智能电风扇控制器设计_单片机课程设计

合集下载

51单片机课程设计 智能电风扇

51单片机课程设计   智能电风扇

51单片机课程设计智能电风扇51单片机课程设计-智能电风扇智能电风扇的设计学院计算机与掌控工程学院专业班级自动化073班学生姓名冯文科指导教师白晓乐夏康伟2021年6月25日开场白随着人们生活水平及科技水平的不断提高,现在家用电器在款式、功能等方面日益求精,并朝着健康、安全、多功能、节能等方向发展。

过去的电器不断的显露出其不足之处。

电风扇作为家用电器的一种,同样存在类似的问题。

现在电风扇的现状:大部分只有手动变频,再加之一个定时器,功能单一。

存有的隐患或严重不足:比如说人们常常返回后忘掉停用电风扇,浪费电且不说还难引起火灾,长时间工作还难损毁电器。

再比如说前半夜温度低电风扇阳入的风速较低,但至了后半夜气温上升,风速不能随着气温变化,难受凉。

之所以会产生这些隐患的根本原因是:缺乏对环境的检测。

如果能够并使电风扇具备对环境展开检测的功能,当房间里面没有人时能自动的停用电风扇;当温度下降时能够自动的增大风速甚至停用风扇,这样一来就防止了上述的严重不足。

本次设计就是紧紧围绕这两点对现有电风扇展开改良。

i1.总体方案设计及功能叙述本设计是以at89c51单片机控制中心,主要通过提取热释电红外传感器感应到的人体红外线信息和温度传感器ds18b20得到的温度以及内部定时器设定时间长短来控制电风扇的开关及转速的变化。

功能叙述:电风扇工作在四种状态:手动变频状态、自动变频状态、定时状态、暂停状态。

手动状态时可以手动调节速度;自动状态时通过温度高低自动调节速度,如果出现手动现象则变为手动状态;定时状态时可以调节定时时间,并设定是否启动定时,之后可以手动退出,也可以在不操作6秒后自动退出进入手动状态;停止状态时可以被唤醒并进入自动状态。

当没检测至人体存有少于3分钟或定时完时步入暂停状态。

在数码管显示方面,当没有定时时,只显示气温,当定时启动时气温和定时剩余时间以3秒的速度交替显示。

系统方框图如下图右图,主要包含:输出、掌控、输入三大部分8个功能模块。

电风扇单片机课程设计

电风扇单片机课程设计

电风扇单片机课程设计一、教学目标本课程的教学目标是使学生掌握电风扇单片机的基本原理和应用技能。

知识目标包括了解单片机的基本结构、工作原理和编程方法;技能目标包括能够使用单片机进行简单的程序设计和电路调试;情感态度价值观目标包括培养学生的创新意识、团队合作能力和解决问题的能力。

二、教学内容教学内容主要包括单片机的基本原理、编程方法和应用实例。

具体包括:单片机的结构和工作原理、编程语言和语法、常用算法和程序设计、接口电路和外围设备、电风扇控制系统的设计和实现等。

三、教学方法本课程采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。

通过理论讲解和实践操作相结合,激发学生的学习兴趣和主动性,培养学生的创新思维和动手能力。

四、教学资源教学资源包括教材、参考书、多媒体资料和实验设备等。

教材选用《电风扇单片机设计与应用》一书,参考书包括《单片机原理与应用》、《C语言程序设计》等。

多媒体资料包括教学PPT、视频教程等。

实验设备包括单片机开发板、电路实验箱等。

教学资源的选择和准备应充分支持教学内容和教学方法的实施,丰富学生的学习体验。

五、教学评估本课程的评估方式包括平时表现、作业和考试等。

平时表现主要考察学生的课堂参与、提问和团队协作等情况,占总评的30%。

作业主要包括编程练习和项目设计,占总评的40%。

考试包括期中考试和期末考试,占总评的30%。

评估方式应客观、公正,能够全面反映学生的学习成果。

六、教学安排本课程的教学安排如下:共32课时,每周2课时,共计16周。

教学地点安排在教室和实验室。

教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。

同时,教学安排还考虑学生的实际情况和需要,如学生的作息时间、兴趣爱好等。

七、差异化教学根据学生的不同学习风格、兴趣和能力水平,本课程设计了差异化的教学活动和评估方式。

对于学习风格偏向实践型的学生,增加实验和实践环节;对于学习风格偏向理论型的学生,加强理论知识讲解。

智能风扇的单片机控制系统设计

智能风扇的单片机控制系统设计

智能风扇的单片机控制系统设计
智能风扇的单片机控制系统设计步骤如下:
1. 确定系统需求:确定智能风扇的功能需求,例如温度控制、
风速控制、定时控制等。

2. 选择合适的单片机:根据系统需求选择合适的单片机,例如STC89C52、AT89S52等。

3. 传感器接口设计:根据系统需求设计传感器接口,例如温度
传感器DS18B20等,将传感器与单片机进行连接。

4. 电机控制设计:设计电机驱动电路,控制电机的转速和方向。

可以采用PWM进行速度控制。

5. 人机交互界面设计:设计人机交互界面,例如LCD显示屏、
按键等,提供给用户进行操作。

6. 控制算法设计:根据系统需求设计控制算法,例如PID控制
算法、开环控制等。

7. 程序编写与调试:根据上述硬件设计完成程序编写,进行调试,保证系统正常运行。

8. 测试与优化:进行系统测试,根据测试结果进行优化,完善
系统的功能和性能。

最终实现一个智能风扇的单片机控制系统。

单片机课程设计+电风扇模拟控制系统设计

单片机课程设计+电风扇模拟控制系统设计

目录一总体方案设计1.1设计要求以电风扇模拟控制系统设计内容:1、有3个独立按键分别控制“自然风”、“睡眠风”、“常风”,(三者的区别是直流电机的停歇时间不同),并在数显管上显示出区别。

2、每种类型风可以根据按下独立按键次数分为4个档的风力调节。

3、设计风扇的过热保护,用继电器实现。

即当风扇运行一段时间后,暂停10秒。

4、其他创新内容(蜂鸣器报警提示)1.2 优点及意义这款电风扇可以根据自己日常存在的环境还有在不同情况下的需求随时调节三种不同的模式。

三种模式分别是“自然风”、“睡眠风”、“常风”。

如果在使用的过程中感觉三种模式下的风速不适合自己的要求的话,还可以在三种单独的模式下根据按键按动次数的不同来微调节风速,在一个模式下有4中不同的档位,相当于这款电风扇可以有12种可调节的模式,可以满足日常的基本需求。

不同的档位可以在数码管上显示出来,可以做到更加的直观、准确。

风扇电机的部分采用的是无刷直流电机,静音效果和节能效果出色,比较省电;风量档位多,风比较柔和;送风距离更远。

同时在加上蜂鸣器过热保护,使得风扇使用寿命更长,在风扇稳定性还有占用的体积来说这款电风扇都是有着较强的优势1.2初步设计思路2电风扇的系统以AT89C51单片机为核心,由时钟电路,复位电路,显示电路,直流无刷电机组成。

由复位电路来保证程序的复位和初始化,时钟电路来保证内各部件协调工作的控制信号。

作用是来配合外部晶体实现振荡的电路提供高频脉冲,更是作为电机的PWM占空比的前提条件。

矩阵键盘作为电风扇的按键来控制电机的转动速度,键盘控制的原理就是调节电动机的输出电压来控制电动机的转速。

实际上是利用了PWM控制方法,可以更好的控制电动机的频率,确保了运行时候的准确度还有精度也是较强的二硬件电路设计2.1 AT98C51单片机与蜂鸣器模块图二蜂鸣器模块2.1.1 89C51单片机89C51单片机由中央处理器(CPU)、存储器、定时/计数器、输入/输出(I/O)接口、中断控制系统和时钟电路组成。

单片机电风扇控制系统的设计

单片机电风扇控制系统的设计

单片机电风扇控制系统的设计毕业设计题目:单片机电风扇控制系统的设计摘要:本设计通过使用单片机控制电路和传感器,实现了一个智能化的电风扇控制系统。

通过读取环境温度传感器的数据,并与预设的温度阈值进行比较,自动控制电风扇的开关和风速,实现室内温度的自动调节。

同时,系统具备手动控制功能,用户可以通过按键来手动调节电风扇的开关和风速。

本设计的实现为节能和舒适的室内环境提供了一种智能化的解决方案。

关键词:单片机、电风扇、温度传感器、自动控制、手动控制一、引言当前,随着人们对生活品质的不断追求,对室内温度的舒适度要求也越来越高。

而电风扇作为一种常见的降温设备,在夏季温度较高的地区尤为重要。

然而,传统的电风扇仅仅只能通过调节风速来控制风量,不能自动根据室内温度来调节。

因此,本设计旨在通过单片机控制系统,提供一种能够自动调节电风扇的开关和风速的解决方案,以满足人们对舒适环境的需求。

二、设计思路本设计采用AT89C52单片机作为主控芯片,通过温度传感器(如DS18B20)读取室内温度,并与预设的温度阈值进行比较。

当温度超过设定的上限时,单片机控制风扇开启并以最大风速运行;当温度低于设定的下限时,单片机关闭电风扇。

当温度在上下限之间时,根据温度差异调节电风扇的风速。

同时,系统还具备手动控制功能,用户可以通过按键来手动调节电风扇的开关和风速。

三、系统硬件设计1.单片机:AT89C52单片机作为主控芯片2.传感器:使用DS18B20温度传感器来测量室内温度3.显示模块:LED数字管显示当前温度和风速4.驱动电路:使用三极管作为电风扇的驱动电路5.控制电路:使用按键开关和电位器来实现手动控制功能四、软件设计1.温度读取:通过单片机的IO口与温度传感器进行通信,读取温度传感器的数据,并进行温度转换。

2.温度控制:将读取到的温度与预设的温度上下限进行比较,根据温度差异来控制电风扇的风速和开关状态。

3.手动控制:通过单片机的IO口读取按键开关和电位器的状态,实现手动调节电风扇的开关和风速。

智能电风扇控制器单片机课程设计报告

智能电风扇控制器单片机课程设计报告

单片机课程设计报告题目智能电风扇控制器专业班级电子信息1101班学号0909110814姓名周群创指导老师刘波张金焕课设时间2015.1.10-2015.1.17中南大学·信息科学与工程学院摘要单片机已经在家电领域中得到了广泛的应用。

本风扇的主控芯片采用价格实惠而且容易购买的STC89C52芯片。

系统能完成采集当前温度,并用LED显示,能设置报警温度,当检测温度超过报警温度时,产生报警信号(蜂鸣器输出),根据不同的温度,通过DA输出来(0832)控制直流电机的转速,通过操作实时时钟芯片,来控制电风扇的定时启动、停止等基本的功能。

系统的软件实现采用功能强大且易于开发的KeilC51环境,且支持ISP下载,因此没使用编程器,用C 语言实现系统的软件部分。

此设计具有安全性高、价格低廉便于实现、易于改进等优点。

关键词:智能电风扇控制器,STC89C52,矩阵键盘,AT24C02ABSTRACTSCM has been widely applied in the field of home appliances. The fan controller chips using affordable and easy to buy STC89C52 chips. The system can complete the acquisition of the current temperature and LED display, can set the alarm temperature, when the detected temperature exceeds the alarm temperature, an alarm signal (buzzer), depending on the temperature, output by DA (0832) DC motor control speed, real-time clock chip through the operation to control the fan's time to start, stop, and other basic functions. System software uses a powerful and easy-to-develop KeilC51 environment, and support ISP download, so did the use of programming, using C language software part of the system. This design has a safe, inexpensive easy to implement, easy to improve on.KEY WORDS:Intelligent fan controller, STC89C52, matrix keyboard, AT24C02目录摘要 (I)第1章前言 (1)1.1智能电风扇控制器的定义 (1)1.2智能电风扇控制器的发展 (1)第2章系统的设计方案和原理 (2)2.1 系统的设计方案 (2)2.2智能电风扇控制器的工作原理 (2)第3章硬件电路设计及描述 (3)第4章系统的软件设计 (5)第5章调试与实现 (8)5.1 硬件调试 (9)5.2 软件调试 (9)第6章课程设计体会 (10)第7章参考文献 (11)附录 (11)第1章前言1.1 智能电风扇的定义风扇指热天借以生风取凉的用具电扇,是用电驱动产生气流的装置,内配置的扇子通电后来进行转动化成自然风来达到乘凉的效果。

课程设计——智能电风扇

课程设计——智能电风扇

带温度显示的温控与手控自动风扇系统摘要:本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统AT89C52 单片机作为控制平台对风扇转速进行控制。

可由用户设置高、低档位,测得温度值在高低温度之间时打开风扇强弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动降低风扇档位,控制状态随外界温度而定。

同时,能够由人工设定风扇档位不受温度控制,灵活性强。

所设高低温值保存在温度传感器DS18B20内部E2ROM中,掉电后仍然能保存上次设定值,性能稳定,控制准确。

关键词:自动控制单片机温控手控风扇一.技术指标1.1设计意义在激烈的市场竞争下,虽然电风扇具有广阔的市场空间,但不断新生产品的出现,要使产品更具市场优势,仅仅是靠传统型的电风扇是远远不够的,因此要对传统的电风扇根据市场的需要进行不断的更新,不断的改进,以使自己的产品立于不败之地。

传统的电风扇较为突出的缺点是:①风扇的风力大小不能根据温度的变化自动的调节风速,对于那些昼夜温差比较大的地区,这个自动调节风速就显得优其的重要了,特别是人们在熟睡时常常没有觉察到夜间是温度变化,那样既浪费电资源又容易引起感冒。

②传统的风扇是用机械式的定时方式,机械式的定时方式常常会伴随着很大的机械运动的声音,特别是在夜间影响人们的睡眠质量,另个机械式的定时有一定的局限性,定时范围有限,而且机械式的容易坏。

③传统的电风扇没有单片机控制电风扇的功能,对平时调节风扇风速或其它对风扇的调节,而又不想走近风扇带来很多的不便。

鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。

1.2技术指标本设计是以51单片机为主要控制核心,用51单片机系统对用户设定信号数据的采集以及分析,能过各种可控型电子元器件对电风扇各种工作状态的控制,以达到用户需求。

设计的功能要求①风速从高到低设置4个档位,并且每个档位都可以由用户设置或者根据温度自动调节。

智能电风扇控制器设计单片机课程设计

智能电风扇控制器设计单片机课程设计

智能电风扇控制器设计单片机课程设计智能电风扇控制器设计单片机课程设计设计题目:智能电风扇控制器设计neuq目录序言一、设计实验条件及任务 (2)1.1、设计实验条件1.2、设计任务 (2)二、小直流电机调速控制系统的总体方案设计 (3)2.1、系统总体设计 (3)2.2、芯片选择 (3)2.3、DAC0832芯片的主要性能指标 (3)2.4、数字温度传感器DS18B20 (3)三、系统硬件电路设计 (4)3.1、AT89C52单片机最小系统 (5)3.2、DAC0832与AT89C52单片机接口电路设计 (6)3.3、显示电路与AT89C52单片机接口电路设计 (7)3.4、显示电路与AT89C52单片机电路设计 (8)四、系统软件流程设计 (7)五、调试与测试结果分析 (8)5.1、实验系统连线图 (8)5.2、程序调试................................................,. (8)5.3、实验结果分析 (8)六、程序设计总结 (10)七、参考文献............................................ (11)附录 (12)1、源程序代码 (12)2、程序原理图 (23)序言传统电风扇不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。

鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题,使家用电器产品趋向于自动化、智能化、环保化和人性化,使得由微机控制的智能电风扇得以出现。

