《方程的意义》教学设计

合集下载

2023年人教版数学五年级上册方程的意义教案与反思(优选3篇)

2023年人教版数学五年级上册方程的意义教案与反思(优选3篇)

人教版数学五年级上册方程的意义教案与反思(优选3篇)〖人教版数学五年级上册方程的意义教案与反思第【1】篇〗《方程的意义》教学设计教学内容:五年级上册第四单元第53~54页“方程的意义”。

教学目标:1.借助生活情景理解方程的意义——用含有未知数的等式表示相等的关系。

2.经历从生活情景到方程模型的建构过程,感受方程思想的核心之一,即建模。

3.培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:准确从生活情景中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。

教学难点:理解方程的意义,即用数学符号表示相等的关系。

教学准备:课件教学过程:一、故事引入,激发兴趣1、问:同学们,你们会讲故事吗?2、学生讲《曹冲称象》的故事。

3、问:曹冲是利用什么原理称出大象的质量的?板书:=二、情景呈现,抽象模型1.出示天平。

问:关于天平.你了解些什么生:天平可以称物体的质量。

师:天平是根据什么原理称出物体的质量的?2、用天平演示称物体(1)师:在天平的左盘放入两个50克的玩具小猪,右盘放入100克的砝码,此时的天平平衡吗?谁能用一个数学式子来表示天平的这种平衡现象?生:50+50=100(2)在天平的左盘放入一个a克的玩具小鸭和一个b克的玩具小鸡,右盘放入100克的砝码,此时的天平平衡吗?谁能用一个数学式子来表示天平的这种平衡现象?生:a+b=100(3)师:现在老师将左盘的两个玩具小猪换成了两个30克的玩具小狗天平还平衡了吗谁能用一个数学式子来表示天平的这种不平衡现象生:30+30100(4)师:因为两盘物体质量不相等,所以天平就不平衡,那么,怎样才能使它平衡呢生:……师:你们这样做的目的都是为了什么生:使左右两盘物体的质量相等。

师:这儿有一个玩具熊猫,它的质量不知道,我们可以怎么表示生:可以用字母x表示。

师:现在老师将这个玩具熊猫加在轻的一端,猜猜天平会出现什么现象?并用数学式子表示出来。

生:猜想出以下三种情况:可能加上玩具熊猫后天平平衡,用60+x=100 表示;也可能是加上玩具熊猫后还是比砝码轻,可用60+x100表示;还可能是加上玩具熊猫后比砝码重,可以用 60+x100 来表示。

五年级上册数学教学设计-第5单元方程的意义∣人教新课标

五年级上册数学教学设计-第5单元方程的意义∣人教新课标

五年级上册数学教学设计第5单元方程的意义∣人教新课标作为一名经验丰富的教师,我深知教学设计的重要性。

在此,我将结合五年级上册数学教学设计第5单元方程的意义∣人教新课标,为您展示我的教学设计。

一、教学内容本节课的主要内容是方程的意义,涉及到人教新课标五年级上册第5单元的相关知识点。

具体包括:1. 理解方程的概念;2. 掌握方程的解法;3. 能够运用方程解决实际问题。

二、教学目标通过本节课的学习,使学生能够理解方程的意义,掌握方程的解法,并能运用方程解决实际问题。

三、教学难点与重点重点:方程的概念、解法以及运用。

难点:方程的解法以及如何运用方程解决实际问题。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备学具:课本、练习本、文具五、教学过程1. 实践情景引入:以一个实际问题引发学生对方程的思考,例如:“小明有3个苹果,小红有5个苹果,请问他们一共有几个苹果?”2. 概念讲解:在黑板上写出方程的定义,并通过例子解释方程的意义。

3. 例题讲解:选择几个代表性的例题,讲解方程的解法,包括解方程的步骤和技巧。

4. 随堂练习:让学生独立完成几道练习题,检验他们对方程的理解和掌握程度。

5. 应用拓展:让学生分组讨论,运用方程解决实际问题,例如:“一个长方形的长是10cm,宽是5cm,求它的面积。

”六、板书设计板书设计如下:方程的意义已知数 + 未知数 = 求解解方程的步骤:1. 确认未知数2. 选择合适的方法解方程3. 检验解的正确性七、作业设计1. 请解释方程的意义,并给出一个例子。

