转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量

测量刚体的转动惯量

实验目的:

1.用实验方法验证刚体转动定律,并求其转动惯量;

2.观察刚体的转动惯量与质量分布的关系

3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:

1.刚体的转动定律

具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:

m = iβ (1)

利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量

图片已关闭显示,点此查看

如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。刚体受到张力的力矩为tr和轴摩擦力力矩mf。由转动定律可得到刚体的转动运动方程:tr - mf = iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:

22m(g - a)r - mf = 2hi/rt (2)

mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:

2mgr = 2hi/ rt (3)

式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量

从(3)出发,考虑用以下两种方法:

2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下

落高度h,(3)式变为:

2m = k1/ t (4)

2式中k1 = 2hi/ gr为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验

中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为:

r = k2/ t (5)

式中k2 = (2hi/ mg)是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。

1/21/2从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i.

三.实验仪器

刚体转动仪,滑轮,秒表,砝码。

四.实验内容

1.调节实验装置:调节转轴垂直于水平面

调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响

取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。本项实验只作定性说明,不作数据计算。

3.测量质量与下落时间关系:

测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。将拉线平行缠绕在轮上。逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。对每种质量的砝码,测量三次下落时间,取平均值。砝码质量从5g开始,每次增加5g,直到35g止。

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。

4.测量半径与下落时间关系

测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。对每一塔轮半径,测三次砝码落地之间,取其平均值。注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。由测得的数据作图,从图上求出斜率,并计算转动惯量。

五.实验数据及数据处理:

r-1/t的关系:

图片已关闭显示,点此查看

图片已关闭显示,点此查看

由此关系得到的转动惯量i=1.78?10?3kg?m 2

m-(1/t)2的关系:

图片已关闭显示,点此查看

图片已关闭显示,点此查看

由此关系得到的转动惯量i=1.87?10?3kg?m2

六.实验结果:

验证了转动定律并测出了转动惯量。由r-1/t关系得到的转动惯量i=1.78?10

由m-1/t的关系得到转动惯量i=1.87?10?3kg?m2. 2?3kg?m;2

七.实验注意事项:

1.仔细调节实验装置,保持转轴铅直。使轴尖与轴槽尽量为点接触,使轴转动自如,且不能摇摆,以减少摩擦力矩。

2.拉线要缠绕平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力。

3.把握好启动砝码的动作。计时与启动一致,力求避免计时的误差。

4.砝码质量不宜太大,以使下落的加速度a不致太大,保证a<<g条件的满足。

八.实验思考题:

1. 定性分析实验中的随机误差和可能的系统误差。

答:随机误差主要出现在计时与启动的一致性上面还有,拉线的平行情况。系统误差主要是轴的摩擦及空气阻力。

篇二:刚体转动惯量的测定实验报告

刚体转动惯量的测定

物本1001班

张胜东(201009110024)

李春雷(201009110059)

郑云婌(201009110019)

刚体转动惯量的测定实验报告

【实验目的】

1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。

2.用扭摆测定弹簧的扭转常数k和几种不同形状的物体的转动惯量,并与理论值进行比较。

3.验证转动定理和平行轴定理。【实验仪器】

(1)扭摆(转动惯量测定仪)。

(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。(3)天平。(4)游标卡尺。(5)hld-th-ii

转动惯量测试仪(计时精度

0.001ms)

图片已关闭显示,点此查看

图片已关闭显示,点此查看

【实验原理】

1. 扭摆

扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3 为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩m与所转过的角度θ成正比,即

b m=-kθ(1)式中,k为弹簧的扭转常数,根据转动定律 m=iβ

式中,i为物体绕转轴的转动惯量,β为角加速度,由上式得? 令 ?2

?

m (2)

?

k

,忽略轴承的磨擦阻力矩,由(1)、(2)得 d2?k2

??????? (3)??2

idt

上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程的解为:

θ=acos(ωt+φ) (4)

式中,a为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为

t?

2?

?

?2?

i

(5) k

由(5)可知,只要实验测得物体扭摆的摆动周期,并在i和k中任何一个量已知时即可计算出另一个量。

本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的k值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。

2.弹簧的扭转系数

实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的k值。方法如下:(1)测载物盘摆动周期t0,由(5)式得其转动惯量为:

(2)塑料圆柱放在载物盘上,测出摆动周期t1,由(5)式其总惯量为:

(3)塑料圆柱的转动惯量理论值为

则由得:

3. 测任意物体的转动惯量

若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测其摆动周期,即可算出该物体绕转动轴的转动惯量。

待测物体的转动惯量为

图片已关闭显示,点此查看

图片已关闭显示,点此查看

4.转动惯量的平行轴定理

理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为io时,当转轴平行移动距离x时,则此物体对新轴线的转动惯量变为

i=ic+mx2(6)

称为转动惯量的平行轴定理。【实验步骤】

测定弹簧的扭转系数k及各种物体的转动惯量。

(1)用游标卡尺分别测定各物体的外形尺寸(各量重复测定六次),用天平测出相应质量

(2)调整扭摆基地脚螺丝,是水平仪的气泡位于中心。

(3)将金属载物盘卡紧在扭摆垂直轴上,调节它使之静止时正对传感器。给一个力矩,测出摆动周期t0。

(4)将塑料圆柱体垂直放在载物盘上,测出摆动周期t1。(5)用金属圆筒代替塑料圆柱体,测出摆动周期t2。 2.验证平行轴定理

(1)取下载物盘,将金属细杆及夹具卡紧在扭摆垂直轴上(金属细杆中心必须与转轴重合),测定摆动周期t3。

(2)将滑块对称放置在细杆两边的凹槽内,此时滑块质心离转轴的距离分别为 5.00,

10.00,15.00,20.00,25.00厘米,测定摆动周期t。此时由于周期较长,可将摆动次数减少。

【数据记录及处理】

设周期的误差限为△,其标准差s=,(k为与该未定系差分量的可能分布有关的常数),故:s周期= =0.000058, s卡尺==0.00115

s天平==0.5773

图片已关闭显示,点此查看

图片已关闭显示,点此查看

则有:t0=1.04140.000058

kg* =

=

△=0.01

k=0.0192760.01

图片已关闭显示,点此查看

图片已关闭显示,点此查看

kg*

△i2==0.01 kg*

= 1.61836* kg*

百分误差:e=30.4% 2.验证平行轴定理

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

由表格中的数据得,故平行轴定理得到验证。

图片已关闭显示,点此查看

篇三:实验报告-用扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量

实验原理:

