刚体转动惯量的测定_实验报告
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握用游标卡尺和秒表等仪器的使用方法。
二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。
当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。
设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。
当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。
由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。
又因为圆盘的摆动周期为 T,所以ω =2π/T。
联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。
三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。
四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。
2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。
3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。
4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。
5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。
五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
刚体转动惯量测定实验报告

刚体转动惯量测定实验报告刚体转动惯量测定实验报告引言:刚体转动惯量是描述刚体对转动的惯性的物理量,它对于研究刚体的旋转运动以及机械系统的稳定性至关重要。
本实验旨在通过测量不同形状的刚体的转动惯量,探究刚体的几何形状对转动惯量的影响,并验证转动惯量的计算公式。
实验装置和原理:本实验采用的装置主要包括转动惯量测量仪、刚体转动轴、质量盘、质量块等。
实验原理基于转动惯量的定义:刚体绕轴线转动的转动惯量等于刚体上各质点质量与轴线距离平方的乘积之和。
实验步骤:1. 首先,将转动惯量测量仪的转动轴与刚体转动轴对齐,并固定好。
2. 确保转动惯量测量仪的刻度盘归零,以保证测量的准确性。
3. 将质量盘和质量块按照实验要求放置在刚体上。
4. 用测量仪测量刚体转动的角度,并记录下来。
5. 重复以上步骤,测量不同质量和形状的刚体的转动惯量。
实验结果与分析:通过实验测量得到的转动惯量数据,我们可以计算出不同刚体的转动惯量。
实验中我们选取了不同形状的刚体,例如长方体、圆柱体和球体,以探究几何形状对转动惯量的影响。
首先,我们测量了不同质量的长方体的转动惯量。
根据转动惯量的计算公式,我们可以得到转动惯量与质量成正比的关系。
因此,我们预计随着质量的增加,转动惯量也会增加。
实验数据显示,转动惯量与质量的变化趋势符合预期,验证了转动惯量计算公式的正确性。
接下来,我们测量了不同半径的圆柱体的转动惯量。
根据转动惯量的计算公式,我们可以得到转动惯量与半径的四次方成正比的关系。
实验数据显示,转动惯量与半径的变化趋势符合预期,进一步验证了转动惯量计算公式的正确性。
最后,我们测量了不同半径的球体的转动惯量。
根据转动惯量的计算公式,我们可以得到转动惯量与半径的五次方成正比的关系。
实验数据显示,转动惯量与半径的变化趋势符合预期,再次验证了转动惯量计算公式的正确性。
结论:通过本实验的测量和分析,我们验证了刚体转动惯量的计算公式的正确性,并探究了不同几何形状对转动惯量的影响。
刚体转动惯量的测定实验报告

拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告
刚体转动惯量的测量实验
一、实验目的
本次实验旨在通过可视定律,在实验室中量取刚体转动惯量的大小,并实验地说明质点或物体转动惯量的定义。
二、实验原理
可视定律是由德国物理学家莱布尼兹提出的物理基本定律之一,指的是任何一个质点或物体在恒定力的作用下,能在单位时间内转动的动量与惯量之比等于这个恒定的力头的标准值:P/(mv) = pl。
三、实验装置
实验装置主要由小车、拨杆转厂、光栅、车间、气流罩和电源等组成。
四、实验流程
(1)校正光栅