答案:方程的意义是表示两个表达式相等的数学语句,其中包含已知数和未知数。

例如:2x + 3 = 7,其中x是未知数。

2. 解下列方程:a. 3x 7 = 11b. 5y + 8 = 23答案:a. x = 6b. y = 23. 运用方程解决实际问题:一个长方形的长是10cm,宽是5cm,求它的面积。

答案:设长方形的面积为A,则方程为:A = 10cm 5cm = 50cm²八、课后反思及拓展延伸课后反思:通过本节课的教学,发现部分学生在解方程时仍存在一定的困难,需要在今后的教学中加强对解方程技巧的讲解和练习。

方程的意义教学设计5篇

方程的意义教学设计5篇

方程的意义教学设计篇5教学内容:人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。

教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。

教学难点:理解方程的意义,即方程两边代数式所表达的两件事情是等价的。

教学过程呈现情境,建立方程1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?教师在天平的一边放上两袋100克的食物,另一边放一个200克的砝码,这台天平保持平衡了吗?提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。

3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)当学生说出275-x>200、275-x=200、275-x200,275-x>200,275-X=200,275-x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42(对不是方程的式子,一定要学生从本质上解释为什么不是方程)学完方程后。

《方程的意义》教案2023-2024学年数学五年级上册-人教版 (1)

《方程的意义》教案2023-2024学年数学五年级上册-人教版 (1)

教案:《方程的意义》年级:五年级学科:数学教材版本:人教版教学目标:1. 理解方程的意义,能够识别方程中的未知数和等式。

2. 学会使用简单的方程解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 方程的意义和基本概念。

2. 方程的解法和应用。

教学难点:1. 理解方程中的未知数和等式的概念。

2. 解决实际问题中的方程应用。

教学准备:1. 教材或教辅资料。

2. 黑板或白板。

3. 教学课件或投影仪。

教学过程:一、导入1. 引导学生回顾之前学过的数学知识,如等式和不等式。

2. 提问学生是否知道方程的概念,并简要介绍方程的意义。

二、新课讲解1. 讲解方程的基本概念,包括未知数和等式。

2. 举例说明方程的解法,如一元一次方程的解法。

3. 引导学生思考如何将实际问题转化为方程,并解决。

三、例题解析1. 解析教材中的例题,引导学生逐步理解方程的解法和应用。

2. 引导学生思考如何将实际问题转化为方程,并解决。

四、课堂练习1. 布置一些方程的练习题,让学生独立完成。

2. 对学生的练习进行讲解和指导,纠正错误。

五、课堂小结1. 回顾本节课所学的内容,强调方程的意义和基本概念。

2. 强调方程的解法和应用,鼓励学生在实际问题中运用方程。

六、作业布置1. 布置一些方程的练习题,让学生巩固所学知识。

2. 鼓励学生思考如何将实际问题转化为方程,并解决。

教学反思:本节课通过讲解方程的意义和基本概念,以及方程的解法和应用,帮助学生理解和掌握方程的知识。

在教学过程中,要注意引导学生思考如何将实际问题转化为方程,并解决,培养学生的逻辑思维能力和解决问题的能力。

同时,要关注学生的学习情况,及时解答学生的疑问,确保学生能够理解和掌握所学知识。

重点关注的细节:将实际问题转化为方程,并解决详细补充和说明:在数学教学中,将实际问题转化为方程,并解决是培养学生数学思维和解决问题能力的重要环节。

这个过程涉及到对问题的理解、分析、建模和求解,是数学知识应用于现实生活的具体体现。

五年级上册数学教学设计-方程的意义人教版

五年级上册数学教学设计-方程的意义人教版

五年级上册数学教学设计方程的意义人教版作为一名经验丰富的教师,我始终坚持以学生为中心,注重培养学生的数学思维和解决问题的能力。

本节课我将以五年级上册数学教学设计——方程的意义为例,详细介绍我的教学内容和教学方法。

一、教学内容本节课的教学内容选自人教版五年级上册数学教材,主要涉及第八章第一节“方程的意义”。

内容包括:理解方程的概念,掌握方程的组成,了解方程的解法以及应用方程解决实际问题。

二、教学目标通过本节课的学习,使学生能够理解方程的意义,掌握方程的组成,学会用方程解决实际问题,培养学生的数学思维和解决问题的能力。

三、教学难点与重点教学难点:理解方程的意义,掌握方程的组成。

教学重点:应用方程解决实际问题。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:笔记本、练习本、文具盒。