1.扭摆运动——角简谐振动

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

(1)

此角谐振动的周期为

图片已关闭显示,点此查看

(2)

图片已关闭显示,点此查看

式中,

图片已关闭显示,点此查看

2

图片已关闭显示,点此查看

.弹簧的扭转系数

实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,

图片已关闭显示,点此查看

再由实验数据算出本仪器弹簧的(1

图片已关闭显示,点此查看

)测载物盘摆动周期

值。方法如下:

的测定:

为弹簧的扭转常数式中,

为物体绕转轴的转动惯量。

,由(2)式其转动惯量为

图片已关闭显示,点此查看

(2

图片已关闭显示,点此查看

)塑料圆柱体放在载物盘上,测出摆动周期

,由(2)式其总转动惯量为

图片已关闭显示,点此查看

(3)塑料圆柱体的转动惯量理论值为

图片已关闭显示,点此查看

图片已关闭显示,点此查看

则由

,得

图片已关闭显示,点此查看

(周期我们采用多次测量求平均值来计算)

3.测任意物体的转动惯量:

若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即

可算出该物体绕转动轴的转动惯量。

根据2内容,载物盘的转动惯量为

图片已关闭显示,点此查看

待测物体的转动惯量为

图片已关闭显示,点此查看

4.转动惯量的平行轴定理

图片已关闭显示,点此查看

实验内容与要求:

必做内容:

1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。调整扭摆基座底脚螺丝,使水平仪的气

泡位于中心。(认真阅读仪器使用方法和实验注意事项)

2

图片已关闭显示,点此查看

.测定扭摆的弹簧的扭转常数

图片已关闭显示,点此查看

3

图片已关闭显示,点此查看

.测定塑料圆柱(金属圆筒)的转动惯量

4.测定金属细杆+

图片已关闭显示,点此查看

夹具的过质心轴的转动惯量

。并与理论值比较,求相对误差。

,写出

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。数据记录:

一、测定弹簧的扭转系数

及各种物体的转动惯量:

图片已关闭显示,点此查看

0.01s

图片已关闭显示,点此查看

表格一:

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

二、验证平行轴定理:

表格二:;

;;;。

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

滑块的总转动惯量为:

数据处理:(要求同学们写出详细的计算过程)

1.计算弹簧的扭转系数

;;

;;

2.计算物体的转动惯量(公式见表格)

3.验证平行轴定理(公式见表格)

拓展与设计内容:(实验方法步骤、数据表格自行设计)。

图片已关闭显示,点此查看

1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。

2.测量某种不规则物体的转动惯量。

注意事项:

1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如

图片已关闭显示,点此查看

均取

2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。 3.被测物件避免磕碰。

思考题:

(1)数字计时仪的仪器误差为0.01s,实验中为什么要测量20个周期?

(2)如何用转动惯量测试仪测定任意形状物体绕特定轴的转动惯量?

(3)在用扭摆测定物体转动惯量实验中,弹簧扭转系数越大,摆动周期是否越大?

(4)实验中测量物体摆动周期时,摆角为何要取确定值,你认为摆角取多少合适?

)。

篇四:大学物理实验转动惯量的测量(实验报告)

测量物体的转动惯量

1.刚体的转动定律

具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:

m = iβ (1)

利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量

如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。刚体受到张力的力矩为tr和轴摩擦力力矩mf。由转动定律可得到刚体的转动运动方程:tr - mf = iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:

m(g - a)r - mf = 2hi/rt(2)

mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:

mgr = 2hi/ rt(3)

式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:

a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:

m = k1/ t(4)

式中k1 = 2hi/ gr为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系

2

2

2

2

2

2

上作图,应是直线。即若所作的图是直线,便验证了转动定律。

从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。 b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为:

r = k2/ t(5)

式中k2 = (2hi/ mg)是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。

从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i。实验仪器

刚体转动仪,滑轮,秒表,砝码刚体转动仪包括:

a.、塔轮,由五个不同半径的圆盘组成。上面绕有挂小砝码的细线,由它对刚体施加外力矩。

b、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。与a 和配重物构成一个刚体。

c.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分。实验内容

1. 调节实验装置:

调节转轴垂直于水平面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响

取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。本项实验只作定性说明,不作数据计算。 3.测量质量与下落时间关系:

测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。将拉线平行缠绕在轮上。逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态

1/2

1/2

2

2

开始下落到达地面的时间。对每种质量的砝码,测量三次下落时间,取平均值。砝码质量从5g开始,每次增加5g,直到35g止。

n 用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。 4.测量半径与下落时间关系

测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。

将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。对每一塔轮半径,测三次砝码落地之间,取其平均值。注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。由测得的数据作图,从图上求出斜率,并计算转动惯量。 1、m-1/t2的数据与图像:

图片已关闭显示,点此查看

图片已关闭显示,点此查看

2、r—1/t的数据与图像:

图片已关闭显示,点此查看

图片已关闭显示,点此查看

篇五:物体转动惯量的测定--实验报告-131006231-张利鹏

沈阳城市学院

图片已关闭显示,点此查看

图片已关闭显示,点此查看

物理实验室制

请认真填写

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

请认真填写

图片已关闭显示,点此查看

图片已关闭显示,点此查看

请在一周内完成,交教师批阅

图片已关闭显示,点此查看

篇六:转动惯量实验报告

实验项目:测量形状不规则物体的转动惯量

(一)实验目的及要求:

发散思维设计两种不同的方法去求物体的转动惯量。

结合理论知识,加深转动惯量在刚体运动中所起作用的理解。

(二)仪器器材:

密度均匀薄木板、三线摆、dh4601转动惯量测试仪、实验机架、水平仪、游标卡尺、米尺、细线、圆柱体、天平、大头针、剪刀、钳子、透明胶。

(三)理论值计算:

j??r2dm j??ri2?mi

计算得

方案一:三线摆法1

一、实验原理:

1.重心——物体各部分所受重力的合力的作用点。在物体内各部分所受重力可看作平行力的情况下,重心是一个定点。一般物体可用悬挂法求的重心。

质心——物体的质量中心,是研究物体机械运动的一个重要参考点。当作用力通过该点时,物体只作平动而不发生转动;否则在发生移动的同时物体将绕该点转动。在研究质心的运动时,可将物体的质量看作集中于质心。对于密度平均的物体,其质心与重心重合。

根据平衡力定理:重力和拉力平衡,大小相等,在一条直线上测两次就可以得到两条直线

两条不平行的直线交于一个点就是重心,亦即质心。

2. 左图是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。

三个对称分布的等长悬线将两圆盘相连。上圆

盘固定,下圆盘可绕中心轴o’o作扭摆运动。

下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。根据能量守

恒定律或刚体的转动定律均可以导出物体绕

中心轴o’o的转动惯量。 i0=t02(m0grr)/(4π2h0)……①

其中m0为下盘的质量:r、r分别为上下悬点

离各自圆盘中心的距离;h0为平衡时上下盘间的垂直距离;to为下盘作简谐运动的周期,g为重力加速度(在广州地区g=9.788m/s2)。

将质量为m的待测物体放在下盘上,并使待测刚体的转轴与oo

图片已关闭显示,点此查看

’轴重合。测

出此时摆运动周期t1和上下圆盘间的垂直距离h。同理可求得待测刚体和下圆盘对中心转轴oo’轴的总转动惯量为:

i1=t12[(m0+m)grr]/(4π2h)………………………②

如不计因重量变化而引起悬线伸长,则有h≈h0 。那么,待测物体绕中心轴的转动惯量为:

i=i1—i0-=[(t12 (m0+m)- t02m0)grr]/(4π2h0)………………③

因此,通过长度、质量和时间的测量,便可求出刚体绕oo?轴的转动惯量。

二、实验步骤:

1. 仪器操作方法

(1) 打开电源dh4601转动惯量测试仪,程序预置的周期数为n = 30 (数显)。当计时开始时,计数达到2n + 1次时,计时停止并且显示具体时间(单位是秒),这个时间即为n 个周期的时间。例如,我们预置周期数为50,按下执行键开始计时,信号灯不停闪烁,即为计时状态。当这个计数达到2×50+1=101 次时计时停止,显示具体时间。

(2) 设置周期数的方法。若要设置50 次,先按“置数”开锁,再按上调(或下调)改变周期数n ,再按“置数”锁定,此时,即可按执行键开始计时,信号灯不停闪烁,即为计时状态。

当物体经过光电门的次数达到设定值时,数字显示器将显示具体时间(单位是秒)。只要按“返回”即可回到上次刚执行的周期数“50”,再按“执行”键即可第二次计时。

(3) 当断电后再开机,程序从头预置30 次周期,须重复上述步骤。

2. 实验操作步骤

(1)选择一个点,用细线分穿过该点将薄木板悬挂于空中,且细线另一端垂挂重物,使其自然垂直于木板所在的平面,用大头针将细线固定住,再用铅笔沿细线在木板上画出该细线在木板上的底纹。

(2)再选择另外一个点(该点不在步骤一所画出的细线上)用同样的方法画出另外一条细线,这两条细线的交点即为该薄木板的质心记为点a。

(3)调节底座及下盘水平:将水准仪分别置于底座与下盘,调整上盘的三个旋钮,使水准仪的气泡居中,使底座(下盘)水平。

(4)测出的上、下圆盘相邻两个悬孔间的距离a 和b ,然后算出悬孔到中心的距离r 和r 。

r=a/√3,r=b/√3 …………④

(5)用米尺测出两圆盘之间的垂直距离ho 。

(6)测量空盘绕中心轴oo’转动的运动周期to :轻轻转动上盘(上盘上有小转动杆),带动下盘转动,这样可以避免三线摆在做扭动时发生晃动。注意扭摆的转角控制在5°以内。用累积放大法测出扭摆运动的周期(计时器设定n = 50个周期)。

(7)测量待测物体与下盘共同转动的周期t1 :将待测圆环置于下圆盘上,注意使两者中心重合,按上面的方法测出它们一起扭摆运动的周期t1 。

(8)用天平测量、记录各刚体的质量(下圆盘质量在其表面上已有标注,单位为克)。

三、实验数据记录:

表1有关长度测量的记录表

图片已关闭显示,点此查看

下盘质量mo= ,待测木板的质量m= ,两圆盘的垂直距离ho= ,根据式④计算出

表2累积法测周期的数据记录表

图片已关闭显示,点此查看

根据式③计算出待测薄木板绕中心轴oo’的转动惯量i。 i=i1—i0-=[(t12 (m0+m)- t02m0)grr]/(4π2h0)

i= 。

四、误差来源分析及改进:

⑴米尺及游标卡尺的读数误差;

⑵用累积放大法测周期时,未等摆动平稳时便开始测量;

⑶摆动角度过大;

⑷三线摆中,下轴未能保持平行。

改进:控制下转盘扭摆角度于5°内;

方案二:三线摆法2:

一、实验原理:

左图是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘可绕中心轴o’o作扭摆运动。下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。根据能量守恒定律或刚体的转动定律均可以导出物体绕中心轴o’o的转动惯量。 i0=t02(m0grr)/(4π2h0)……