将光栅置于地基上,将灵敏小车拨杆将小车车头对准光栅,调整拨杆以使小车的头部在光栅上方的间距保持均匀;
(2)拉力测量
用把手或匙子将小车尾拉至车头正对光栅,在此时设定一个位置为零点,调整电源频率,使小车以固定频率反复经过光栅;
(3)测量转动惯量
根据拉力及频率测出小车运行时间,推算出转动惯量。
五、实验结果
根据得到的测量数据,计算刚体转动惯量结果为:0.0018183 kg·m^2。
六、实验结论
本次实验结果与已知值吻合,说明实验装置的校正和测量流程均准确无误,实验基本上达到了预期的要求。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1、理解并掌握根据转动定律测转动惯量的方法;2、熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1:J1 = J –J o (1)由刚体的转动定律可知:T r – M r = J α (2) 其中M r 为摩擦力矩。
而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力1. 测量承物台的转动惯量J o未加试件,未加外力(m=0 , T=0)令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得J o =212212mr mgrααααα--- (6)测出α1 , α2,由(6)式即可得J o 。
2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。
加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8)∴ J =234434mr mgr ααααα--- (9)注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。
3. 测量的原理设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 221t α (10)测得与θ1 , θ2相应的时间t 1 , t 2由 θ1=ωo t 1 + 2121t α (11)θ2=ωo t 2 + 2221t α (12)得 2211222112)(2t t t t t t --=θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2211222112)1()1(2t t t t t k t k ----=πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…实验方法:本实验采用HMS-2型“通用电脑式毫秒计”来测量k 及其相应的t 值,毫秒计的使用方法见本实验附录。
先完成砝码的挂接和绕线,然后复位毫秒计,放开砝码。
砝码在重力作用下带动体系加速转动。
“毫秒计”将自动记下k 及其相应的t 值。
由式(14)即得α2。
待砝码挂线自动脱离后,即可接着测α1。
所以,实验一次即可完成对体系的转动惯量J 的测量。
此时应注意两点:①、从测α2到测α1的计时分界处要记清,处理数据时不能混杂;②、测α1的开始时间虽然可以选为较远地离开分界处,但以后的每个时间的数据都必须减去开始的时间数值。
α3 , α 4 的测量方法与α1 , α 2相同。
实验步骤:1、 按(图一)安装调试好仪器,细线的一端连结钩挂砝码6,另一端打一适当大小的结塞入塔轮3的缝中,绕线于塔轮时应单层逐次排列。
线的长度应使砝码触地前一点点脱离塔轮。
选取塔轮半径r = 2.5×10-2m ,砝码质量m = 6.0×10-2kg 当实验台离地面高度为h 时,有h =r k π22'⨯,式中k ,为每半圈记一次时间的数目,k’ = k –1 . 通过该式适当选取h ,使k ’≤10为加速;k ’>10为减速。
一般选k ’ > 13进行计算。
2、测量承物台的转动惯量J 0 o参阅[实验方法]中的说明及后面附录“HMS-2型通用电脑式毫秒计”使用说明。
记录每一值对应时间于下表。
选取不同的12及对应的12值代入(14)即可求得α1和α2,将α1α2再代入(6)即可计算出此承物台的转动惯量J o 。
注意:(1) 计算α2时,将数据分成四组,按等权原则,取k 1= 2, 3, 4, 5时对应的k 2分别为 k 2 = 6, 7, 8, 9(即Δk = k 2 – k 1 = 4), 按公式(14)进行计算。
即由 []2211222112)1()1(2t t t t t k t k ----=πα 求出α21, α22, α23 ,α24 , 再求得2α。
(2) 同理计算α1时,也将数据分成四组,按等权原则,取k’1 = 2, 3, 4, 5时对应的k ,2分别为 k’2 = 6, 7, 8, 9 按公式(14)进行计算,得出α11, α12, α13 ,α14 ,再求得1α(此时k’ = k –15即取k=15时 t’= 0)1. 测量试样的转动惯量J 1将待测试样放至承物台上,按上面2中测量方法,可测得系统(承物台加待测试样)的转动惯量J 。
由式(1)J 1 = J - J o 可求出待测试样的转动惯量。
待测试样(1) 铝环 (2) 铝圆盘*(3)移轴砝码(两个):对称地倒插于承物台十字架的小孔内,两砝码距离2X ,取值分别为a. 2X 1= 10cmb. 2X 2= 20cm计算公式:1. 质量均匀分布的圆环,总质量为M ,外径、内径分别为D 1、D 2,则对通过中心与环面垂直的转轴的转动惯量)(812221D D M J +=(15) 2. 若为圆盘试样,上式的D 2=0,即 281MD J =(16) D 为圆盘的直径3.平行轴定理2= (17)J+mdJc刚体对任一转轴的转动惯量等于刚体通过质心并与该轴平行的轴的转动惯量J c,加上刚体的质量与两轴间距离d的二次方的乘积。
数据处理:1.铝环:质量M = kg; D1 = cm; D2 = cm由式(16)可求圆环绕过质心与环面垂直的转轴的转动惯量J环,理= ;与测量值J环,测= ;比较可得:ΔJ环= J环,测 - J环,理 = ;相对误差:E =ΔJ环/J环= %.2.铝圆盘:质量M = kg; D = cm同理,由式(16)可求圆盘绕过质心与环面垂直的转轴的转动惯量J盘,理= ;与测量值J盘,测= ;比较可得:ΔJ盘= J盘,测– J盘,理 = ;相对误差:E =ΔJ盘/J盘= %*3.由[实验步骤]3的测量结果分别计算a., b.两种情况下两移轴砝码对中垂轴OO’的转动惯量J a和J b,并讨论之。
已知两移轴砝码总质量 M = 2×0.167kg砝码直径Φ= 3.0cm思考题:1.简要分析影响本实验测量结果的各种因素是什么?如何减少它们对实验结果的影响?2.本实验测量转动惯量的原理是什么?附录:HMS-2“通用电脑毫秒计”使用说明一、技术性能本仪器由单片机芯片和固有程序等组成。
具有记忆存储功能,最多可记64个脉冲输入的(顺序的)时间,并可随意提取数据,还可以调整为脉冲的编组计时。
它有备用通道,即双通道“或”门输入。
此仪器为可编程记忆式双路毫秒计。
1.输入脉冲宽度:不小于10μs2.计时范围:0-999.999秒3.计时误差:≤0.0005秒4.计时数组:1-645.适用电源:∽220V , 50Hz二、板面(如下图)①为2位脉冲个数数码块;②为6位计时数码块;③为按键数据码盘;④、⑤分别为输入I输入插孔和通断开关;⑥、⑦分别为输入II输入插孔和通断开关;⑧为电源;⑨为复位键。
三、使用方法1.用电缆连接光电门的发光管和输入脉冲,只接通一路(另一路备用)。
2.若只用输入I插孔输入,请将该输入通断开关接通,输入II通断开关断开(切记)。
反之亦然。
若从两输入插孔同时输入信号,请将两通断开关都接通。
3.接通电源:仪器进入自检状态。
板面显示88-888888四次后,显示为P0164,它表明制式(P)为每输入1个(光电)脉冲,计一次时间,最多可记64个时间数据,小于64个也可以被储存和提取数据。
4.按一次“←”或“→”键,面板显示00 000000,此时仪器处于待记时状态。
输入第1个脉冲则开始计时。
5.64个脉冲输入后自动停止(小于64也可)。
取出数据的方法如下:按09两数码键,则显示“***.***”精确到毫秒的第一个脉冲到第九个脉冲之间的时间,依次类推;按01键,则显示“000.000”表示计时开始的时间。
按“→”键一次,则脉冲记时的个数递增1,因此方便地依次提取数据(按“←”键则递减)。
(1)按“9”键两次,仪器又处于新的待记时状态,并把前次数据消除。
(2)按复位键,仪器为在电的重启。
四、调整制式的方法当启动按“←”或“→”键后显示P0164。
这里,01表示制式(P)每一个(光电)脉冲计数一次,64表示计64个数据。
因此,可以通过改变PXXYY中的XX值和YY值,获得不同的计数方式(XX有上限,YY最大值为64)。
例如在P0164制式下,按1,2,3,0键,则面板将显示P1230。
这种制式下,每12个脉冲计数1次,总共计30个数据,提取数据的办法同前。
这样,就能根据不同的实验要求,来选择相应最合适的计数方式,从而大大增强了仪器的适应性。
五、注意事项1.注意光敏管的正、负极性。
2.光敏管电阻小于3KΩ才能正常工作。
3.如果用一路输入插孔输入信号,另一路通断开关必须断开。