五、教学过程1. 实践情景引入:以“小明买书”的故事为例,引导学生理解方程的意义。

2. 讲解方程的概念:介绍方程的定义,解释方程表示的两个变量之间的关系。

3. 分析方程的组成:讲解方程中的字母表示的未知数,以及等号表示的相等关系。

4. 举例说明方程的解法:以具体例子演示方程的解法,引导学生理解解方程的步骤。

5. 应用方程解决实际问题:让学生尝试用方程解决实际问题,巩固所学知识。

6. 随堂练习:布置一些有关方程的练习题,及时检查学生的学习效果。

7. 板书设计:将本节课的主要内容以板书形式呈现,方便学生复习。

六、作业设计答案:设香蕉有x个,则方程为x = 10 + 2。

2. 小华有一些糖果,如果他每天吃2个,糖果可以吃4天;如果他每天吃3个,糖果可以吃3天。

请问小华有多少糖果?答案:设小华有x颗糖果,则方程为2 4 = 3 3。

七、课后反思及拓展延伸课后,我会反思本节课的教学效果,针对学生的掌握情况,调整教学策略。

同时,我会鼓励学生在课后深入学习方程的知识,尝试解决更复杂的问题,将所学知识应用到实际生活中。

重点和难点解析一、实践情景引入在教学过程中,我选择了“小明买书”的故事作为实践情景引入。

《方程的意义》教学设计(通用6篇)

《方程的意义》教学设计(通用6篇)

《方程的意义》教学设计《方程的意义》教学设计(通用6篇)作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。

那么什么样的教学设计才是好的呢?以下是小编为大家整理的《方程的意义》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《方程的意义》教学设计篇1教学内容:教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:理解并掌握方程的意义。

教学难点:会列方程表示数量关系。

教学过程:一、教学例11.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?2.引导(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的质量关系吗?二、教学例21.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练1.下面的式子哪些是等式?哪些是方程?2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习1.完成练习一第1题先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。

要告诉学生,方程中的未知数可以用x表示,也可以用y 表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题五、小结今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?六、作业完成补充习题板书设计:方程的意义X+50=100X+X=100像X+50=150、2X=200这样含有未知数的等式叫做方程《方程的意义》教学设计篇2教学目标:1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

小学数学《方程的意义》教案基于学科核心素养的教学设计及教学反思

小学数学《方程的意义》教案基于学科核心素养的教学设计及教学反思
用未知数x来表示水的重量,那么杯子和水一共有多重又该怎样表示呢?(指名回答)
100+x
出示主题图(3)
请学生观察这副图里的两架天平,发现了什么?(不平衡)
哪边重一些呢?你们能用数学算式来表示这两架天平的状况吗?
(学生分组讨论,教师巡视指导)
学生汇报:用>、<符号来表示哪一边重。(学生回答后,师板书)
预设学生活动
设计意图
出示主题图(1)
请学生说说在这副图里你获得了那些信息?(天平两边平衡,一个空杯重100克。)
出示主题图(2)
请学生说说在这副图里你获得了那些信息?(在空杯里加一杯水后天平不平衡了。)
问:你们知道一杯水有多重吗?(不知道)
如果要你现在表示这杯水有多重,你有办法吗?
(学生思考,可以讨论)
(学生小组合作分类)
学生汇报后让学生说出分类的理由。(有的含有未知数x,有的没有未知数x)
教师总结:像100+x=250这样的含有未知数的等式,称为方程。(板书)
(学生写一些方程)教师把学生写的在实物展示器展示出来。
三、实践应用
1、观察分类
①30+20=50②2x+50>100
③80<2x④3x=180⑤x÷11=5⑥100+2x=50×3
⑦x-18=24⑧60÷20=3
⑨100+20<100+50
2、下面式子哪些是方程,哪些不是方程?
6+x=14
3+x
50÷2=25
6+x>23
51÷a=17
x+y=18
3、判断
1)等式都是方程。()
2)方程都是等式。()
3)3x=0也是方程。()