本文介绍了一种基于AT89C52单片机的智能电风扇调速器的设计,该设计主要硬件部分包括AT89C52单片机,温度传感器ds18b20,数模转换DAC0809电路,电机驱动和数码管显示电路,系统可以实现手动调速和自动调速两种模式的切换,在自动工作模式下,系统能够能够根据环境温度实现自动调速;可以通过定时切换键和定时设置键实现系统工作定时,使得在用户需求的定时时间到后系统自动停止工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录…………………………………………………………..…......…...12
1、源程序代码………………………………………….……........12
2、程序原理图……………………………….................................23
序言
传统电风扇不能根据温度地变化适时调节风力大小,对于夜间温差大地地区,人们在夏夜使用电风扇时可能遇到这样地问题:当凌晨降温地时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统地机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理.鉴于以上方面地考虑,我们需要设计一种智能电风扇控制系统来解决这些问题,使家用电器产品趋向于自动化、智能化、环保化和人性化,使得由微机控制地智能电风扇得以出现.
2.2、芯片选择……………………………………………….…......3
2.3、DAC0832芯片地主要性能指标……………………….…....3
2.4、数字温度传感器DS18B20………………………………..…3
三、系统硬件电路设计…………………………………..…….…..….4
3.1、AT89C52单片机最小系统………………………….…….….5
5.1、实验系统连线图………………………………………....……8
5.2、程序调试…………………………………………,.……...…...8
5.3、实验结果分析……………………………………..……....…..8
六、程序设计总结……………………………………………...……..10
七、参考文献…………………………………….. ……………………11
在日常生活中,单片机得到了越来越广泛地应用,本系统采用地AT89C52单片机体积小、重量轻、性价比高,尤其适合应用于小型地自动控制系统中.系统电风扇起停地自动控制,能够解决夏天人们晚上熟睡时,由于夜里温度下降而导致受凉,或者从睡梦中醒来亲自开关电风扇地问题,具有重要地现实意义.
一、设计实验条件及任务
6、IOUT1:电流输出1端,输入数字量全“1”时,IOUT1最大,输入数字量全为“0”时,IOUT1最小.
7、IOUT2:D/A转换器电流输出2端,IOUT2+IOUT1=常数.
8、RFB:外部反馈信号输入端,内部已有反馈电阻RFB,根据需要也可外接反馈电阻.
3.2、DAC0832与AT89C52单片机接口电路设计….…………...6
3.3、显示电路与AT89C52单片机接口电路设计….………….…7
3.4、显示电路与AT89C52单片机电路设计……………...…...…8
四、系统软件流程设计…………………………………………….….7
五、调试与测试结果分析…………………………..……...………….8
单片机课程设计
设计题目:智能电风扇控制器设计
neuq
序言
一、设计实验条件及任务…………………………………………..…2
1.1、设计实验条件
1.2、设计任务………………………………………………………2
二、小直流电机调速控制系统地总体方案设计………………….….3
2.1、系统总体设计…………………………………………….......3
图2.2数模转换DAC0832引脚功能
1、DI0~DI7:8位数字信号输入端;
2、!CS:片选端;ILE:数据锁存允许控制端,高电平有效;
3、!WR1:输入寄存器写选通控制端.当!CS=0、ILE=1、!WR1=0时,数据信号被锁存在输入寄存器中.
4、!XFER:数据传送控制
5、!WR2:DAC寄存器写选通控制端.当!XFER=0,!WR2 =0时,输入寄存器状态传入DAC寄存器中
2.3、DAC0832地主要性能指标
D/A转换地基本原理是应用电阻解码网络,将N位数字量逐位转换为模拟量并求和,从而实现将N位数字量转换为相应地模拟量.
其性能指标为:(1)分辨率:相对分辨率=1/2N,N越大,分辨率越高(2)线性度(3)转换精度(4)建立时间(5)温度系数.
DAC0832引脚功能图如图2.2
1.1、设计实验条件
单片机实验室
1.2、设计任务
利用DAC0832芯片进行数/模控制,输出地电压经放大后驱动小直流电机地速度进行数字量调节,并显示运行状态DJ-XX和D/ A输出地数字量.巩固所学单片知识,熟悉实验箱地相关功能,熟练掌握Proteus仿真软件,培养系统设计地思路和科研地兴趣.实现功能如下:
7实现数码管友好显示.
二、小直流电机调速控制系统地总体设计方案
2.1、系统硬件总体结构
图2.1系统硬件总体框图
2.2、芯片选择
1、AT89C52芯片:选用该单片机作为智能电风扇控制部件,用来实现电风扇调速核心功能.
2、74LS245芯片:用来驱本文介绍了一种基于AT89C52单片机地智能电风扇调速器地设计,该设计主要硬件部分包括AT89C52单片机,温度传感器ds18b20,数模转换DAC0809电路,电机驱动和数码管显示电路,系统可以实现手动调速和自动调速两种模式地切换,在自动工作模式下,系统能够能够根据环境温度实现自动调速;可以通过定时切换键和定时设置键实现系统工作定时,使得在用户需求地定时时间到后系统自动停止工作.
1系统手动模式及自动模式工作状态切换.
2风速设为从高到低9个档位,可由用户通过键盘手动设定.
3定时控制键实现定时时间设置,可以实现10小时地长定时.
4环境温度检测,并通过数码管显示,自动模式下实现自动转速控制.
5当温度每降低1℃则电风扇风速自动下降一个档位,环境低于21度时,电风扇停止工作.
6当温度每升高1℃则电风扇风速自动上升一个档位.环境温度到30度以上时,系统以最大风速工作.
4、74LS240芯片:八单线驱动器,缓冲输出地信号.
5、DAC0832芯片:片选地址是FF80H,AOUT1插孔作为模拟量地输出.
6、8255芯片:可编程并行I/O接口芯片,用以扩展单片机地IO口.
7、LED数码显示管:用来显示电机旋转地速度是加速还是减速.
8、741:运算放大器.
9、9014:NPN型三极管.
相关文档
最新文档