①其中m0为下盘的质量:r、r分别为上下

悬点离各自圆盘中心的距离;h0为平衡时上

下盘间的垂直距离;to为下盘作简谐运动的周期,g为重力加速度(在广州地区g=9.788m/s2)。

将下圆盘换成薄木板时,测量数据,跟据式①计算即可得到木板的转动惯量。

二、实验步骤:

(1)根据方案一得出的圆盘的质心,以该质心为圆心以r为半径画一圆,将该圆三等分,在圆周上取得x、y、z三点,且将大头针钉在该点上,再讲该三根大头针扭曲直至能用细线将该木板平行挂起为止。

(2)将三线摆仪器的下圆盘拆卸下来,再将薄木板通过细线挂在三线摆仪器的上圆盘上,将水准仪放在薄木板上,调节三条线的线长,直至该薄木板水平。

(2)测出的上圆盘相邻两个悬孔间的距离a ,然后算出悬孔到中心的距离r 。

r=a/√3 …………④

(r能由方案一测出的数据直接得出)

(3)用米尺测出圆盘和薄木板之间的垂直距离h1 。

(4)轻微转动转盘,使其转动角度小于或等于5法测出扭摆运动的周期(计时器设定n = 50个周期)。记录并整理数据。

三、实验数据记录:

由方案一的测量结果,可以获得以下数据:

薄木板质量m= ,下圆盘和薄木板间的垂直距离h1,,。

图片已关闭显示,点此查看

图片已关闭显示,点此查看

图片已关闭显示,点此查看

2 2h0) i2。

四、误差来源分析及改进:

(1)米尺及游标卡尺的读数误差;

(2)待测物体质量测量时产生误差;

(3)摆动角度过大;

(4)由于木板质量过轻,不能将悬挂木板的线拉直。

改进:

控制摆动角度于5°之内;悬挂木板的线尽可能用细软线。

方案三:复摆法:

四、实验原理:

一个可绕固定轴摆动的刚体称为复摆。刚体的质心为c, 对过o 点的转轴的转动惯量为j, o、c 两点间距离的距离为h。

d2?j2??mgshin?据转动定律,得 dt

d2?

图片已关闭显示,点此查看

j2??mg?h若?较小时 dt

?2?

令 mghj

d2?2??

图片已关闭显示,点此查看

??02则 dt

有 t?2?

??2?t2

j?2mgh4?可得刚体绕过点o且垂直于薄木板转轴的转动惯量……………⑤又由转动惯量的平行轴定理有:

质量为m的物体绕过质心的且垂直于薄木板的轴的转动惯量为 ic ,当转轴平行移动距离x 时,则此物体对新轴ab 的转动惯量为 i= i c +mx2 。

于是根据转动惯量平行轴定理有,过薄木板质心的转轴的转动惯量为ic=i-mx2 …………⑥

二、实验步骤:

(1)打开电源dh4601转动惯量测试仪,将程序周期数设为n=50.

(2)在待测薄木板上侧面钉一大头针(dh4601转动惯量测试仪测周期用),拿一长木板,在木板上钉一细钉,将薄木板通过细钉悬挂于长木板上,记该点为点b,记该木板的质心的为a点。

(3)将薄木板向上拉开a角,松开手,让薄木板以该细钉为转轴做扭摆运动。

(4)待其摆动较为稍稳定时,用dh4601转动惯量测试仪测量该薄木板摆动50个周期所

用的时间,并记录下来。

(5)重复步骤(3)、(4)5次,并将实验数据记录在下表4中。取其平均值。

(6)用游标卡尺测量ab两点间的距离,记为h。

三、数据记录与计算:

图片已关闭显示,点此查看

3

由方案一已测出薄木板质量m,根据式⑤计算出该薄木板质心所在轴的转动惯量为

io= 。

由⑥式有:ia=ib-mh2

四、误差来源分析及改进:

(1)米尺及游标卡尺的读数误差;

(2)薄木板摆动过程中,与长木板的摩擦过大。

改进:减少薄木板与长木板的接触面积,如将悬挂薄木板的大头钉钉在长木板的侧面,减少摩擦。

(四)注意事项:

(1)在使用三线摆法测待测物体的转动惯量时,底盘必须保持平衡。

(2)在使用方案(一)、(二)时要注意待测物体与三线摆仪器的中心轴oo’重合。

(3)三线摆法测量时,底盘的扭转角度不宜过大,最好保持在5°。

(4)在三个测量方案里,都必须等到摆动平稳时才开始用累积放大法测其周期,这样能够减小误差。

(5)dh4601转动惯量测试仪的光电感应的感应端必须摆在摆动角的中间附近位置,确保转动一个周期能够两次扫过该感应端。

(五)对该次实验的评价:

篇七:实验二扭摆法测物体的转动惯量(bipt 标准实验报告)

实验二用扭摆法测定物体的转动惯量

(标准实验报告制作:bipt 2013.3.8)

【实验目的】

1、测定几种不同形状物体的转动惯量和弹簧的扭转常数,并与理论值进行比较。

2、验证转动惯量平行轴定理。

【仪器用具】

扭摆、转动惯量测试仪、实心塑料圆柱体、空心金属圆筒、木球、金属杆、金属圆柱滑块。

【实验原理】

扭摆的结构如图2.1所示,将物体在水平面内转过一角度? 后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。

根据胡克定律,弹簧受扭转而产生的恢复力矩m与所转过的角度? 成正比,即 m= ?k? (2.1)

根据转动定律:m=j? 得

??

2

m

(2.2) j

d2?kk

令??,由式(2.1)、(2.2)得:??2??????2?

jjdt

上述方程表示扭摆运动具有角简谐振动的特性,此方程的解为: ??acos(?t??)

图2.1

此谐振动的周期为:t?

2?

?

?2?

j

(2.3)或 k

t2

j?k (2.4) 2

4?