人教版数学五年级上册《方程的意义》一等奖创新教学设计

人教版数学五年级上册《方程的意义》一等奖创新教学设计

人教版数学五年级上册《方程的意义》一等奖创新教学设计《方程的意义》教学设计【教学内容】人教版数学五年级上册教材第62,63页“方程的意义”。

【教材简析】方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。

教材在编排上注重让学生根据具体的情景,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。

方程在小学乃至初中整个学习过程中,都具有非常重要的地位。

它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

【学情分析】学生在以往的学习中大量接触到的是有关具体的数的认识和运算,对字母表示数虽有一些生活经验和接触,但对字母表示数的意义并不理解。

基于学生已有的学习生活经验,要力图让学生经历数学化的过程,形成数学模型。

学生对于利用天平解决实际问题较感兴趣,教师要引导学生如何从各种具体情境中寻找发现等量关系并用数学的语言表达,同时也需要将独立思考与合作交流相结合。

【教学目标】1.掌握方程的意义,能用方程表示简单情境中的数量关系。

2.通过观察、实验、语言描述、符号表达,分类、归纳的过程从而使学生理解方程的意义,发展抽象思维能力。

3.让学生经历将现实问题抽象成数学式子与方程的过程,积累将现实问题数学化的活动经验,在具体情境中感受方程的作用,体会数学与生活的联系,建立方程模型。

【教学重、难点】重点:掌握方程的意义,会判断一个式子是否是方程。

难点:方程与等式的关系;用方程的思想表示出简单情景中的等量关系。

【教法和学法】为了突出重点、突破难点,使学生能达到本节课设定的教学目标,在这节课中,我采用让学生直观的动手实验、教师引导学生开展探索性学习。

在课堂教学中,让学生主要通过观察比较、自主探究和合作交流、归纳概括出方程的意义及方程与等式之间的关系。

【教学准备】课件,黑板磁贴,天平,杯子,水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《方程的意义》教学设计
联东中学(小学部)傅佑康1100
教学内容:
人教版五年级上册第62-63 页“方程的意义”。

学情分析:生活中,学生已经获得了有关“轻重”的直观、具体的数学活动经验,经历过对实际的量的比较活动,本学期学生又理解了用字母表示数的意义。

学生具备用天或台秤称物体的生活经验,能够正确描述生活中的等量情境。

学生对于利用天平解决实际问题较感兴趣,而对于从各种具体情境中寻找发现等量关系并用数学的语言表达,则需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

教学目标:
1、使学生在具体的情境中,理解方程的含义,初步体会等式与方程的关系。

2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历将现实问题抽象成式与方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象思维能力和符号感。

3、让学生获得一些成功的体验,进一步树立学好数学的信心,产生对数学的兴趣。

教学重点:抓住“等式”“含有未知数”两个关键词初步建立方程的概念。

教学难点:方程与等式的关系;方程中等量关系的建立。

教学准备:多媒体课件和一架托盘天平
教学过程:
一、激趣导入
师:你们还记在上幼儿园时都玩过跷跷板吗?,谁能来说一说玩跷跷板时是怎样的情景?(当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。


师:现在有两个小学生正在玩跷跷板(用课件出示两个小朋友玩跷跷板的图片,图中跷跷板平衡的),根据现在的情况,你能知道什么?(左边小朋
友的体重等于右边小朋友的体重)
二、探究新知
1、课件演示天平,激发兴趣师:刚才我们玩了跷跷板,请同学们想一想:
你们在生活中见过与跷跷板相类似的物体吗?
师:是的,利用跷跷板的这种现象,科学家们设计出了天平。

师:今天老师也带来了一个托盘天平,向学生介绍它工作原理。

(工作原理:将托盘天平平放,使意思是说称量前应首先检查天平是否处于平衡状态。

若不平衡,应调节螺丝使之平衡。

接着将被称量物要放在左盘中,砝码要放在右盘中。

取砝码时,切不可用手拿取,而必须用镊子夹取)师:直观演示,天平称物体情况。

(天平演示)师:能用一个式子表示这种平衡状态吗?(20﹢30=50)
2、实验演示,自主探究师:你们知道怎样用天平称量物体吗?师:下面我
们来称量这个水杯的重量(课件演示:先出示一个托盘天平,然后再出示一个水杯)。

