单片机系统中常用的滤波算法有哪些
单片机温度滤波算法

单片机在数据采集过程中,经常会遇到随机误差的问题,这些误差可能由环境干扰、设备精度等因素引起。
为了提高温度测量的准确性和稳定性,可以采用滤波算法对采集到的温度数据进行处理。
以下是一些常见的温度滤波算法:
1. 算术平均滤波法:
连续采样N次温度值。
计算这N次采样值的平均值作为滤波后的温度值。
这种方法的平滑度高,但灵敏度较低。
2. 中位值滤波法:
连续采样N次温度值。
将这N个数从小到大排序。
取中间的数值作为滤波后的温度值。
这种方法对温度等变化缓慢的被测参数有良好的滤波效果,但对快速变化的参数不宜。
3. 限幅滤波法:
设定一个经验值A,表示两次采样允许的最大偏差。
每次采样时,判断当前值与上次值之差是否小于A,只有当这个条件满足时,本次采样值才有效。
这种方法可以克服脉冲干扰,但对周期性干扰的处理效果不佳。
4. 滑动平均滤波法:
每次采样的新数据替换队列中的旧数据,保持队列长度不变。
计算队列中所有数据的平均值作为滤波结果。
这种方法可以较好地抑制随机干扰,适用于信号变化较慢的情况。
5. 加权平均滤波法:
给不同时间的采样值分配不同的权重。
计算加权后的平均值作为滤波结果。
这种方法可以根据数据的重要性分配权重,提高滤波效果。
6. 低通滤波法:
允许低于特定频率的信号通过,抑制高频噪声。
通常用于信号处理的软件滤波中。
学习单片机AD采样不得不知道的十大滤波算法

学习单片机AD采样不得不知道的十大滤波算法前言单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。
但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。
下面给大家介绍十种常见的ADC 滤波算法。
一、限幅滤波1、方法•根据经验判断两次采样允许的最大偏差值A•每次采新值时判断:若本次值与上次值之差<=A,则本次有效;若本次值与上次值之差>A,本次无效,用上次值代替本次。
2、优缺点•克服脉冲干扰,无法抑制周期性干扰,平滑度差。
3、代码/* A值根据实际调,Value有效值,new_Value当前采样值,程序返回有效的实际值 */#define A 10char Value;char filter(){char new_Value;new_Value = get_ad(); //获取采样值if( abs(new_Value - Value) > A) return Value; //abs()取绝对值函数return new_Value;}二、中位值滤波1、方法•连续采样N次,按大小排列•取中间值为本次有效值2、优缺点•克服波动干扰,对温度等变化缓慢的被测参数有良好的滤波效果,对速度等快速变化的参数不宜。
3、代码#define N 11char filter(){char value_buf[N];char count,i,j,temp;for(count = 0;count < N;count++) //获取采样值{value_buf[count] = get_ad();delay();}for(j = 0;j<(N-1);j++)for(i = 0;i<(n-j);i++)if(value_buf[i]>value_buf[i+1]){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}return value_buf[(N-1)/2];}三、算数平均滤波1、方法•连续采样N次,取平均•N较大时平滑度高,灵敏度低•N较小时平滑度低,灵敏度高•一般N=122、优缺点•适用于存在随机干扰的系统,占用RAM多,速度慢。
10种简单的数值滤波方法

单片机利用软件抗干扰的几种滤波方法1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效;如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。
B、优点:能有效克服因偶然因素引起的脉冲干扰。
C、缺点无法抑制那种周期性的干扰,平滑度差。
2、中位值滤波法A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。
B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
C、缺点:对流量、速度等快速变化的参数不宜。
3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。
B、优点:适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。
4、递推平均滤波法(又称滑动平均滤波法)。
A、方法:把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。
B、优点:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统C、缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14,B、优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
单片机常用算法设计详解

