转动惯量实验报告(2)
转动惯量实验报告

转动惯量实验报告一.实验目的(1) 学会用落体法转动实验仪测定刚体的转动惯量;(2) 研究刚体的转动惯量与形状、大小及转轴位置的关系。
三.实验仪器描述本实验所用NNZ-2型刚体转动实验仪由主机和测量仪表与拉线牵引台辅机及待测刚体球、环、盘、棒等组成。
主机包括基础转盘和测量传感器;辅机由转数表和计时表、拉线、悬臂及砝码。
四.实验内容1.测量基础转盘的转动惯量2.测量圆环(或圆盘)的转动惯量3.测双球的转动惯量并用球体验证平行移轴定理。
五.测量及实验步骤1.测量基础转盘的转动惯量:将主机上的霍尔传感器输出端插头和电磁铁及电插头,插入辅机的对应插口。
将砝码托盘上的挂线穿过悬臂上的滑轮并使其一端固定在转轴上。
(1)调节好主机和辅机的高度,使拉线与悬臂轴线平行,为此,悬臂上设有两个定位钉,使拉线通过两个定位钉即可。
(2)打开辅机上的电源开关,这时电磁铁会自动将基础转盘锁住。
我们已将转数设为16个脉冲,即测量转2周的转动时间。
(3)绕线与测试准备--测试键-完成测试:主机因电磁铁失电而解锁,砝码从静止开始下落,刚体转动2周后,电磁铁自动吸合,重新锁紧转动的刚体,并显示刚体转动2周的下落时间。
绕线键-主机解锁,重新绕线,绕线合适位置后完毕按下准备键,仪表全部数据归零,做好测量准备,主机(转动刚体)通过电磁铁被锁紧;按下测试键,再次测试转动2周的时间。
这里要特别强调,绕线到合适位置的含义。
因为我们要测出刚体完整转动2周的时间,霍尔传感器给出开始和结束讯号的位置就必须是同一位置,这是减少误差的重要环节。
(4)测试在砝码托盘上放200g砝码,然后点按一下测试键,电磁铁失电,砝码带动刚体作匀加速转动,计时仪表开始计时,当刚体转动2周结束时,电磁铁将自动重新转盘锁住并停止计时。
把这一时间记录在表格上。
按表格要求,重复测量5次。
(5)在砝码托盘上放300g砝码,重复上述步骤。
2、测量圆环的转动惯量:(1)将圆环对准基本盘的定位钉将其放好。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
测转动惯量实验报告(共7篇)

篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。
方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。
,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。
根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。
调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。
并与理论值比较,求相对误差。
,写出。
5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。
数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。
滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。
1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。
2.测量某种不规则物体的转动惯量。
注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。
转动惯量实验报告2

转动惯量实验报告一、实验目的:1.测定扭摆的仪器常量(弹簧的扭转常量)k.2.测定几种不同形状物体的转动惯量,并与理论值进行比较.3.验证转动惯量平行轴定理.二、实验原理:根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即:M=-kθ①,k为弹簧扭转常量根据转动定律:M=Iβ②(I为物体绕转轴的转动惯量,β为角加速度),得β=d^2θ/dt^2=-kθ/I=-ω^2θ,得ω^2=k/I③.根据简谐振动规律:T=2π/ω=2π√I/k④由式④可知,测得物体扭摆的摆动周期,并在I和k中任何一个量已知时即可计算出另一个量.