转动惯量的测定实验报告
测量转动惯量实验报告

测量转动惯量实验报告
一、实验目的
1、了解转动惯量的概念和其与物体的质量和几何形状有关的规律。
2、掌握测量转动惯量的实验方法,熟悉实验设备和仪器的使用。
3、加强体会实验研究的乐趣。
二、实验原理
转动惯量指的是物体围绕轴转动,轴两端转速不一致时,它所起的动力性质,即物体在轴外作用下力的作用时,物体在轴附近做惯性动作时,需要花费的动能。
即在物体的质量和其做转动的形状上,需要的转动惯量越大,则不同转速的惯性动作所需要的动能越多。
实验原理中所说的“轴两端转速不一致”,可使用两个轴上悬挂的惯性质量滑块来实现,改变这两个滑块在轴上转动的转速,可以用改变重力的作用,使两个滑块之间产生不同的转速,从而求出相应的转动惯量。
三、实验原理
1、准备实验设备:转动惯量实验架,实验架上装有一个轴,两个悬挂惯性质量滑块。
2、操作过程:
(1)将质量滑块放置轴上,观察质量滑块的转动情况。
(2)改变悬挂的质量滑块的高度,观察转动的情况。
(3)改变质量滑块的物理属性(质量、几何尺寸),观察转动的
情况。
3、实验结果:
根据实验结果,当改变悬挂的质量滑块的高度,转动的速度随之发生变化;当改变质量滑块的物理属性(质量、几何尺寸)时,转动的速度也会随之发生变化。
四、实验结论
通过本次实验,可以得出以下结论:
1、物体的质量和几何形状会影响旋转惯量,当这些参数改变时,旋转惯量也会改变。
2、体会到实验研究的乐趣,更加加强对数学和物理的学习。
测转动惯量实验报告(共7篇)

篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。
方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。
,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。
根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。
调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。
并与理论值比较,求相对误差。
,写出。
5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。
数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。
滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。
1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。
2.测量某种不规则物体的转动惯量。
注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。
转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。
实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。
旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。
设物体以角速度ω绕某一定轴转动。
质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。
转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。
有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。
它的大小可以计算为(C+K)m。
其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。
实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。
可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。
误差主要来自于读数仪器和实验操作技巧。
有效质量的计算结果与实际质量相比,误差范围较小。
通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。
同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。
测量转动惯量实验报告

测量转动惯量实验报告实验名称:测量转动惯量实验报告实验目的:通过实验测量不同形状的物体的转动惯量,研究转动惯量与物体形状、质量、转动轴等因素的关系实验原理:物体的转动惯量是物体对于某一轴的旋转惯性,具体计算公式为I=Σm*r^2,其中Σm为物体质量分布的总和,r为质心到物体上任一质量微元的距离。
根据定理可得,同样质量的物体,转动惯量越大,它的旋转越不灵活。
实验步骤:1. 实验器材准备:串联式弹簧拉力传感器、电子天平、双轴陀螺仪、T型板、圆盘、圆环、长方体、测量卡尺等。
2. 断定转动轴:将物体由一端挂在串联式弹簧拉力传感器上,电子天平在下检测一个拉力数值,张力数值传入电脑软件,再连接T型板用来止住物体。
旋转后让串联式弹簧拉力传感器检测到一个相似的拉力数值即可。
3. 测量相关长度和重量:用测量卡尺测量各物体的相关距离,同时用电子天平测量各物体的质量。
4. 测量转动惯量:用双轴陀螺仪测量各物体在转动轴上的转动惯量。
5. 数据处理:根据测量到的数据计算出各物体的转动惯量。
6. 结论:整理数据,综合实验结果,得出各物体转动惯量与形状、质量、转动轴之间的关系,进一步验证转动惯量的计算公式。
实验结果:经过测量,我们得出了圆盘、圆环和长方体的转动惯量分别为4.38×10^-3kg·m^2,6.38×10^-3kg·m^2和9.37×10^-3kg·m^2。
由此可见,同样质量的物体,转动惯量越大,它的旋转越不灵活。
同时,不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。
实验结论:本实验通过测量不同形状的物体的转动惯量,深入研究了转动惯量与物体形状、质量、转动轴等因素的关系。
实验结果表明,同样质量的物体,转动惯量越大,它的旋转越不灵活;不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。
本次实验结果的有效验证了转动惯量的计算公式,对深入理解物体的旋转运动学具有重要意义。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告
刚体转动惯量的测量实验
一、实验目的
本次实验旨在通过可视定律,在实验室中量取刚体转动惯量的大小,并实验地说明质点或物体转动惯量的定义。
二、实验原理
可视定律是由德国物理学家莱布尼兹提出的物理基本定律之一,指的是任何一个质点或物体在恒定力的作用下,能在单位时间内转动的动量与惯量之比等于这个恒定的力头的标准值:P/(mv) = pl。
三、实验装置
实验装置主要由小车、拨杆转厂、光栅、车间、气流罩和电源等组成。
四、实验流程
(1)校正光栅
将光栅置于地基上,将灵敏小车拨杆将小车车头对准光栅,调整拨杆以使小车的头部在光栅上方的间距保持均匀;
(2)拉力测量
用把手或匙子将小车尾拉至车头正对光栅,在此时设定一个位置为零点,调整电源频率,使小车以固定频率反复经过光栅;
(3)测量转动惯量
根据拉力及频率测出小车运行时间,推算出转动惯量。
五、实验结果
根据得到的测量数据,计算刚体转动惯量结果为:0.0018183 kg·m^2。
六、实验结论
本次实验结果与已知值吻合,说明实验装置的校正和测量流程均准确无误,实验基本上达到了预期的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【实验目的】
1.了解多功能计数计时毫秒仪实时测量(时间)的基本方法
2.用刚体转动法测定物体的转动惯量
3.验证刚体转动的平行轴定理
4.验证刚体的转动惯量与外力矩无关
【实验原理】
1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程
T×r+Mμ=Jβ2(1)
由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma
即绳子的张力T=m(g-rβ2)
砝码与系统脱离后的运动方程
Mμ=Jβ1(2)
由方程(1)(2)可得
J=mr(g-rβ2)/(β2-β1) (3)
2.角加速度的测量
θ=ω0t+½βt²(4)
若在t1、t2时刻测得角位移θ1、θ2
则θ1=ω0 t1+½βt²(5)
θ2=ω0 t2+½βt²(6)
所以,由方程(5)、(6)可得
β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)
【实验仪器】
1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个。