由(2.3)或(2.4)式可知,只要实验测得物体扭摆的摆动周期,并在j和k中任何一个量已知时即可计算出另一个量。

本实验用一个已知形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出仪器弹簧的k值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(2.3)即可算出该物体绕转动轴的转动惯量。

理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为j0,当转轴平行移动距离x时,

图片已关闭显示,点此查看

则此物

图片已关闭显示,点此查看

1

体对新轴线的转动惯量变为j0+mx2。称为转动惯量的平行轴定理。

【实验内容】

1、测定扭摆的仪器常数(弹簧的扭转常数)k。

2、测定塑料圆柱、金属圆筒、木球与金属细杆的转动惯量。并与理论值进行比较。

3、改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。

【实验步骤】

1、测出塑料圆柱体的外径,金属圆筒的内、外径,木球直径,金属细杆长度(各测3次);并称出各个物

体的质量。

2、调整扭摆基座底角螺丝,使水准泡中气泡居中。

3、装上金属载物盘,并调整光电探头的位置使载物盘上挡光杆处于其缺口中央且能遮住发射、接受红外

光线的小孔。测定摆动周期t0。

4、将塑料圆柱体垂直放在载物盘上,测定摆动周期t1。

5、用金属圆筒代替塑料圆柱体,测定摆动周期t2。

6、取下载物金属盘、装上木球,测定摆动周期t3。(在计算木球的转动惯量时,

应扣除支座的转动惯量)。

7、取下木球,装上金属细杆(金属细杆中心必须与转轴重合),测定摆动周期

t4。(在计算金属细杆的转动惯量时,应扣除夹具的转动惯量)。 8、将滑块对称放置在细杆两边的凹槽内(见图1.3),此时滑块质心离转轴的

图2.3 距离分别为5.00,10.00,15.00,20.00,25.00厘米,测定摆动周期t。计算j并与理论值进行比较(计算转动惯量时应扣除夹具的转动惯量)。验证转动惯量的平行轴定理。

【注意事项】

1、由于弹簧的扭转常数k值不是固定常数,0—1200左右才基本相同。为了降低实验时由于摆动角度变化过大带来的系统误差,在测定各种物体的摆动周期时摆角不宜过小,摆幅也不宜变化过大。

2、探头宜放置在挡光杆的平衡位置处,以免增大摩擦力矩。

3、机座应保持水平状态。

4、在安装待测物体时,其支架必须扭摆主轴,并将止动螺丝旋紧,否则扭摆不能正常工作。 4、称量金属细杆与木球的质量时,必须将否则会带来较大误差。

【数据表格】表1 转动惯量测量实验数据记录表

图片已关闭显示,点此查看

2

图片已关闭显示,点此查看

2

说明:k值按照此式计算:k?4?

j1?t1?t0

2

2

(n·m-1)

??j1

1-422

m1=9.060?10kg m,k8

?4?2

j1?t1?t0

2

2

=3.815?10(n/m)

-2

表2 验证转动惯量平行轴定理数据记录表

结论:平行轴定理成立。

3

图片已关闭显示,点此查看

【思考题】

1、本实验对摆动角度有什么要求?如果没满足实验要求将带来什么误差?答:摆角在900—1200左右扭转常数k值才基本相同。

若摆角不满足,m= ?k?就不成立,所以摆动角度变化会给实验带来系统误差。

【附录】

金属细杆夹具转动惯量实验值:j4

kg?m2 夹具=0.232?10

—木球支座转动惯量实验值:j—4

kg?m2

支座=0.179?10

两滑块绕通过质心转轴的转动惯量理论值: j‘—45=0.809?10

kg?m2

实验值为:j5=0.82?10

—4

kg?m2,每一滑块的质量m?239.50g。

刚体转动惯量数据处理

测量装置的几何尺寸 仪器:米尺cm D =米尺 0.5 卡尺0.02mm D =卡尺 (表格单位:cm ) ⑴塔轮半径 塔轮半径:1 d 2 r = = cm 测量的不确定度:11()(d) 1.32(d)cm 2 2 A A u r u s ==? ()0.683c m B u r =譊=卡尺 ()cm u r 测量结果:()r r u r =? ( )cm 2.角加速度测量 2 rad/s D =仪0.001 m=30g

10b 测量的不确定度2 1010() 1.20()rad/s A u s b b == 210()0.683rad/s B u b =譊=仪 210()rad/s u b 。 20b 测量的不确定度2 2020() 1.20()rad/s A u s b b == 220()0.683rad/s B u b =譊=仪 220()rad/s u b 。 1b 测量的不确定度211() 1.20( )rad/s A u s b b == 21()0.683r a d /s B u b =譊=仪 21()rad/s u b 。 2b 测量的不确定度222() 1.20( )rad/s A u s b b == 22()0.683r a d /s B u b =譊=仪 210()rad/s u b 。 空载转动惯量:22002010 () =kg m mr g r J b b b -= - ⑵圆环的转动惯量2221 () =kg m mr g r J b b b -= -合 圆环的转动惯量实验值: 210kg m J J J =-= 合 圆环的转动惯量理论值:22212111m )kg m 8 J D D =+= 理( 实验值与理论值相对误差:111100%=%r J J E J -= 理理

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分 布、形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

理论力学转动惯量实验报告

理论力学转动惯量 实验报告

【实验概述】 转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。 正确测定物体的转动惯量,~对于了解物体转动规律,~机械设计制造有着非常重要的意义。 然 而在实际工作中,大多数物体的几何形状都是不规则的, 难以直接用理论公式算出其转动惯~ 量,只能借助于实验的方法来实现。 因此,在工程技术中,用实验的方法来测定物体的转动 ’ 惯量就有着十分重要的意义。 IM-2刚体转动惯量实验仪,应用霍尔开关传感器结合计数计 ’ 时多功能毫秒仪自动记录刚体在一定转矩作用下, 的角加速度和刚体的转动惯量。 因此本实验提供了一种测量刚体转动惯量的新方法, 实验思 路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新 仪器。 【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1. 转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 即绳子的张力T=m(g-r p 2) 砝码与系统脱离后的运动方程 (2) 由方程(1) (2)可得 J=mr(g-r p 2)/( p 2- p 1) 2. 角加速度的测量 0=3 o t+? p t2 若在t 1 、t 2时刻测得角位移0 1、B 2 则 0 1 = 3 0 t 1+? p t2 0 2=3 0 t 2+? p t2 所以,由方程(5)、(6)可得 p =2 (0 2 t 1- 0 1 t 2) / t 1 t 2 (t 2- t 1) 【实验仪器】 转过n 角位移的时刻,测定刚体转动时 T X 叶M 严J p 2 (1) 由牛顿第二定律可知,砝码下落时的运动方程为: mg-T=ma (5)

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

转动惯量实验报告

转动惯量实验报告 一.实验目的 (1) 学会用落体法转动实验仪测定刚体的转动惯量; (2) 研究刚体的转动惯量与形状、大小及转轴位置的关系。 三.实验仪器描述 本实验所用NNZ-2型刚体转动实验仪由主机和测量仪表与拉线牵引台辅机及待测刚体球、环、盘、棒等组成。主机包括基础转盘和测量传感器;辅机由转数表和计时表、拉线、悬臂及砝码。 四.实验内容 1.测量基础转盘的转动惯量 2.测量圆环(或圆盘)的转动惯量 3.测双球的转动惯量并用球体验证平行移轴定理。 五.测量及实验步骤

1.测量基础转盘的转动惯量: 将主机上的霍尔传感器输出端插头和电磁铁及电插头,插入辅机的对应插口。将砝码托盘上的挂线穿过悬臂上的滑轮并使其一端固定在转轴上。(1)调节好主机和辅机的高度,使拉线与悬臂轴线平行,为此,悬臂上设有两个定位钉,使拉线通过两个定位钉即可。 (2)打开辅机上的电源开关,这时电磁铁会自动将基础转盘锁住。我们已将转数设为16个脉冲,即测量转2周的转动时间。 (3)绕线与测试准备--测试键-完成测试:主机因电磁铁失电而解锁,砝码从静止开始下落,刚体转动2周后,电磁铁自动吸合,重新锁紧转动的刚体,并显示刚体转动2周的下落时间。绕线键-主机解锁,重新绕线,绕线合适位置后完毕按下准备键,仪表全部数据归零,做好测量准备,主机(转动刚体)通过电磁铁被锁紧;按下测试键,再次测试转动2周的时间。 这里要特别强调,绕线到合适位置的含义。因为我们要测出刚体完整转动2周的时间,霍尔传感器给出开始和结束讯号的位置就必须是同一位置,这是减少误差的重要环节。 (4)测试在砝码托盘上放200g砝码,然后点按一下测试键,电磁铁失电,砝码带动刚体作匀加速转动,计时仪表开始计时,当刚体转动2周结束

转动惯量实验报告(2)

南昌大学物理实验报告 课程名称:扭摆法测定物体转动惯量 实验名称:扭摆法测定物体转动惯量 学院:信息工程学院专业班级:测控技术与仪器152班 学生姓名:夏正彬学号:5801215044 实验地点:基础实验大楼座位号:13 实验时间:第四周星期二(下午)一点开始

一、实验目的: 1.测定弹簧的扭转常数 k, 2.测定形状不同物体的转动惯量并与理论值比较, 3.验证转动惯量平行轴定理。 二、实验原理: 将物体在水平面内转过一角度?后,在弹簧的恢复力矩作用下物体就开始绕垂 直轴做往返扭转运动。根据胡可定律,弹簧受扭转而产生的恢复力矩 M 与所转过的 角度?成正比,即 M=-k? 式中 k 为弹簧的扭转常量,根据转动惯量 M=Iβ即β= 式中 I 为物体绕转轴的转动惯量,β为角角速度,由上式得 β==-=-ω2θ 上式ω2=,忽略轴承的摩擦阻力钜。 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正 比,且方向相反,此方程的解为 θ=Acos(ωt+φ) 式中,A 为谐振动的角振幅,φ为初相位,ω为角速度,此谐振动的周期为 T==2π(4-4)

由式(4-4)可知,只要试验测得物体扭摆的摆动周期,并在 I 和 k 中任

何一个量已知时即可算出另一个量。 转动惯量组合定理:若一个物体由几部分组成,每一部分相对转轴的转动惯量分别为 I ?,I ?,I ?…, 那么整个物体对转动轴的转动惯量为 I ? +I ?+I ?+…本实验用一个几何 形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论共式直接计算 得到,再算出本仪器弹簧的 k 值。 如先测载物盘转动的周期 T?,有 T=2π(4-5)再测载物盘加塑料圆柱转动的周期 T?,有 T?=2π(4-6)I?′为塑料圆柱转动惯量理论计算值 I ?′= (4-7) 由式(4-5)和式(4-6)可得 k=4π2 (4-8) 若要测定其他形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(4-4)即可算出该物体绕转动轴的转动惯量: I=-I?(4-9)

扭摆法测定物体的转动惯量实验报告

扭摆法测定物体的转动惯量 一、实验目的 1.测定扭摆的仪器常数(弹簧的扭转常数)K 。 2.测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。 3.验证转动惯量的平行轴定理。 二、实验器材 扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺 托盘天平。 三、实验原理 1.测量物体转动惯量的构思与原理 将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M K θ=- 式中K 为弹簧的扭转常数。 若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得 M K I I βθ= =- 令2K I ω= ,忽略轴承的磨察阻力距,得 222d dt θ βωθ==- 上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。方程的解为 cos()A t θω?=+ 式中A 为简谐振动的角振幅,?为初相位角,ω为角速度。谐振动的周期为 22T πω = =由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。 本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量

和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。 假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则 2 20 04T I K π= 若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则 222 '2 '1 010144()T I I T I K K ππ=+=+ 解得 ' 2 12 2 104I K T T π=- 以及 '2 1002 2 10 I T I T T =- 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即 202 4KT I I π =- 本实验测量木球和金属细杆的转动惯量时,没有用金属载物盘,分别用了支架和夹具,则计算转动惯量时需要扣除支架和夹具的转动惯量。 2.验证物体转动惯量的平行轴定理 本实验利用金属细杆和两个对称放置在细杆两边凹槽内的滑块来验证平行轴定理。测量整个系统的转动周期,可得整个系统的转动惯量的实验值为 22 4KT I π= 当滑块在金属细杆上移动的距离为x 时,根据平行轴定理,整个系统对中心轴转动惯量的理论计算公式应为 '2+2+2m I I I I x =+细杆夹具滑块滑块 式中I 滑块为滑块通过滑块质心轴的转动惯量理论值。 如果测量值I 与理论计算值'I 相吻合,则说明平行轴定理得证。

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、 形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

,u rx==% R=± urx=% 计算转动惯量的结果表示: J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上. (2)实验测量计算的误差: J=mR(g?Rβ2)β2?β1 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导, ?J ?m=R(g?Rβ2)β2?β1 ?J ?R=mg?2Rβ2β2?β1 ?J ?β2=?mR2(β2?β1)?mR(g?Rβ2) (β2?β1)^2 ?J ?β1= mR(g?Rβ2) (β2?β1)^2

《用三线摆法测定物体的转动惯量》简明实验报告.

4π 2 H 《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210 型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 gRr J = J - J = [(m + m )T 2 - m T 2 ] 1 0 0 1 0 0 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1) 调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长 度,直至下盘水平。 (2) 测量空盘绕中心轴 OO 转动的运动周期 T 0:设定计时次数,方法为按“置数”键后,再按“下调”或“上 调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运 动时发生晃动。注意扭摆的转角控制在 5o 左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯 闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间 ,从而摆动周期为总时间除以摆动 次数。进行下一次测量时,测试仪先按“返回”键。 (3) 测出待测圆环与下盘共同转动的周期 T 1:将待测圆环置于下盘上,注意使两者中心重合,按同样 的方法测出它们一起运动的周期 T 1。 (4) 测出上下圆盘三悬点之间的距离 a 和 b ,然后算出悬点到中心的距离 r 和 R (等边三角形外接圆半 径) (5) 其它物理量的测量:用米尺测出两圆盘之间的垂直距离 H 0 和放置两小圆柱体小孔间距 2x ;用游标 卡尺测出待测圆环的内、外直径 2R 1、2R 2。 (6) 用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录 r = 3 a = 3.870 ± 0.002 cm , R = 3 b = 7.150 ± 0.002 cm 3 3 H 0 = 54.60 ± 0.05 cm , 下盘质量 m 0 =499.68 ± 0.10 g 待测圆环质量 m =192.260 ± 0.020 g 累积法测周期数据记录参考表格 下盘 下盘加圆环 摆动 50 次 所需 时间 50T (s ) 1 2 3 4 5 平均 71.68 72.06 71.88 71.65 71.62 71.78 1 2 3 4 5 平均 74.28 74.16 74.15 74.22 74.13 74.19 周 期 T 0=1.44 ± 0.01 s T 1= 1.48±0.01 s

刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 22112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

转动惯量实验报告

大学物理实验报告测量刚体的转动惯量 测量刚体的转动惯量 实验目的: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二. 实验原理: 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: m = iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动

惯量。 2.应用转动定律求转动惯量 图片已关闭显示,点此查看 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg –t=ma,在t 时间内下落的高度为h=at/2。刚体受到张力的力矩为tr 和轴摩擦力力矩mf 。由转动定律可得到刚体的转动运动方程:tr - mf = iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: 22m(g - a)r - mf = 2hi/rt (2) mf与张力矩相比可以忽略,砝码质量m 比刚体的质量小的多时有a<

式中r 、h 、t 可直接测量到,m 是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量i 。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: 2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下 落高度h ,(3)式变为: 2m = k1/ t (4) 2式中k1 = 2hi/ gr为常量。上式表明:所用砝码的质量与下落时间t 的平方成反比。实验 中选用一系列的砝码质量,可测得一组m 与1/t的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。 222从m – 1/t图中测得斜率k1,并用已知的h 、r 、g 值,由k1 =

大学物理仿真刚体的转动惯量实验报告

大学物理仿真实验——刚体转动惯量的测量 班级: 姓名: 学号:

实验名称:刚体转动惯量的测量 一、实验目的 在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。 本实验将学习测量刚体转动惯量的基本方法,目的如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二、实验原理 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: M = Iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。刚体受到

张力的力矩为T r 和轴摩擦力力矩M f 。由转动定律可得到刚体的转动运动方程:T r - M f = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: m(g - a)r - M f = 2hI/rt2 (2) M f 与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

转动惯量实验报告

刚体绕轴转动惯性的度量。其数值为J=∑mi*ri^2,式中mi 表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是

kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2(v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必

刚体转动惯量的测量_评分标准

“用刚体转动惯量仪测定刚体转动惯量”评分标准 第一部分:预习报告(20分) 一.实验目的 1.掌握使用转动惯量仪检验刚体的刚体转动定律。 2.学会测定圆盘的转动惯量和摩擦力矩。 3.学会一种处理实验数据的方法-作图法(曲线改直法)。 二.实验仪器 刚体转动惯量仪、通用电脑毫秒计、水准仪、 游标尺、 砝码等 三.实验原理 1.转动定律 2.单角度设置法)0(0=w ,测量刚体的转动惯量和摩擦力矩,曲线改直法应用; * 3.双角度设置法,测量刚体的转动惯量和摩擦力矩; * 4.验证平行轴定理 四.实验内容及步骤 1.单角度设置法)0(0=w ,测量刚体的转动惯量和摩擦力矩; 2.双角度设置法,测量刚体的转动惯量和摩擦力矩。 第二部分:数据采集与实验操作(40分) 有较好的动手能力,能够很好解决实验过程中出现的问题,数据采集记录完整准确,操作过程无误(35-40分); 有一定的动手能力,能够解决实验过程中出现的一般问题, 数据采集记录完整,操作过程无大的违规(35-20); 动手能力较差,难以解决实验过程中出现的一般问题,数据采集与记录不完整、有偏差,有违规操作(0-20分)。 操作要点: 1. 拉线要与绕线塔轮水平,且相切。 2. 单角度设置法中要确保初角速度为零,即00=w ; 第三部分:数据记录与数据处理(30分) 数据处理要求: 1.原始数据需重新抄入实验报告数据处理部分的正文中,再进行具体处理,注意各测量量的单位; 2.测量塔轮半径r ,刚体圆盘质量M 盘,刚体圆盘直径R 盘;设置系统转动角度θ;