(1)先测载物盘转动的周期T0,有T=2π√I0/k(2)再测加了塑料圆柱的载物盘的周期T1,有T1=2π√I0+I1/k,I1为塑料圆柱转动惯量理论计算值I1=mr²/2由(1)(2)得k=4π²*I1/T1²-T0².理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为I0,当转轴平行移动距离x时,则此物体对新轴线的转动惯量变为I0+mx²,称为转动惯量的平行轴定理.三、实验仪器:扭摆、空心金属圆柱体、实心塑料圆柱体、塑料球、验证转动惯量平行轴定理用的细金属杆及杆上可滑动的两块金属滑块、电子天平、游标卡尺、转动惯量测试仪.四、实验内容和步骤:(1)熟悉扭摆的构造和使用方法,以及转动惯量测试仪的使用方法。
(2)测量金属载物盘和塑料高圆柱扭摆周期,并计算弹簧的扭转常数K。
1,将金属载物盘固定在扭摆支架上,调节扭摆底座的三个螺丝,使其达到水平状态。
2调节光电传感器在固定支架上的高度,使载物盘上的挡光杆能自由通过光电门3.开启主机电源,状态指示为“摆动”,本机默认扭摆的周期数为10次,可参照仪器使用说明更改次数。
更改后的周期数不具有记忆功能,一旦切断电源或按“复位”键,便恢复为10次。
4先将载物盘转至90。
附近,让它自由摆动,按下“执行”键,当载物盘上的挡光杆第一次通过光电门时,主机开始计时,同时自动存储周期数,带周期数达到预设值时,自动停止计时。
转动惯量实验报告

篇一:转动惯量的实验分析报告转动惯量的测量实验分析报告一、数据处理(1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。
如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。
(2)计算扭摆弹簧的扭转常数k,计算公式为:i1k?4?2?0.0411*******n?m 2t1?t22(3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。
百分比误差=理论值-实验值?100理论值以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。
表3-2-1 刚体转动惯量的测定(4)验证平行轴定理。
改变滑块在金属细杆上的位置,测定转动周期,测量数据记录在表3-2-2中。
计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。
其中测得m滑块=0.2397kg。
表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。
其中,误差来源主要有以下几点:(1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。
(2)没有对仪器进行水平调节。
(3)圆盘的固定螺丝没有拧紧。
(4)摆上圆台的物体有一定的倾斜角度。
三、思考题(一)预习思考题1、如何测量扭摆弹簧的扭转系数k?答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理21论值为i1?m1d1,再测量出金属载物盘的转动周期t0及小塑料圆柱的转动周8i1期为t1,利用计算公式k?4?2代入数据即可求出k。
2t1?t222.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的i1、t1和t0得到金属载物盘的转动惯量为i1t1i0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为t2,再利2t1?t02kt2用计算公式i2=?i0即可得到该物体的转动惯量。
转动惯量实验报告

转动惯量实验报告一、实验目的1.学习转动惯量的概念和计算方法;2.通过实验测量确定不同物体的转动惯量;3.探究转动惯量和物体几何形状、质量的关系。
二、实验原理1.转动惯量:物体对绕过其质心轴心旋转的惯性特征的度量。
对于刚体,它由物体质量和物体构型决定。
2.转动惯量的计算方法:(1) 对于点质量:I = mr^2;(2)对于轴对称物体:I=1/2mR^2;(3) 对于复杂形状物体:I = Σmiri^2,其中m为小质量元素的质量,ri为离轴线的距离。
