中具有很强的抗突然改变方向的能力。

这对于我们在日常生活中遇到的很多问题都是非常有帮助的。

这次转动惯量的测定实验让我们深刻地认识到了转动惯量的重要性。

它不仅关系到物理学的基本原理,还关系到我们生活中很多方面的问题。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握用游标卡尺和秒表等仪器的使用方法。

二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。

当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。

设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。

当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。

由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。

又因为圆盘的摆动周期为 T,所以ω =2π/T。

联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。

三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。

四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。

2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。

3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。

4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。

5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。

五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。

测转动惯量实验报告(共7篇)

测转动惯量实验报告(共7篇)

篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。

方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。

,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。

根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。

调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。

(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。

并与理论值比较,求相对误差。

,写出。

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。

数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。

滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。

1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。

2.测量某种不规则物体的转动惯量。

注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。

转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。

实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。

旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。

设物体以角速度ω绕某一定轴转动。

质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。

转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。

有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。

它的大小可以计算为(C+K)m。

其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。

实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。

可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。

误差主要来自于读数仪器和实验操作技巧。

有效质量的计算结果与实际质量相比,误差范围较小。

通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。

同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。

测量转动惯量实验报告

测量转动惯量实验报告

测量转动惯量实验报告实验名称:测量转动惯量实验报告实验目的:通过实验测量不同形状的物体的转动惯量,研究转动惯量与物体形状、质量、转动轴等因素的关系实验原理:物体的转动惯量是物体对于某一轴的旋转惯性,具体计算公式为I=Σm*r^2,其中Σm为物体质量分布的总和,r为质心到物体上任一质量微元的距离。

根据定理可得,同样质量的物体,转动惯量越大,它的旋转越不灵活。

实验步骤:1. 实验器材准备:串联式弹簧拉力传感器、电子天平、双轴陀螺仪、T型板、圆盘、圆环、长方体、测量卡尺等。

2. 断定转动轴:将物体由一端挂在串联式弹簧拉力传感器上,电子天平在下检测一个拉力数值,张力数值传入电脑软件,再连接T型板用来止住物体。

旋转后让串联式弹簧拉力传感器检测到一个相似的拉力数值即可。

3. 测量相关长度和重量:用测量卡尺测量各物体的相关距离,同时用电子天平测量各物体的质量。

4. 测量转动惯量:用双轴陀螺仪测量各物体在转动轴上的转动惯量。

5. 数据处理:根据测量到的数据计算出各物体的转动惯量。

6. 结论:整理数据,综合实验结果,得出各物体转动惯量与形状、质量、转动轴之间的关系,进一步验证转动惯量的计算公式。

实验结果:经过测量,我们得出了圆盘、圆环和长方体的转动惯量分别为4.38×10^-3kg·m^2,6.38×10^-3kg·m^2和9.37×10^-3kg·m^2。

由此可见,同样质量的物体,转动惯量越大,它的旋转越不灵活。

同时,不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。

实验结论:本实验通过测量不同形状的物体的转动惯量,深入研究了转动惯量与物体形状、质量、转动轴等因素的关系。

实验结果表明,同样质量的物体,转动惯量越大,它的旋转越不灵活;不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。

本次实验结果的有效验证了转动惯量的计算公式,对深入理解物体的旋转运动学具有重要意义。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

测量转动惯量实验报告

测量转动惯量实验报告

测量转动惯量实验报告一、实验目的转动惯量是描述刚体转动惯性大小的物理量,它与刚体的质量分布以及转轴的位置有关。

本次实验的目的是通过实验测量几种不同形状刚体的转动惯量,并与理论值进行比较,从而加深对转动惯量概念的理解,掌握测量转动惯量的基本方法和实验技能。

二、实验原理1、转动惯量的定义对于绕定轴转动的刚体,其转动惯量 I 定义为刚体中各质点的质量mi 与其到转轴的距离 ri 的平方的乘积之和,即 I =Σ mi ri² 。

2、三线摆法测量转动惯量三线摆是通过测量刚体扭转摆动的周期来计算转动惯量的。

将一质量为 m0 的圆盘,用三条等长的悬线对称地悬挂在一个水平的圆盘上,构成三线摆。

当圆盘作小角度扭转摆动时,其运动可近似为简谐运动。

根据能量守恒定律和简谐运动的周期公式,可以推导出圆盘的转动惯量 I0 与摆动周期 T0 的关系为:I0 =(m0gRr) /(4π²H0T0²)其中,g 为重力加速度,R 为下圆盘(即摆盘)的半径,r 为上圆盘(即悬盘)的半径,H0 为上下圆盘之间的距离。