3.使用作图法(曲线改直)处理单角度设置法的数据: 1)作图时要有清楚标注,如空载图还是载荷图,坐标轴是否有标注,数据是否齐全,比例是否合适等; 2)由图可得,空载时的截距0C 和斜率0K ;载荷时的截距C 和斜率K ; 3)计算空载时系统的0J ,载荷时系统的J ,得到刚体圆盘转动惯量x J ; 4)计算刚体圆盘理论值理x J ,并与上述实验值作比较; 5)计算系统空载和载荷时的摩擦力矩0μM 、μM ,并作比较。 4.根据公式处理双角度设置法的数据: 1)根据公式,计算系统空载时0β、' 0β,以及载荷时的β、'β; β为有恒外力矩(绕线上挂有固定质量砝码)时的角加速度, 'β为无外力矩(绕线上没有挂砝码)时的角加速度; 2)根据公式,计算空载时系统的0J ,载荷时系统的J ,得到刚体圆盘转动惯量x J ; 3)计算刚体圆盘理论值理x J ,并与上述实验值作比较; 4)计算系统相应的摩擦力矩μM 。 测量结果参考值: 1.基本数据测量: 铝质圆盘直径:D 盘 =(240.00±0.05)mm 砝码质量:(5.00±0.05)g 圆盘质量:M 盘 = 482g 2.单角度设置法数据记录与处理: 1)空载数据记录: )6(102)1(==-=N N 取ππθ , cm r 000.3= , 0=盘M

大学物理刚体的转动惯量的研究实验报告

大学物理仿真实验报告 电子3班 实验名称:刚体得转动惯量得研究 实验简介 在研究摆得重心升降问题时,惠更斯发现了物体系得重心与后来欧勒称之为转动惯量得量。转动惯量就是表征刚体转动惯性大小得物理量,它与刚体得质量、质量相对于转轴得分布有关。 本实验将学习测量刚体转动惯量得基本方法,目得如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2。观察刚体得转动惯量与质量分布得关系 3.学习作图得曲线改直法,并由作图法处理实验数据。 实验原理 1。刚体得转动定律 具有确定转轴得刚体,在外力矩得作用下,将获得角加速度β,其值与外力矩成正比,与刚体得转动惯量成反比,即有刚体得转动定律: M= Iβ(1) 利用转动定律,通过实验得方法,可求得难以用计算方法得到得转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上得配重物组成。刚体将在砝码得拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力与细线得张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落得高度为h=at2/2。刚体受到张力得力矩为T r与轴摩擦力力矩Mf。由转动定律可得到刚体得转动运动方程:T r—Mf= Iβ。绳与塔轮间无相对滑动时有a= rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2(2) M f与张力矩相比可以忽略,砝码质量m比刚体得质量小得多时有a<<g, 所以可得到近似表达式: mgr = 2hI/ rt2(3) 式中r、h、t可直接测量到,m就是试验中任意选定得。因此可根据(3)用实验得方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r与砝码下落高度h,(3)式变为: M = K1/ t2(4) 式中K1= 2hI/ gr2为常量。上式表明:所用砝码得质量与下落时间t得平方成反比。实验中选用一系列得砝码质量,可测得一组m与1/t2得数据,将其在直角坐标系上作图,应就是直线.即若所作得图就是直线,便验证了转动定律。 从m–1/t2图中测得斜率K1,并用已知得h、r、g值,由K1= 2hI/ gr2求得刚体得I. B.作r – 1/t图法:配重物得位置不变,即选定一个刚体,取砝码m与下落高度h为固定值。将式(3)写为:

实验报告-用扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量 实验原理: 1.扭摆运动——角简谐振动 (1) 此角谐振动的周期为 (2) 式中,为弹簧的扭转常数式中,为物体绕转轴的转动惯量。 2.弹簧的扭转系数的测定: 实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到, 再由实验数据算出本仪器弹簧的值。方法如下: (1)测载物盘摆动周期,由(2)式其转动惯量为 (2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为 (3)塑料圆柱体的转动惯量理论值为 则由,得

(周期我们采用多次测量求平均值来计算) 3.测任意物体的转动惯量: 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即 可算出该物体绕转动轴的转动惯量。 根据2内容,载物盘的转动惯量为 待测物体的转动惯量为 4.转动惯量的平行轴定理 实验内容与要求: 必做内容: 1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。调整扭摆基座底脚螺丝,使水平仪的气 泡位于中心。(认真阅读仪器使用方法和实验注意事项) 2.测定扭摆的弹簧的扭转常数,写出。 3.测定塑料圆柱(金属圆筒)的转动惯量。并与理论值比较,求相对误差。 4.测定金属细杆+夹具的过质心轴的转动惯量。

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 数据记录: 一、测定弹簧的扭转系数 及各种物体的转动惯量: 表格一: ; ;0.01s ; 二、验证平行轴定理: 表格二: ; ; ; 。

) ) () ( 滑块的总转动惯量为: 数据处理:(要求同学们写出详细的计算过程) 1.计算弹簧的扭转系数 ; ; ;; ;; ;; ; 2.计算物体的转动惯量(公式见表格) 3.验证平行轴定理(公式见表格)

相关文档
最新文档