单片机常用算法设计详解一、排序算法排序是将一组数据按照特定的顺序进行排列的过程。
在单片机中,常见的排序算法有冒泡排序、插入排序和快速排序。
冒泡排序是一种简单直观的排序算法。
它通过反复比较相邻的两个元素,如果顺序不对则进行交换,直到整个数组有序。
这种算法的优点是实现简单,容易理解,但效率较低,对于大规模数据的排序不太适用。
插入排序的基本思想是将待排序的元素插入到已经有序的部分中。
它从第二个元素开始,将其与前面已排序的元素进行比较,并插入到合适的位置。
插入排序在小规模数据时表现较好,但其平均和最坏情况下的时间复杂度不如快速排序。
快速排序则是一种高效的排序算法。
它选择一个基准元素,将数组分为小于和大于基准元素的两部分,然后对这两部分分别进行快速排序。
快速排序在大多数情况下具有较好的性能,但在最坏情况下可能会退化为 O(n²)的时间复杂度。
在单片机中选择排序算法时,需要根据数据规模和对时间效率的要求进行权衡。
二、查找算法查找是在一组数据中寻找特定元素的过程。
常见的查找算法有顺序查找和二分查找。
顺序查找是从数组的开头依次比较每个元素,直到找到目标元素或遍历完整个数组。
它适用于数据无序的情况,但效率较低。
二分查找则要求数组必须是有序的。
通过不断将数组中间的元素与目标元素进行比较,缩小查找范围,直到找到目标元素。
二分查找的时间复杂度为 O(log n),效率较高,但需要数据有序。
在单片机应用中,如果数据经常需要查找且能保持有序,应优先考虑二分查找。
三、数据压缩算法在单片机系统中,为了节省存储空间和传输带宽,常常需要使用数据压缩算法。
常见的数据压缩算法有哈夫曼编码和 LZW 编码。
哈夫曼编码是一种无损数据压缩算法。
它根据字符出现的频率构建一棵哈夫曼树,然后为每个字符生成唯一的编码。
频率高的字符编码较短,频率低的字符编码较长,从而实现数据压缩。
LZW 编码则是一种字典编码算法。
它通过建立一个字典,将重复出现的字符串用较短的编码表示,从而达到压缩的目的。
单片机中常用滤波算法

单片机中常用滤波算法在单片机中,滤波算法是非常常用的技术,用于去除信号中的噪声或干扰,提取出真正的有效信号。
滤波算法的选择取决于不同的应用场景和信号类型,下面将介绍几种常用的滤波算法。
1.均值滤波均值滤波是最简单且常用的滤波算法之一、它通过计算一定数量数据点的平均值来平滑信号。
具体实现上,可以使用一个滑动窗口,每次将最新的数据点加入窗口并去除最旧的数据点,然后计算窗口内数据点的平均值作为滤波后的输出值。
均值滤波对于去除高频噪声效果较好,但对于快速变化的信号可能会引入较大的延迟。
2.中值滤波中值滤波也是常用的滤波算法,它对信号的一组数据点进行排序,然后选择中间值作为滤波后的输出值。
与均值滤波不同,中值滤波可以有效去除椒盐噪声和脉冲噪声等突变噪声,但可能对于连续变化的信号引入较大的误差。
3.最大值/最小值滤波最大值/最小值滤波是一种简单有效的滤波算法,它通过选取一组数据点中的最大值或最小值作为滤波后的输出值。
最大值滤波可以用于检测异常峰值或波动,最小值滤波则可用于检测异常低谷或衰减。
4.加权移动平均滤波加权移动平均滤波是对均值滤波的改进,它引入权重因子对数据点进行加权平均,以更好地适应信号的动态变化。
常见的权重分配方式有线性加权和指数加权,可以根据实际需求进行调整。
5.卡尔曼滤波卡尔曼滤波是一种最优滤波算法,其主要应用于估计系统状态,包含两个步骤:预测和更新。
预测步骤用于根据上一时刻的状态和系统模型,预测当前时刻的状态;更新步骤通过测量值对预测值进行修正,得到最终的估计值。
卡尔曼滤波具有较好的估计精度和实时性,但对于复杂系统,可能涉及较高的计算量。
除了上述常见的滤波算法,还有一些针对特定应用的滤波算法值得一提,如带通滤波、带阻滤波、滑动平均滤波等。
在实际工程应用中,滤波算法的选择需要根据具体应用场景和信号特点进行权衡,寻找最适合的算法以获得满意的滤波效果。
单片机滤波算法