对于质量为 m 的待测刚体,将其放在下圆盘上,此时系统的转动惯量为 I',摆动周期为 T',则待测刚体的转动惯量 I 为:I = I' I03、平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,刚体的质量为 m,两平行轴之间的距离为 d,则刚体对另一平行轴的转动惯量 I 为:I = Ic + md²三、实验仪器三线摆实验仪、游标卡尺、米尺、电子天平、待测刚体(圆环、圆柱等)四、实验步骤1、调节三线摆装置(1)将三线摆的上、下圆盘调至水平,通过调节底座上的三个旋钮,使上圆盘的悬线与下圆盘的圆心在同一竖直线上。

(2)用米尺测量上下圆盘之间的距离 H0,测量 5 次,取平均值。

(3)用游标卡尺测量上圆盘和下圆盘的半径 r 和 R,各测量 5 次,取平均值。

2、测量下圆盘的质量 m0 和摆动周期 T0(1)用电子天平称出下圆盘的质量 m0。

转动惯量的测量实验报告

转动惯量的测量实验报告

转动惯量的测量实验报告转动惯量的测量实验报告引言:转动惯量是物体对转动运动的惯性特性的度量,对于研究物体的旋转运动以及分析机械系统的动力学性质具有重要意义。

本实验旨在通过测量物体的转动惯量,探究不同物体的旋转运动特性,并了解转动惯量的测量方法。

实验装置与原理:实验所用装置为转动惯量测量装置,主要由转轴、物体、测力计、计时器等组成。

实验原理基于牛顿第二定律和角动量守恒定律。

当物体绕转轴转动时,外力对物体产生一个力矩,根据牛顿第二定律,力矩等于转动惯量乘以角加速度。

通过测量力矩和角加速度,可以计算出物体的转动惯量。

实验步骤:1. 将转动惯量测量装置搭建好,并确保装置平稳。

2. 选择一种物体,例如一个圆柱体,并将其固定在转轴上。

3. 用测力计测量物体在转轴上的受力情况。

4. 在物体上施加一个力矩,使其开始转动,并用计时器记录转动的时间。

5. 根据牛顿第二定律和角动量守恒定律,计算物体的转动惯量。

实验结果与分析:通过实验测量得到的数据,可以计算出物体的转动惯量。

根据实验结果,我们可以发现不同物体的转动惯量是不同的,这是因为不同物体的质量分布和形状不同。

例如,一个圆柱体的转动惯量与其质量和半径的平方成正比。

此外,我们还可以通过实验结果分析物体的旋转运动特性,例如物体的角加速度和力矩之间的关系。

实验误差与改进:在实验过程中,可能会存在一些误差,例如测力计的读数误差、计时器的误差等。

为了减小误差,可以多次重复实验,取平均值来提高测量的准确性。

此外,还可以对实验装置进行改进,例如使用更精确的测力计和计时器,以提高实验的精度。

实验应用与展望:转动惯量的测量在工程领域具有广泛的应用。

例如,在设计机械系统或运动控制系统时,需要准确测量物体的转动惯量,以保证系统的稳定性和可靠性。

未来,可以进一步研究转动惯量的测量方法,开发更精确的测量装置,以满足不同领域的需求。

结论:通过本实验,我们了解了转动惯量的测量方法,并通过实验数据计算出物体的转动惯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。

将式(3)写为:r = k2/ t (5)式中k2 = (2hi/ mg)是常量。

上式表明r与1/t成正比关系。

实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。

即若所作图是直线,便验证了转动定律。

1/21/2从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i.三.实验仪器刚体转动仪,滑轮,秒表,砝码。

四.实验内容1.调节实验装置:调节转轴垂直于水平面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。

选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。

本项实验只作定性说明,不作数据计算。

3.测量质量与下落时间关系:测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。

将拉线平行缠绕在轮上。

逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。

对每种质量的砝码,测量三次下落时间,取平均值。

砝码质量从5g开始,每次增加5g,直到35g止。

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。

4.测量半径与下落时间关系测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。

将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。

对每一塔轮半径,测三次砝码落地之间,取其平均值。

注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。

由测得的数据作图,从图上求出斜率,并计算转动惯量。

五.实验数据及数据处理:r-1/t的关系:图片已关闭显示,点此查看图片已关闭显示,点此查看由此关系得到的转动惯量i=1.78?10?3kg?m 2m-(1/t)2的关系:图片已关闭显示,点此查看图片已关闭显示,点此查看由此关系得到的转动惯量i=1.87?10?3kg?m2六.实验结果:验证了转动定律并测出了转动惯量。

由r-1/t关系得到的转动惯量i=1.78?10由m-1/t的关系得到转动惯量i=1.87?10?3kg?m2. 2?3kg?m;2七.实验注意事项:1.仔细调节实验装置,保持转轴铅直。

使轴尖与轴槽尽量为点接触,使轴转动自如,且不能摇摆,以减少摩擦力矩。

2.拉线要缠绕平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力。

3.把握好启动砝码的动作。

计时与启动一致,力求避免计时的误差。

4.砝码质量不宜太大,以使下落的加速度a不致太大,保证a<<g条件的满足。

八.实验思考题:1. 定性分析实验中的随机误差和可能的系统误差。

答:随机误差主要出现在计时与启动的一致性上面还有,拉线的平行情况。

系统误差主要是轴的摩擦及空气阻力。

篇二:刚体转动惯量的测定实验报告刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。

2.用扭摆测定弹簧的扭转常数k和几种不同形状的物体的转动惯量,并与理论值进行比较。

3.验证转动定理和平行轴定理。

【实验仪器】(1)扭摆(转动惯量测定仪)。

(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。

(3)天平。

(4)游标卡尺。

(5)hld-th-ii转动惯量测试仪(计时精度0.001ms)图片已关闭显示,点此查看。

图片已关闭显示,点此查看【实验原理】1. 扭摆扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低磨擦力矩。

3 为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩m与所转过的角度θ成正比,即b m=-kθ(1)式中,k为弹簧的扭转常数,根据转动定律 m=iβ式中,i为物体绕转轴的转动惯量,β为角加速度,由上式得? 令 ?2?m (2)?k,忽略轴承的磨擦阻力矩,由(1)、(2)得 d2?k2??????? (3)??2idt上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程的解为:θ=acos(ωt+φ) (4)式中,a为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为t?2???2?i(5) k由(5)可知,只要实验测得物体扭摆的摆动周期,并在i和k中任何一个量已知时即可计算出另一个量。

本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的k值。

若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。

2.弹簧的扭转系数实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的k值。

方法如下:(1)测载物盘摆动周期t0,由(5)式得其转动惯量为:(2)塑料圆柱放在载物盘上,测出摆动周期t1,由(5)式其总惯量为:(3)塑料圆柱的转动惯量理论值为则由得:3. 测任意物体的转动惯量若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测其摆动周期,即可算出该物体绕转动轴的转动惯量。

待测物体的转动惯量为图片已关闭显示,点此查看图片已关闭显示,点此查看4.转动惯量的平行轴定理理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为io时,当转轴平行移动距离x时,则此物体对新轴线的转动惯量变为i=ic+mx2(6)称为转动惯量的平行轴定理。

【实验步骤】测定弹簧的扭转系数k及各种物体的转动惯量。

(1)用游标卡尺分别测定各物体的外形尺寸(各量重复测定六次),用天平测出相应质量(2)调整扭摆基地脚螺丝,是水平仪的气泡位于中心。

(3)将金属载物盘卡紧在扭摆垂直轴上,调节它使之静止时正对传感器。

给一个力矩,测出摆动周期t0。

(4)将塑料圆柱体垂直放在载物盘上,测出摆动周期t1。

(5)用金属圆筒代替塑料圆柱体,测出摆动周期t2。

2.验证平行轴定理(1)取下载物盘,将金属细杆及夹具卡紧在扭摆垂直轴上(金属细杆中心必须与转轴重合),测定摆动周期t3。

(2)将滑块对称放置在细杆两边的凹槽内,此时滑块质心离转轴的距离分别为 5.00,10.00,15.00,20.00,25.00厘米,测定摆动周期t。

此时由于周期较长,可将摆动次数减少。

【数据记录及处理】设周期的误差限为△,其标准差s=,(k为与该未定系差分量的可能分布有关的常数),故:s周期= =0.000058, s卡尺==0.00115s天平==0.5773图片已关闭显示,点此查看图片已关闭显示,点此查看则有:t0=1.04140.000058kg* ==△=0.01k=0.0192760.01图片已关闭显示,点此查看图片已关闭显示,点此查看kg*△i2==0.01 kg*= 1.61836* kg*百分误差:e=30.4% 2.验证平行轴定理图片已关闭显示,点此查看图片已关闭显示,点此查看图片已关闭显示,点此查看由表格中的数据得,故平行轴定理得到验证。

图片已关闭显示,点此查看篇三:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动图片已关闭显示,点此查看图片已关闭显示,点此查看图片已关闭显示,点此查看(1)此角谐振动的周期为图片已关闭显示,点此查看(2)图片已关闭显示,点此查看式中,图片已关闭显示,点此查看2图片已关闭显示,点此查看.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,图片已关闭显示,点此查看再由实验数据算出本仪器弹簧的(1图片已关闭显示,点此查看)测载物盘摆动周期值。

方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。

相关文档
最新文档