3.转动惯量的实验测量方法:利用转动定理,即T=Iα,其中T为转矩,α为角加速度。
三、实验器材1.转动惯量测量装置:由转动马达、转动平衡台、挠度计和电源等组成;2.一组不同形状的物体,如长方体、圆柱体和球体等;3.一个尺子和一个卷尺。
四、实验步骤1.将转动平衡台固定在桌面上,并将待测物体放在平衡台上;2.将挠度计的感应头与测量物体相切,并调整挠度计的灵敏度;3.通过转动马达,给待测物体加上一定的角加速度,并记录挠度计的示数;4.重复以上步骤3次,取平均值作为最终结果。
五、实验数据处理1.根据转动定理T=Iα,其中T为转矩,通过测量挠度计的示数可获得转矩大小;2.计算转动惯量:I=T/α;3.对于不同形状的物体,根据其几何形状和质量,计算并比较转动惯量的大小。
六、实验结果分析1.根据实验测得的数据,计算出不同物体的转动惯量;2.比较不同物体之间转动惯量的大小差异;3.分析转动惯量与物体的几何形状、质量之间的关系;七、实验结论1.转动惯量是描述物体对转动运动的惯性特征的物理量,它与物体的质量和几何形状有关;2.转动惯量的计算可以通过测量转矩和角加速度来实现;3.实验结果表明,不同物体具有不同的转动惯量,且转动惯量与物体的几何形状和质量有关;4.实验中可能存在的误差包括挠度计示数误差、驱动电压稳定性等,可通过改进实验装置和提高测量精度来减小误差。
八、实验心得通过完成这个转动惯量实验,我深刻理解了转动惯量的概念和计算方法。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量实验报告

转动惯量实验报告目录1. 实验目的1.1 认识转动惯量的概念1.2 学习如何测量转动惯量2. 实验原理2.1 转动惯量的定义2.2 转动惯量的计算公式3. 实验器材和方法3.1 实验器材清单3.2 实验步骤4. 实验数据和处理4.1 实验数据记录4.2 数据的处理方法5. 实验结果分析5.1 转动惯量的计算结果5.2 结果的可靠性讨论6. 实验结论7. 参考文献1. 实验目的1.1 认识转动惯量的概念在本实验中,我们旨在通过实际操作,让学生了解转动惯量是什么,以及它在物理学中的重要性和应用。
1.2 学习如何测量转动惯量另一个实验目的是让学生学会如何通过实验测量物体的转动惯量,掌握测量方法和技巧。
2. 实验原理2.1 转动惯量的定义转动惯量是物体对转动的惯性,它描述了物体在围绕某一轴旋转时所表现出的惯性特征,通常用符号 I 表示。
2.2 转动惯量的计算公式转动惯量的计算公式是I = Σmr^2,其中 m 为物体的质量,r 为质心到旋转轴的距离。
3. 实验器材和方法3.1 实验器材清单- 转动台- 测力计- 不同形状的物体3.2 实验步骤1. 将物体固定在转动台上2. 施加力使物体旋转3. 测量施加的力和物体的角加速度4. 重复实验并记录数据4. 实验数据和处理4.1 实验数据记录在实验中记录了不同物体的质量、旋转半径、施加的力和角加速度等数据。
4.2 数据的处理方法通过数据处理软件对实验数据进行处理,应用转动惯量计算公式,得出不同物体的转动惯量数值。
5. 实验结果分析5.1 转动惯量的计算结果根据实验数据和处理结果,计算得出了不同物体的转动惯量数值,并进行比较分析。
5.2 结果的可靠性讨论对实验结果的可靠性进行讨论,分析可能存在的误差来源并提出改进方法。
6. 实验结论通过本实验,我们成功测量了不同物体的转动惯量,并对实验结果进行了分析和讨论,验证了转动惯量计算公式的可靠性。
7. 参考文献列出本实验中所涉及到的相关物理学原理、实验方法和参考资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学物理实验报告
课程名称:扭摆法测定物体转动惯量
实验名称:扭摆法测定物体转动惯量
学院:信息工程学院专业班级:测控技术与仪器152班
学生姓名:夏正彬学号:5801215044
实验地点:基础实验大楼座位号:13
实验时间:第四周星期二(下午)一点开始
一、实验目的:
1.测定弹簧的扭转常数 k,
2.测定形状不同物体的转动惯量并与理论值比较,
3.验证转动惯量平行轴定理。
二、实验原理:
将物体在水平面内转过一角度ɵ后,在弹簧的恢复力矩作用下物体就开始绕垂
直轴做往返扭转运动。
根据胡可定律,弹簧受扭转而产生的恢复力矩 M 与所转过的