单片机滤波算法引言在许多嵌入式系统中,采集到的信号可能会受到各种干扰,如噪声、杂波等,这些干扰会使得信号变得不稳定,难以准确分析和处理。
为了降低这些干扰的影响,需要对采集到的信号进行滤波处理,将其平滑或去除掉一些不必要的波动,使得信号更加准确和可靠。
本文将介绍一种常用的单片机滤波算法,帮助读者了解如何在单片机中实现信号滤波。
一、滤波算法概述滤波算法是一种通过对信号进行加权平均或滑动平均等处理方式,以去除误差、噪声等不必要的波动,使得信号更加平稳和准确的方法。
常用的滤波算法有移动平均滤波、中值滤波、卡尔曼滤波等,它们各有特点,适用于不同的应用场景。
移动平均滤波是一种简单有效的滤波方法,它通过对连续采集到的信号值进行加权平均,计算出一个平滑的信号值。
移动平均滤波的原理是,取一定长度的信号窗口,将窗口中的信号值进行加权平均,得到一个新的信号值,然后将窗口向后滑动一个位置,重复进行加权平均,直到计算结束。
移动平均滤波可以有效地去除信号中的高频噪声,使得信号更加平稳和可靠。
中值滤波是一种基于排序的滤波方法,它通过对采集到的信号值进行排序,取其中间值作为新的信号值。
中值滤波的原理是,将一定长度的信号窗口中的信号值进行升序排列,然后取排序后的中间值作为新的信号值,重复进行这个过程,直到计算结束。
中值滤波适用于对信号中的脉冲噪声进行滤除,可以有效地去除突发性的噪声干扰,使得信号更加平滑和准确。
卡尔曼滤波是一种基于状态估计的滤波方法,它通过对信号的状态进行估计和预测,将测量值和预测值进行加权组合,得到一个更准确的信号值。
卡尔曼滤波的原理是,根据系统的状态方程和观测方程,通过状态估计和状态预测,融合测量值和预测值,得到一个最优的估计值,使得信号的估计更加稳定和准确。
卡尔曼滤波适用于对信号中的随机噪声进行滤除,可以有效地提高信号的估计精度和稳定性。
二、移动平均滤波移动平均滤波是一种简单有效的滤波方法,它通过对连续采集到的信号值进行加权平均,计算出一个平滑的信号值。
单片机的10种软件滤波方法

单片机的10种软件滤波方法1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效。
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰。
C、缺点:无法抑制那种周期性的干扰,平滑度差。
2、中位值滤波法A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。
B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
C、缺点:对流量、速度等快速变化的参数不宜。
3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算。
N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高。
N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。
4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统。
C、缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”。
连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。
单片机数字滤波算法

单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。
但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。
下面主要是介绍如何用单片机实现数字滤波。
在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。
为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。
滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。
1采用数字滤波算法克服随机干扰的误差具有以下优点:1.数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻抗匹配问题。
尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。
2.数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统开支。
3.只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这对于滤除低频干扰和随机信号会有较大的效果。
4.在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤波法、加权平均滤波法、滑动平均滤波等。
2限幅滤波算法该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。
A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。
算法的程序代码如下:#define A //允许的最大差值char data; //上一次的数据char filter(){char datanew; //新数据变量datanew=get_data(); //获得新数据变量if((datanew-data)>A||(data-datanew>A))return data;elsereturn datanew;}说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
intsum=0;
for(count=0;count{
value_buf[count]=get_data();
delay();
}
for(j=0;j{
for(i=0;i{
if(value_buf[i]》value_buf[i+1])
{
temp=value_buf[i];
单片机系统中常用的滤波算法有哪些
//在单片机系统中常用的滤波算法
//(1)程序判断法
#defineA
chardata; //上一次的数据
charfiLTEr_1()
{
chardatanew;//新数据变量
datanew=get_data();//获得新数据
if((datanew–data》A)||(data–datanew》A)//滤波算法
returndata;
returndatanew;
}
//(2)中值滤波法
#defineN11
charfilter_2()
{
charvalue_buf[N];
charcount,i,j,temp;
for(count=0;count{
value_buf[count]=get_data();
delay();
return(char)(sum/N);
}
//(6)低通滤波法
charfilter_6()
{
charnew_value;
new_value=get_data();
return(100-a)*value+a*new_value;
}
//(7)中位值平均滤波
charfiltห้องสมุดไป่ตู้r_7()
{
charcount,i,j;
charfilter_3()
{
intsum=0;
for(count=0;count{
sum+=get_ad();
delay();
}
return(char)(sum/N);
}
//(4)加权平均滤波法
charcodejq[N]={1,2,3,4,5,6,7,8,9,10,11,12};//coe数组为加权系数表,存在程序存储区。
return(char)(sum/sum_jq);
}
//(5)滑动平均滤波法
charvalue_buf[N];
chari=0;
charfilter_5()
{
charcount;
intsum=0;
value_buf[i++]=get_ad();
if(i==N)i=0;
for(count=0;countsum=value_buf[count];
charcodesum_jq=1+2+3+4+5+6+7+8+9+10+11+12;
charfilter_4()
{
charcount;
charvalue_buf[N];
intsum=0;
for(count=0,count{
value_buf[count]=get_data();
delay();
}
for(count=0,countsum+=value_buf[count]*jq[count];
value_buf[i]=value_buf[i+1];
value_buf[i+1]=temp;
}
}
}
for(count=1;countsum+=value[count];
return(char)(sum/(N-2));
}
}
for(j=0;j{
for(i=0;i{
if(value_buf[i]》value_buf[i+1])
{
temp=value_buf[i];
value_buf[i]=value_buf[i+1];
value_buf[i+1]=temp;
}
}
}
returnvalue_buf[(N-1)/2];
}
//(3)算术平均滤波法