我们应该把水杯放在哪?(课件演示:把水杯放在左盘,而且天平左高右低)然后呢?(在右盘放砝码)老师在右盘放了100克砝码,你发现了什么?(天平平衡了)这说明了什么?(一个杯子重100 克)师:那么一杯水重多少千克呢?请同学们仔细观察(课件演示往杯子里倒水),你发现了什么?(天平不平衡了)这说明了什么?(杯子和水的重量大于100 克)如果老师要想称量这杯水的重量怎么办?(接着放砝码)请大家观察(课件演示又拿来100 克放在右盘中),这时你发现了什么?(天平还是不平衡)哪边高?哪边低?这说明了什么?(杯子+水> 200 克)你能用一个数学式子来表示这时候的现象吗?(板书:100+X>200)
师:如果想继续称量怎么办?(接着放砝码)好,请同学们接着仔细观察(课件演示又拿来100 克,放在右盘中)你发现了什么?(天平左高右低了)这说明了什么?(杯子+水< 300 克你能也用一个式子来表示这种现象吗?(板书:100+X<300
师:通过刚才两次称量,你发现了什么?(杯子和水的质量大于200 克,
小于300 克)你能猜猜杯子和水的质量是多少吗?那么到底是多少呢?我们得接着称量。

谁能说一说应该怎样继续称量?(拿走100克,换上一个小一些的砝码)请同学们接着观察,你看见了什么?(课件演示:拿走100克,拿来50 克)这时天平平衡说明了什么?你能用式子来表示天平的平衡情况吗?(100+X=250)
3 、通过分类,认识方程师:通过刚才试验,我们得出了四个式子。

如果我们对这四个式子分类,可以分成几类呢?请同学们先独立思考,再和小组内的同学说一说这
4 个式子可以分成几类?是按什么标准分类的?
小组汇报,教师板书:按是否是等式可以分为两类20+30=50 和X+100=250为一类,X +100>200 和X+100<300为一类;按是否含有未知数可以分为两类:20+30=50为一类,X+100=250、X+100>200 和X +100<300 为一类⋯⋯
师:请同学们观察20+30=50 和X+100=250 这两个式子有什么相同点和不同点?
师:像X+100=250 这样含有未知数的等式,我们把它叫做方程。

今天我们学习的就是方程的意义(板书课题)
师:通过刚才的研究,你能发现什么吗?请同学们先独立思考,再小组讨论:方程和等式有什么关系?你能用自己喜欢的方式表示方程和等式之间的关系吗?
学生汇报,课件出示:等式包括方程,一切方程都是等式,但等式
不一定是方程。

并把集合图画在黑板上
师:如果你是方程,你会作自我介绍吗?(学生给予评价,并加以补充)
师:你们知道了什么叫方程,能试着写出一个方程吗?(全班学生试写,并指名到前面板演)
师:我们来看看前面这几个同学写得是不是方程?现在请同学们当小老师检查一下你的同桌写的是否正确。

师:老师这也有几个式子,它们是方程吗?请大家帮老师判断一下课件出示:
下面的式子中,哪些是方程?哪些不是方程?想一想为什么?82-2=80
X +7 < 9
X + 32 3X + 7=22
X-Y=9 5 (X-2)=15
师:要想判断一个式子是不是方程必须具备哪些条件?
课件出示: 一个方程必须具备的条件:
2、含有未知数。

三、巩固应用
1 、判断下列式子,哪些是等式,哪些是方程,并说明理由
35+65=100 x-14
5x+32=47 28
2 、完成教材第6
3 页“做一做”第2 题。

1、等式。

>72
<16+14
y+24
6(y+2)=42
3、张强也列了两了式子,不小心被墨水弄脏了。

猜猜他原来列的是不是方
程?
(1)6X + =78
(2)36 + =42
4、你能选择其中一些信息列出方程吗?我们可以小组合作,看谁列得多?
5、判断题:
(1)含有未知数的等式是方程()
(2)含有未知数的式子是方程()
(3)方程是等式,等式也是方程()
(4)3χ=0 是方程()
(5)4χ+20 含有未知数,所以它是方程()
6、用方程表示下面的数量关系。

(1)X加上35 等于91;
(2)X的3倍等于57;
(3)X-3 的差是6
(4)7.8 除以X 等于1.3
7、根据题意列出方程
一辆公共汽车到站时,有5 人下车,8 人上车,车上还剩15人,车上原
有多少人?
四、总结拓展
1、师:这节课你学会了哪些知识?还有哪些困惑?
2、师:同学们不仅能自己写出喜欢的方程,发现方程和等式之间的关系,而且能根据老师提供的生活中的信息,列出了那么多的方程,真了不起!其实在我们的生活中到处都有数学,请同学们把你在生活中看到或想到的信息写在练习本上,让同桌根据你提供的信息列出方程。

附:板书设计
方程的意义
20+30=50 X +100>200
X +100=250 X +100<300
像X+100=250,样含有未知数的等式,称为方程。

相关文档
最新文档