角度ɵ成正比,即
M=-kɵ
式中 k 为弹簧的扭转常量,根据转动惯量
M=Iβ即β=
式中 I 为物体绕转轴的转动惯量,β为角角速度,由上式得
β==-=-ω²θ
上式ω²=,忽略轴承的摩擦阻力钜。
上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正
比,且方向相反,此方程的解为
θ=Acos(ωt+φ)
式中,A 为谐振动的角振幅,φ为初相位,ω为角速度,此谐振动的周期为
T==2π(4-4)
由式(4-4)可知,只要试验测得物体扭摆的摆动周期,并在 I 和 k 中任
何一个量已知时即可算出另一个量。
转动惯量组合定理:若一个物体由几部分组成,每一部分相对转轴的转动惯量分别为 I ₁,I ₂,I ₃…,
那么整个物体对转动轴的转动惯量为 I ₁ +I ₂+I ₃+…本实验用一个几何
形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论共式直接计算
得到,再算出本仪器弹簧的 k 值。
如先测载物盘转动的周期 T₀,有
T=2π(4-5)再测载物盘加塑料圆柱转动的周期 T₁,有
T₁=2π(4-6)I₁´为塑料圆柱转动惯量理论计算值
I ₁´= (4-7)
由式(4-5)和式(4-6)可得 k=4π² (4-8)
若要测定其他形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(4-4)即可算出该物体绕转动轴的转动惯量:
I=-I₀(4-9)
理论分析证明,若质量为 m 的物体绕通过质心轴的转动惯量为 I₀时,当转轴平行移动距离 x 时,则此物体对新轴线的转动惯量变为 I₀+mx ²。
成为转动惯量的
平行轴定理。
三、实验仪器:
1、扭摆构造
垂直轴装螺旋弹簧,以产生恢复力矩。
水准仪调整系统水平。
2、数字毫秒计
按“功能”选扭摆,按“执行”开始记时,为 10 个周期时间,按“查询”可知各次测量的周
期值 Ci 及平均值 CA。
按“返回”,回最初状态。
按“复位”,清除全部数据。
四、实验内容和步骤:
1、熟悉扭摆的构造,使用方法及转动测试的方法
2、测定扭摆的 K 值
3、测定载物盘、塑料圆柱、金属圆筒、塑料球和金属细杆的 I 值并与理论值比较
4、改变滑块在金属杆上的位置验证平行轴定理,与理论值比较。
5、测出塑料圆柱体的外径、金属圆筒的内、外径、塑料球直径、金属细长杆长度及各物体质量(各测量 3 次).
6、调整扭摆基座底脚螺丝,使水平仪的气泡位于中心.
7、装上金属载物盘,并调整光电探头的位置使载物盘上的挡光杆处于
其中口中能遮住发射、接收红外线的小孔.测定摆动周期 T。
8、将塑料圆柱体垂直放在载物盘上,测定摆动周期 T1
9、用金属圆筒代替塑料圆柱体,测定摆动周期 T2,将数据填人表 4-1 中.
10、取下载物金属盘、装上塑料球,测定摆动周期 T3,将数据填人表 4-1 中
料球的转动惯量时,应扣除支架的转动惯量). 7.取下塑料球,装上金属细杆(金属
细杆中心必须与转轴重合).测定摆动周期 T4(在计算金属细杆的转动惯量时,应扣
除支架的转动惯量)
11、将滑块对称放置在细杆两边的凹槽内(图 4-2)此时滑块质心离转轴的距离为5.00cm ,10.00 cm ,15.00 cm , 20.00 cm , 25.00 cm,测定摆动周期 T 并验证
转惯量平行
五、实验数据与处理:
R 柱=5cm m 球=1000g
R 球=6.7cm m 杆=134g
金属杆长度60cm m 滑块=238g
m 柱1=356g m 金属筒=650g
m 柱2=712g 金属筒D外=10cm
球支座:I=0.0187*10∧-4kg.m2 D 内=9.4cm
细杆夹具:I=0.0321*10∧-4kg.m2 I5=0.772*10∧-4kg.m2 物体名称周期/s 转动惯量理论值/() 转动惯量实验值/()
金属载物盘0.7021
0.7018 4.99
0.7016
平均值0.7018
塑料圆柱(小)0.9672
0.9673 4.450 4.828
0.9666
平均值0.9670
塑料圆柱(大) 1.173
1.174 8.900 8.615
1.175
平均值 1.174
金属圆筒 1.444
1.443 15.304 14.479
1.445。