实验报告-刚体转动惯量
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握用游标卡尺和秒表等仪器的使用方法。
二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。
当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。
设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。
当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。
由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。
又因为圆盘的摆动周期为 T,所以ω =2π/T。
联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。
三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。
四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。
2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。
3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。
4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。
5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。
五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。
刚体转动惯量测定实验报告

刚体转动惯量测定实验报告刚体转动惯量测定实验报告引言:刚体转动惯量是描述刚体对转动的惯性的物理量,它对于研究刚体的旋转运动以及机械系统的稳定性至关重要。
本实验旨在通过测量不同形状的刚体的转动惯量,探究刚体的几何形状对转动惯量的影响,并验证转动惯量的计算公式。
实验装置和原理:本实验采用的装置主要包括转动惯量测量仪、刚体转动轴、质量盘、质量块等。
实验原理基于转动惯量的定义:刚体绕轴线转动的转动惯量等于刚体上各质点质量与轴线距离平方的乘积之和。
实验步骤:1. 首先,将转动惯量测量仪的转动轴与刚体转动轴对齐,并固定好。
2. 确保转动惯量测量仪的刻度盘归零,以保证测量的准确性。
3. 将质量盘和质量块按照实验要求放置在刚体上。
4. 用测量仪测量刚体转动的角度,并记录下来。
5. 重复以上步骤,测量不同质量和形状的刚体的转动惯量。
实验结果与分析:通过实验测量得到的转动惯量数据,我们可以计算出不同刚体的转动惯量。
实验中我们选取了不同形状的刚体,例如长方体、圆柱体和球体,以探究几何形状对转动惯量的影响。
首先,我们测量了不同质量的长方体的转动惯量。
根据转动惯量的计算公式,我们可以得到转动惯量与质量成正比的关系。
因此,我们预计随着质量的增加,转动惯量也会增加。
实验数据显示,转动惯量与质量的变化趋势符合预期,验证了转动惯量计算公式的正确性。
接下来,我们测量了不同半径的圆柱体的转动惯量。
根据转动惯量的计算公式,我们可以得到转动惯量与半径的四次方成正比的关系。
实验数据显示,转动惯量与半径的变化趋势符合预期,进一步验证了转动惯量计算公式的正确性。
最后,我们测量了不同半径的球体的转动惯量。
根据转动惯量的计算公式,我们可以得到转动惯量与半径的五次方成正比的关系。
实验数据显示,转动惯量与半径的变化趋势符合预期,再次验证了转动惯量计算公式的正确性。
结论:通过本实验的测量和分析,我们验证了刚体转动惯量的计算公式的正确性,并探究了不同几何形状对转动惯量的影响。
刚体转动惯量的测定实验报告

拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
刚体转动实验实验报告

刚体转动实验实验报告一、实验目的1、学习使用刚体转动实验仪测量刚体的转动惯量。
2、验证刚体转动定律和转动惯量的平行轴定理。
3、掌握数据处理和误差分析的方法。
二、实验原理1、刚体的转动惯量刚体绕固定轴转动时的转动惯量 I 等于刚体中各质点的质量 mi 与它们各自到转轴距离 ri 的平方的乘积之和,即:I =Σ mi ri²2、刚体转动定律刚体绕定轴转动时,刚体所受的合外力矩 M 等于刚体的转动惯量 I 与角加速度β的乘积,即:M =Iβ3、转动惯量的平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,对与该轴平行且相距为d 的另一轴的转动惯量为 Ip,则有:Ip = Ic + md²三、实验仪器刚体转动实验仪、秒表、砝码、游标卡尺、米尺等。
四、实验步骤1、调节刚体转动实验仪将实验仪调至水平状态,通过调节底座的螺丝,使实验仪上的气泡位于水准仪的中心。
调整塔轮和定滑轮之间的细线,使其处于紧绷状态,且与转轴垂直。
2、测量塔轮半径 R 和绕线轴半径 r使用游标卡尺分别测量塔轮的外半径 R1、内半径 R2,取平均值得到塔轮半径 R。
同样用游标卡尺测量绕线轴的半径 r。
3、测量刚体的质量 M 和形状尺寸用天平称出刚体的质量 M。
用米尺测量刚体的几何尺寸,如圆盘的直径、圆柱的长度和直径等。
4、测量空载时刚体的转动惯量在刚体上不添加砝码,轻轻转动刚体,使其在摩擦力矩的作用下做匀减速转动。
用秒表记录刚体转过一定角度θ所需的时间 t1。
5、测量加载砝码时刚体的转动惯量在绕线轴上逐渐添加砝码,使刚体在重力矩的作用下做匀加速转动。
用秒表记录刚体转过相同角度θ所需的时间 t2。
6、验证转动惯量的平行轴定理将两个相同的圆柱体对称地放置在刚体上,使其质心与转轴的距离分别为 d1 和 d2。
测量刚体在这种情况下转过相同角度θ所需的时间 t3。
五、实验数据记录与处理1、实验数据记录|实验次数|塔轮半径 R (cm) |绕线轴半径 r (cm) |刚体质量 M (kg) |空载时间 t1 (s) |加载时间 t2 (s) |平行轴时间 t3 (s) |||||||||| 1 |______ |______ |______ |______ |______ |______ || 2 |______ |______ |______ |______ |______ |______ || 3 |______ |______ |______ |______ |______ |______ |2、数据处理(1)计算塔轮半径 R 和绕线轴半径 r 的平均值:R =(R1 + R2) / 2r =(r1 + r2) / 2(2)计算空载时刚体的角加速度β1:β1 =θ / t1²(3)计算加载砝码时刚体的角加速度β2:β2 =θ / t2²(4)计算空载时刚体的转动惯量 I1:I1 =(M (R r)²) /(β1 g)(5)计算加载砝码时刚体的转动惯量 I2:I2 =(M (R r)²+ mgr) /(β2 g)(6)计算平行轴定理验证时刚体的转动惯量 I3:I3 =(M (R r)²+ 2m(d1²+ d2²))/(β3 g)3、误差分析(1)测量仪器的误差:游标卡尺和秒表的精度有限,可能导致测量结果存在一定的误差。
刚体转动惯量测定实验报告

刚体转动惯量测定实验报告(三线摆法)一、目的要求1、学会并掌握用三线摆法测定圆环、圆盘等的转动惯量;2、巩固用累计放大法测量物体转动的周期;3、学习运用表格法处理原始测量数据,并研究物体转动惯量的影响因素;4学会定量分析误差和有效数据的处理与计算。
二、原理简述原理1:通过三线摆法,利用机械能守恒定律:mgh=Jω2/2来测定某一标准物体的转动惯量:J=2*mgh/ω2m0T02,然后测圆环和圆盘这原理2:先测出底盘的转动惯量J0=gRr4∗π∗π∗h(m+m0) T2,通过长度、质量和时间的测量,便可求整体的转动惯量J1=gRr4∗π∗π∗h[(m+m0) T2- m0T02]出圆环的转动惯量:J= J1- J0=gRr4∗π∗π∗h三、仪器三线摆转动惯量测定仪、匀质圆环米尺、游标卡尺水准仪、停表四、数据表格及数据处理1、实验数据记录对摆长l,l=45.00cm,带入相关数据∆l =(li −l )ni =1n ∗(n −1)=(li −l )5i=15∗(5−1)=0.01cm则l=l ±∆l =45.00±0.01cm同理,可得出,D ,D ’,t 0,t ,R ,r下圆盘系点间的距离D=D±∆D =11.29±0.01cm 上系点间的距离D ’=D′±∆D′=4.35±0.01cm 盘摆动50个周期所用时间t 0t 0= t0±∆t0=82.61±0. 14s 圆盘与圆环这整体摆动50个周期所用时间tt= t ±∆t =87.08±0.07s 圆环内径r 0=9.518±0.004cm 圆环外径R 0=11.461±0.008cm同时,由系点组成的上下圆半径:r =33D′,R = 33D周期,T0 =t050=1.67s ,T =t50=1.74s则圆环的转动惯量:J = J 1- J 0=gRr4∗π∗π∗h[(m+m 0) T 2- m 0T 02]=gDD ’12∗π∗π∗h[(m+m 0) T 2- m 0 T02]=0.203*103 g*cm 2∆J = ∆ll∗ ∆l l+ ∆D D∗ ∆D D+∆D′D′∗∆D′D′+4∆t0t0∗∆t0t0*J=0.085*103 g*cm 2J=J ±∆J =(0.203±0.085)*103 g*cm 2五、分析和讨论实验结果1、在实验过程中,多个数据的测量使用了游标卡尺,因此应该注意测量杆与被测量物体刚好碰到时,尽量准确读数,以减小误差;2、是用水准仪时,要使气泡居于圈内,尽量保证下盘水平,当使用水准仪后,测量了一些数据,即使下盘微偏,也不要再使用水准仪去调节,因为这样会改变摆线长,导致实验失败;3、测量周期时,应该在下盘通过平衡位置时才开始计数,尽量判断准确,减小误差;4、在处理盘摆动上升的H时,再该计算过程中作了近似处理,此时对实验的结果也有一定的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号
院系
时间
地点
【实验题目】刚体转动惯量的测量
【实验记录】
1.仪器与用具
名称
准确度
2.环的质量M=,挡光板遮光间距 =
塔轮直径D (cm)
遮光直径d(cm)
环内直径D1(cm)
环外直径D2(cm)
1
2
3
4
平均值
圆环转动惯量的理论值 =
3.负载时系统的转动惯量( )( )1来自234
5
拟合结果
线性方程 =
线性相关系数 =
4.空载时系统的转动惯量( )
( )
1
2
3
4
5
拟合结果
线性方程 =
线性相关系数 =
【数据处理与分析】
圆环转动惯量测量值
=
【实验总结】
实验结果:
实验结论及其讨论:
成绩报告成绩(满分30分):指导教师签名:日期: