不定积分典型例题(1)

合集下载

不定积分

不定积分

一、不定积分的解题技巧引例:不定积分 /(1 -x)cos2xdx f (1 -x)cos2xdx=/cos2xdx - f xcos2xdx=(1/2) f cos2xd2x -(1/4) f 2xcos2xd2x=(1/2)sin2x- (1/4) f 2xdsin2x=(1/2)sin2x- (1/2)xsin2x (1/4) f sin2xd2x=(1/2)sin2x-(1/2)xsin2x-(1/4)cos2x Cf (1 -x)cos2xdx求导行:1-x -1 0积分行:cos2x 1/2*sin2x -1/4*cos2x所以:f (1 -x)cos2xdx =(1-x)*1/2*sin2x-(-1)*(-1/4*cos2x) C注:分步积分的时候,f a*bdx哪个放到d后面去(那个先反过来求导)?这里遵循一个原则:对,反,幂,三,指。

越后的先放到d里去如f x A2 cosxdx x A2 是幂函数,cosx是三角函数。

所以,要这样化f xA2dsinx而不是1/3 f cosxdxA3引例2: f 1/(1 xA4)dx原式=1/2((1 xA2 1-xA2)/1 xA4)=0.5(1 xA2/1 xA4) 0.5(1咲人2/1 xA4)=0.5(1 xA-2/xA-2 xA2)< 就是分子分母同除x的平方>如果是不定积分,两类换元法和拼凑法一般来说结合使用灵活系数比较大不过你要相信考试不定积分形式比较简单方法比较独到,绝对不是“暴力“积岀来的,一想到你的方法越做越陷入死路,我想因该要变通.第二,对于有独特的因子你要留意.定积分,比不定积分要难一些,因为很多函数是没有初等函数的,方法是拼凑法和化为二元再交换顺序,其中拼凑发很关键,我们要掌握.例题大家平时做题目就很容易发现方法与技巧一、换元法1. 凑微分使用凑微分法的难处在于如何“凑”岀一个函数的微分。

对于这个问题一方面要求熟悉一些常见函数的微分形式,另一方面,对于那些不易观察的,则不妨从被积函数中拿岀一个表达式,求其微分,从而决定如何凑微分。

高数—不定积分 讲解和例题-PPT (1)

高数—不定积分 讲解和例题-PPT (1)

课外作业
习 4 — 1(A) ( ) 1(双) ( 习 4 — 1(B) ( ) 1(5,6,7,11), ( , , , ), ),2
§2. 换元积分法
y = sin2x 是复合函数, 是复合函数,
∫ sin2xd x
1. 凑常数
如何积分? 如何积分?
一、第一类换元法 ( 凑微分法 )
(d2x = 2dx) 1 例1: sin2xd x = ∫ sin2x d 2 x (2x = u) ∫ 2 1 1 1 = ∫ sinudu = − cos u+ C = − cos 2x + C. + 2 2 2
2
= x − x + arctan x + C.
1 3 3
从理论上来讲, 从理论上来讲,只需把积分结果 求导,就可检验积分是否正确。 求导,就可检验积分是否正确。但由 于函数变形及原函数间可相差一个常 数等因素,一般不检验。 数等因素,一般不检验。 所以注重积分过程的正确性是至 关重要的。 关重要的。 即每一步运算都要看能否还原到 上一步。 上一步。
dx 例5: 2 ∫ x − a2 (a > 0) 1 1 1 = ∫ − dx 2a x − a x + a 1 d( x − a) d( x + a) = ∫ −∫ 2a x −a x+a 1 = [ln x − a − ln x + a ] + C 2a 1 x −a = ln + C. 2a x + a dx 1 a+ x = ln + C. (a > 0) 同理: 同理: 2 2 ∫ a − x 2a a − x
例: 求通过点 ( 1, 2 ),且其上任一点处的 , 切线斜率等于该点横坐标6倍的一条曲线 倍的一条曲线。 切线斜率等于该点横坐标 倍的一条曲线。 解:设所求曲线方程为 y = f (x) . 由题意,曲线上点(x, 的切线斜率 由题意,曲线上点 y)的切线斜率 dy = 6x, dx 2 ∴y = ∫ 6xdx = 3x + C , 为一簇积分曲线。 为一簇积分曲线。

不定积分(1)

不定积分(1)

第三讲 不定积分一、 考试内容与要求1 概念与性质(1)原函数 '=∈F x f x x I ()(), (2)不定积分f x dx F x C()()=+⎰(3)性质:1) ⎰+='Cx f dx x f )()(或⎰+=C x f x df )()(2)ddxf x dx f x (())()⎰=或⎰=dxx f dx x f d )()(一般地,d df x f x C()()⎰⎰=+3)⎰⎰=dx x f k dx x kf )()( 4) ⎰⎰⎰±=±dx x g dx x f dx x g x f )()()]()([(4) 基本积分公式表:2 基本积分公式表3 求不定积分的基本方法(1) 第一换元积分法f x x dx f x d x f u du F u C F x C[()]()[()]()()()[()]ϕϕϕϕϕ'===+=+⎰⎰⎰常用“凑”微分公式: (2) 第二换元积分法f ax b ()+ 根式代换f a x ()22-, f a x ()22+ , f x a ()22- 三角代换 t x=1 倒代换注:e t x t x t x ===,ln ,arcsin (3) 分部积分法uv dx udv uv vdu '==-⎰⎰⎰常用分部积分法:P x e dx P x axdx n kx n (),()sin ⎰⎰ P x xdx P x xdx n n ()ln ,()arcsin ⎰⎰ e bxdx ax sin ⎰ (4)* 有理函数的积分:四种类型(5)* 三角有理函数的积分:① ⎰⎰==du u R xdx x R ux )(cos )(sin sin② ⎰⎰-==du u R xdxx R ux )(sin )(cos cos③ ⎰⎰+++==2222tan 221),11,1()tan ,cos ,(sin udu u uuuR dx x x x R ux④ ⎰⎰++-+==22222tan12)11,12()cos ,(sin uduuu uu R dx x x R x u注: 含有三角函数的偶次幂,一般应先降幂。

不定积分习题

不定积分习题

第一节 不定积分的概念与性质例题:计算下列不定积分:1.dx x ⎰22.dx x⎰13.设曲线通过点()2,1,且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程 4.dx x ⎰31 5.dx xx ⎰1 6.()dx xx 52-⎰ 7.dx x x ⎰28.()dx xx ⎰-231 9.()dx x e x⎰-cos 3 10.dx e xx ⎰2 11.dx x ⎰2tan12.dx x⎰2sin213.dx x x ⎰2cos 2sin 12214.dx x x x ⎰+++132224 15.dx x x x ⎰--12224 习题:1.利用求导运算验证下列等式:(1)C x x dx x +++=+⎰)1ln(1122(2)C xx dx x x+-=-⎰111222(3)C x x dx x x x +++=++⎰11arctan )1)(1(22 (4)C x x dx x ++=⎰sec tan ln sec (5)C x x x dx x x ++=⎰cos sin cos(6)C x x dx x e x+-=⎰)cos (sin 21sin 2.求下列不定积分(1)dx x⎰31(2)dx x x ⎰(3)⎰xdx (4)dx x x ⎰32(5)⎰xx dx2(6)dx x mn ⎰(7)dx x ⎰35 (8)dx x x ⎰+-)23(2(9)⎰ghdx 2(g 是常数) (10)()dx x⎰+221(11)()()d x x x ⎰-+113 (12)⎰xx dx 2(13)dx x e x⎰⎪⎭⎫ ⎝⎛+32 (14)dx x x ⎰⎪⎪⎭⎫ ⎝⎛--+221213 (15)dx xe e xx⎰⎪⎪⎭⎫ ⎝⎛--1 (16)dx e xx ⎰3 (17)dx xxx ⎰⋅-⋅32532 (18)()dx x x x ⎰-tan sec sec (19)dx x ⎰2cos2(20)⎰+x dx 2cos 1 (21)dx x x x ⎰-sin cos 2cos (22)dx xx x⎰22sin cos 2cos (23)dx x ⎰2cot (24)()dx ⎰θ+θθsec tan cos(25)dx x x ⎰+122 (26)dx x x x ⎰++123234 3.一曲线通过点()3,2e ,且任一点处的切线斜率等于该点横坐标的倒数,求该曲线的方程.4.证明函数)12arcsin(-x 、)21arccos(x -和x x-1arctan 2都是21xx -的原函数.第二节 换元积分法例题求下列不定积分1、dx x ⎰2cos 2 2、dx x ⎰+2313、dx x x ⎰+32)2( 4、dx xe x ⎰225、dx x x ⎰-21 6、dx x a ⎰+2217、dx x a ⎰-221 8、dx x a ⎰-2219、dx x x ⎰+)ln 21(1 10、dx xe x⎰311、dx x ⎰3sin 12、dx x x ⎰52cos sin13、dx x ⎰tan 14、dx x ⎰2cos15、dx x x ⎰42cos sin 16、dx x ⎰6sec17、dx x x ⎰35sec tan 18、dx x ⎰csc19、dx x ⎰sec 20、dx x x ⎰sin 3cos 21、dx x a ⎰-22 22、dx ax ⎰+22123、dx a x ⎰-221 24、dx x x a ⎰-422 25、⎰+942x dx 26、⎰-+21xx dx27、()dx x xx ⎰+-22322练习1、在下列各式等号右端的空白处填入适当的系数,使等式成立:(1)=dx )(ax d ; (2)=dx )37(-x d ;(3)=xdx )(2x d ; (4)=xdx )5(2x d ; (5)=xdx )1(2x d -; (6)=dx x 3 )43(2-x d ;(7)=dx e x 2 )(2xe d (8)dx e x 2-= )1(2x e d -+(9)=dx 23sin )23(cos x d (10)=xdx )ln 5(x d (11)=xdx)ln 53(x d -(12)=+21x dx )3(arctan x d (13)=-21xdx)arcsin 1(x d -(14)=-21x xdx )1(2x d -2、求下列不定积分(1)dt e t⎰5 (2)dx x ⎰-3)23((3)⎰-x dx 21 (4)⎰-332x dx(5)dx e ax bx⎰-)(sin (6)dt tt ⎰sin(7)dx xex ⎰-2(8)dx x x ⎰)cos(2(9)dx xx⎰-232 (10)dx x x ⎰-4313 (11)dxx x x ⎰+++5212 (12)dt t t ⎰ϕ+ωϕ+ω)sin()(cos 2 (13)dx x x ⎰3cos sin (14)dx x x xx ⎰-+3cos sin cos sin(15)dx x x ⎰⋅210sec tan (16)⎰x x x dxln ln ln(17)⎰-221)(arcsin xx dx(18)dx xx ⎰-2arccos 2110(19)⎰+⋅+2211tan x xdxx (20)dx x x x ⎰+)1(arctan (21)dx x x x⎰+2)ln (ln 1 (22)⎰x x dx cos sin (23)dx xx x ⎰sin cos tan ln (24)dx x ⎰3cos (25)dt t ⎰ϕ+ω)(cos 2(26)dx x x ⎰3cos 2sin(27)dx x x ⎰2cos cos (28)dx x x ⎰7sin 5sin(29)dx x x ⎰sec tan 3(30)⎰-+x x e e dx(31)dx xx⎰--2491 (32)dx x x ⎰+239 (33)⎰-122x dx (34)⎰-+)2)(1(x x dx(35)dx x x x ⎰--22 (36)⎰-222xa dx x(37)⎰-12x x dx (38)⎰+32)1(x dx(39)dx x x ⎰-92 (40)⎰+xdx 21 (41)⎰-+211xdx (42)⎰-+21xx dx(43)dx x x x ⎰++-3212 (44)dx x x ⎰++223)1(1第三节 分部积分法例题 求下列不定积分1、dx x x ⎰cos2、dx xe x⎰3、dx x x ⎰ln4、dx x ⎰arccos5、dx x x ⎰arctan6、dx x e x⎰sin7、dx x ⎰3sec 8、dx e x⎰练习 求下列不定积分(1)⎰xdx x sin (2)dx x ⎰ln(3)dx x ⎰arcsin (4)dx xe x⎰-(5)dx x x ⎰ln 2(6)dx x e x ⎰-cos(7)dx x ex⎰-2sin 2 (8)dx x x ⎰2cos(9)dx x x ⎰arctan 2 (10)dx x x ⎰2tan(11)dx x x ⎰cos 2(12)dt te t ⎰-2(13)dx x ⎰2ln (14)dx x x x ⎰cos sin(15)dx x x ⎰2cos 22 (16)dx x x ⎰-)1ln( (17)dx x x ⎰-2sin )1(2(18)dx xx⎰23ln(19)dx e x ⎰3(20)dx x ⎰ln cos(21)dx x ⎰2)(arcsin (22)dx x e x ⎰2sin(23)dx x x ⎰2ln (24)dx ex ⎰+93其他有关有理函数与无理函数的不定积分计算问题:例题:1、dx x x x ⎰+-+6512 2、dx x x x x ⎰++++)1)(12(223、dx x x x ⎰---)1)(1(32 4、dx x x x ⎰++)cos 1(sin sin 1 5、dx x x ⎰-16、⎰++321x dx 7、dx x x x ⎰+11练习:(1)dx x x ⎰+33(2)dx x x x ⎰-+-103322 (3)dx x x x ⎰+-+5212 (4)⎰+)1(2x x dx(5)dx x ⎰+133 (6)dx x x x ⎰-++)1()1(122 (7)⎰+++)3)(2)(1(x x x xdx(8)dx xx x x ⎰--+3458 (9)⎰++))(1(22x x x dx(10)dx x ⎰-114(11)⎰+++)1)(1(22x x x dx (12)dx x x ⎰++)1()1(22(13)dx x x x ⎰++--222)1(2(14)⎰+x dx 2sin 3 (15)⎰+x dx cos 3 (16)⎰+x dxsin 2 (17)⎰++x x dx cos sin 1 (18)⎰+-5cos sin 2x x dx(19)⎰++311x dx(20)dx x x ⎰+-11)(3(21)dx x x ⎰++-+1111 (22)⎰+4x x dx (23)x dx x x ⎰+-11 (24)⎰-+342)1()1(x x dx本章复习题计算下列不定积分:1、⎰-x dx cos 452、⎰+942x x dx 3、dx x x ⎰+2)43(4、dx x ⎰4sin5、⎰-942x dx 6、dx x x ⎰++52127、dx x ⎰+9228、dx x ⎰-2329、dx x e x⎰cos 210、dx x x ⎰2arcsin11、⎰+22)9(x dx 12、⎰x dx 3sin 13、dx x e x ⎰-3sin 214、dx x x ⎰5sin 3sin 15、dx x ⎰3ln 16、dx xx ⎰-117、dx x ⎰+22)1(118、dx x x ⎰-11219、dx x x ⎰+2)32(20、dx x ⎰6cos 21、dx x x⎰-22222、dx x ⎰+cos 52123、⎰-122x x dx24、dx x x ⎰+-1125、dx x x x ⎰--+125226、⎰-+21x x xdx27、dx x x ⎰+2442528、⎰--x x e e dx 29、dx x x⎰-3)1(30、dx x a x ⎰-66231、dx x x x ⎰++sin cos 1 32、dx x x ⎰ln ln33、dx x x x ⎰+4sin 1cos sin 34、dx x ⎰4tan 35、⎰+)4(6x x dx 36、dx x a x a ⎰-+37、⎰+)1(x x dx 38、dx x x ⎰2cos 39、⎰+xedx 140、⎰-122x xdx41、⎰+)1(24x x dx 42、dx x x ⎰sin 43、dx x ⎰+)1ln(244、dx x x ⎰32cos sin 45、dx x ⎰arctan46、dx x x ⎰+sin cos 147、dx x x ⎰+283)1(48、dx x x x ⎰++234811 49、⎰-416x dx 50、dx x x ⎰+sin 1sin 51、dx x x x ⎰++cos 1sin 52、dx xx x x e x ⎰-23sin cos sin cos 53、dx x x x x⎰+)(3354、⎰+2)1(x e dx 55、dx e e e e x x x x ⎰+-+124356、dx e xe x x⎰+2)1( 57、dx x x ⎰++)1(ln 2258、⎰+32)1(ln x x 59、dx x x ⎰-arcsin 1260、dx xx x ⎰-231arccos61、dx x x ⎰+sin 1cot 62、⎰x x dx cos sin 363、⎰+x x dxsin )cos 2(64、dx x x x x ⎰+cos sin cos sin65、dx x x ⎰-)1(12。

不定积分与定积分部分典型例题

不定积分与定积分部分典型例题

不定积分与定积分部分典型例题例1 验证2)ln 1(21)(x x F +=和x x x G ln ln 21)(2+=是同一个函数的原函数, 并说明两个函数的关系.分析 依原函数的定义, 若)(x F 和)(x G 的导数都是某个函数)(x f 的原函数, 即有)()()(x f x G x F ='=', 则)(x F 和)(x G 是)(x f 的原函数. 所以, 只需验证)(x F 和)(x G 的导数是否为同一个函数即可.解 因为x xx x x F ln 11)ln 1()(+=⋅+=' xxx x x x G ln 111ln )(+=+⋅='所以2)ln 1(21)(x x F +=和x x x G ln ln 21)(2+=是同一个函数x x ln 1+的两个原函数.且有21)(21ln ln 21)ln 1(21)(22+=++=+=x G x x x x F说明两个原函数之间仅相差一个常数. 例2 已知某曲线y =f (x )在点x 处的切线斜率为x21, 且曲线过点)3,4(, 试求曲线方程.分析 根据不定积分的几何意义, 所求曲线方程为过点)3,4(, 斜率是xx f 21)(=的积分曲线.解 c x x xx x f y +===⎰⎰d 21d )(且曲线过点)3,4(, 即c +=43, 得出143=-=c于是所求曲线方程为1+=x y例3 判断下列等式是否正确. (1)x xx xd 11d 11d22-=-⎰(2)c x x x +-='⎰cos d )(sin(3)21d ln d d e 1=⎰x x x x分析 (1), (2)根据不定积分的性质进行判断;(3)根据定积分的定义进行判断.解 (1)依照不定积分的性质x x f x x f d )(d )(d =⎰所以, 等式x xx xd 11d 11d22-=-⎰成立.(2)依照不定积分的性质c x f x x f +='⎰)(d )(所以, 等式c x x x +-='⎰cos d )(sin 不成立. 正确的应为c x x x +='⎰sind )(sin(3)由定积分定义,)()(d )(a F b F x x f ba-=⎰是一个确定的数值, 因此, 对函数先求定积分再求导数等于对一个数值求导数, 所以结果应该为零. 即等式21d ln d de 1=⎰x x x x 错误, 正确的结果应为0d ln d d e 1=⎰x xxx . 例4 计算下列积分: (1)x x x d )1(23+⎰(2)x xxxx)d sin e (3e 2-+⎰ (3)x x d sin 20⎰π分析 对于(1), (2)利用基本积分公式和积分运算性质进行积分, 注意在计算时, 对被积函数要进行适当的变形;对于(3), 注意到被积函数带有绝对值符号, 而在积分时, 绝对值符号是一定要打开的, 且在积分区间]2,0[π上有⎩⎨⎧≤<-≤≤=πππ2sin 0sin sin x x x xx 利用定积分的区间可加性和N-L 进行计算.解(1)将被积函数变形为32312)1(xx x x x ++=+x x x d )1(23+⎰=x xx x x x x x x x d 1d 2d d )12(33⎰⎰⎰⎰++=++=c xx x +-+2221ln 221.(2)将被积函数变形为xx xx xx22sin 1e)3()sin e (3e +=+-再利用积分公式和积分运算性质得=+-⎰x x x xx)d sin e (3e 2⎰⎰+x xx xd sin 1d e)3(2 =c x x+-+cot 13ln )e 3( (3)⎰⎰⎰-+=ππππ2020d sin d sin d sin x x x x x x)]1(1[]11[cos cos 20--+---=+-=πππx x4=.说明:本例在求积分的方法直接积分法. 这种方法适用与那些只用到基本积分公式和积分运算性质, 或者对被积函数进行适当变形就 可以运用积分公式求积分的题目. 在解题中应该注意:1.熟悉基本积分公式;2.在解题中经常要对被积函数进行适当的的变形(例如(1)中将二项和的平方展开;(2)中将xe 乘到括号里边去;(3)中将绝对值打开), 变形的目的是使被积函数为积分基本公式中的函数或它们的线性组合. 这些方法和技巧的掌握是基于平时的练习;3.如果连续试探几次, 进行不同的变形后仍无法达到目的, 则应考虑其它积分方法求解.例5 计算下列积分:(1)x xx d 12⎰-;(2)x x xd )e (1e 2⎰+ (3)x xxd ln e12⎰(4)x x d sin 203⎰π分析 注意到这几个被积函数都是复合函数, 对于复合函数的积分问题一般是利用凑微分法(第一换元积分法), 在计算中要明确被积函数中的中间变量)(x u ϕ=, 设法将对x 求积分转化为对)(x u ϕ=求积分. 对于定积分的凑微分的题目要注意:换元积分法的特点, 即“换元变限”.(1)将被积函数21x x -看成ux , 其中21x u -=, 且x x u d 2d -=, 于是,u ux ux d 121d -=, 这时对于变量u 可以利用公式求积分. (2)将被积函数2)e (1e x x +看成2e u x , 其中x u e 1+=, 且x u xd e d =, 于是22d d e u u x u x =, 这样对于变量xu e 1+=可以利用积分公式求积分.(3)将被积函数x x 2)(ln 看成x u 2, 其中x u ln =, 且x xu d 1d =, 于是x x u d 2u u d 2=, 这样对于变量x u ln =可以利用积分公式求积分.(4)将被积函数x 3sin 分解成x x x x x x x sin cos sin sin )cos 1(sin sin 222-=-=即分成两个函数积分的和, 第一个积分可以由N-L 公式直接得到, 第二个积分中被积函数视为x u sin 2, 其中x u cos =, x x u d sin d -=解 (1)x x x d 12⎰-=u ux x d 121)1d(112122⎰⎰-=---)1(2x u -= =c x c u +--=+-21(2)u ux xx x x d 1)e 1(d )e (11d )e (1e 222⎰⎰⎰=++=+ (x u e 1+=) =c c u x ++-=+-e111 (3)[方法1]换元换限. 令x u ln =, 则x xu d 1d =, 且当1=x 时, 0=u , e =x 时, 1=u , 于是有 31)01(3131d d ln 33103102e12=-===⎰⎰u u u x x x[方法2] 只凑微分不换元, 不换积分限.)d(ln ln d ln e 12e12x x x xx⎰⎰=31])1(ln )e [(ln 31)(ln 3133e13=-==x(4) 因为x x d sin 203⎰π=x x x x x x x x d sin cos d sin d sin ]cos 1[20220202⎰⎰⎰-=-πππ对于积分1cos d sin 2020=-=⎰ππx x x对于积分x x x d sin cos 202⎰π用凑微分法,[方法1] 令x u cos =, 则x x u d sin d -=, 且当0=x 时, 1=u , 2π=x 时, 0=u , 于是有3131d d sin cos 1312202==-=⎰⎰u u u x x x π[方法2] 只凑微分不换元, 不换积分限.31cos 31dcos cos d sin cos 203202202=-=-=⎰⎰πππx x x x x x说明:第一换元积分法是积分运算的重点, 也是难点. 一般地, 第一换元积分法所处理的函数是复合函数, 故此法的实质是复合函数求导数的逆运算. 在运算中始终要记住换元的目的是使换元后的积分⎰u u f d )(容易求原函数.应用第一换元积分法时, 首先要牢记积分基本公式, 明了基本公式中的变量x 换成x 的函数时公式仍然成立. 同时还要熟悉微分学中的微分基本公式, 复合函数微分法则和常见的 “凑微分”形式. 具体解题时, “凑微分”要朝着⎰u u f d )(容易求积分的方向进行.在定积分计算中, 因为积分限是积分变量的变化范围, 当积分变量发生改变, 相应的积分限一定要随之变化, 所以, 在应用换元积分法解题时, 如果积分变量不变(例如(3)(4)中的方法2). 则积分限不变. 而且在换元换限时, 新积分变量的上限对应于旧积分变量的上限, 新积分变量的下限对应于旧积分变量的下限, 当以新的变量求得原函数时可直接代入新变量的积分上、下限求积分值即可无须在还原到原来变量求值(例如(3)(4)中的方法2).由于积分方法是灵活多样的, 技巧性较强, 一些“凑”的方法是要靠一定量的练习来积累的(例如(4))因此, 我们只有通过练习摸索规律, 提高解题能力.例6 计算下列积分:(1)⎰+x x x d 1)sin2(;(2)⎰22d e x x x ; (3)⎰e e1d ln x x分析 注意到这些积分都不能用换元积分法, 所以要考虑分部积分,对于分部积分法适用的函数及v u ',的选择可以参照表3-1, 具体步骤是:1.凑微分, 从被积函数中选择恰当的部分作为x v d ', 即v x v d d =', 使积分变为⎰v u d ; 2.代公式,⎰⎰-=u v uv v u d d , 计算出x u u d d '=3.计算积分⎰u v d . 在定积分的分部积分公式是⎰⎰-=baba bau v uv v u d d , 它与不定积分的区别在于每一项都带有积分上、下限. 注意公式中ba uv 是一个常数, 在计算中应随时确定下来, 在计算(3)小题时应设法先去掉被积函数的绝对值符号, 这时需要根据绝对值的性质适当的利用定积分对区间的可加性质.解 (1)设x v x u 2sin ,1='+=, 则x v 2cos 21-=, 由分部积分公式有 ⎰⎰++-=+x x x x x x x d 2cos 212cos )1(21d 1)sin2(=c x x x +++-2sin 412cos )1(21 (2) 设2e ,xv x u ='=, 则2e 2xv =, 由定积分分部积分公式有44e 4e 4e4e 4d e 2e2d e 20222202202=+-=-=-=⎰⎰x x x x x x x x(3)因为⎪⎩⎪⎨⎧≤≤<≤-=e1ln 1e1ln ln x x x x x , 利用积分区间的可加性得到⎰⎰⎰+-=e11e1e e1d ln d ln d ln x x x x x x其中第一个积分为⎰⎰-=1e 11e 11e 1d ln d ln x x x x x x x 1e2e 11e 1-=+-= 第二个积分为11e e d ln d ln e 1e1e1=+-=-=⎰⎰x x x x x ,最后结果为e221e 21d ln d ln d ln e 11e1e e1-=+-=+-=⎰⎰⎰x x x x x x .例7 计算下列无穷限积分: (1)x x d )1(113⎰∞++;(2)⎰∞+-02d e x x ; (3)⎰∞+0d ln 1x xx 分析 对于无穷限积分⎰+∞ax x f d )(的求解步骤为:(1)求常义定积分⎰-=baa Fb F x x f )()(d )(;(2)计算极限)]()([lim a F b F b -+∞→极限存在则收敛(或可积)否则发散. 收敛时积分值等于极限值.解 (1)])1(21[lim d )1(1lim d )1(1121313bb b b x x x x x -+∞→+∞→∞++-=+=+⎰⎰=)41()21(])11()1[(lim 2122-⨯-=+-+---+∞→b b 81=(2)]e 31[lim d e lim d e 030303bx b bx b x x x -+∞→-+∞→∞+--==⎰⎰31]e e[31[lim 03=--=-+∞→bb (3)+∞===+∞→+∞→∞+⎰⎰bb b b x x x x xx e e e)ln(ln lim )d(ln ln 1lim d ln 1说明此无穷积分发散.注意:正如3.4中提到的, 上述无穷限积分的计算过程也可以写成下面的形式(1)81])1(21[d )1(11213-=+-=++∞-∞+⎰x x x (2)31]e 31[d e 0303=-=+∞-∞+-⎰xx x (3)+∞===∞+∞+∞+⎰⎰e x x xx x x )ln(ln )d(ln ln 1d ln 1e e.。

不定积分例题与答案

不定积分例题与答案

求下列不定积分:知识点:直接积分法的练习——求不定积分的荃本方法。

思路分析:利用不定积分的运算性质和荃本积分公式,査接求出不定积分!★(1),旅思路:被积函敌|:,由积分表中的公式(2)可解。

K 77T 八★⑶思路:根裾不定积分的线性性质,将被积函数分为两项,分别积分。

解:j<2x +.K 2Wt = j2,rfA + f.rdv = -L.+lx i +C ★⑷J 仮(.丫-3皿 思酪:根拐不定积分的线性性质,将被积函薮分为两项,分别积分。

J7xU-3)rfv = |x-dv-3jA"dv = ^.v* -2.V-+C★★⑸『竺上竺旦厶息」廉:观察到3xJ3.E=w+ 1后,根拐不定积分的线性性质,将被积函数分项,分别积分。

丿 ~-V+ 1 ~~.C+ 1~"*A x 2+11 ,根据不定积分的线性性质,将被积函数分项,分别积分。

解:JI ' 心=j rfv-j ]:心=A -arctan .v+C.注.容島看出(5)(6)两題的解SI 思绝是一致的• 一般地,如果被积函数为一个有理的假分丈.谨常先将其分解为一个荃或加上或 减去一个真分丈的形丈.再分项积分.★(7) |(三二+W 心思路:分项积分。

4-~-r^ = J 'z£v -|-^<tv + 3|x 'rfv-4j.t u rfv★(8)上3 2 思路:分项积分。

■ J< ] 3 - F k£v = 3j J , dx-2jdr = 3arctan .v-2arcsinx + C.★★⑺j 后眾小思路:皿着看到皿頁=严—“直接积分。

解:J 厶斥曲Y = =加+ U息话:根据不定积分的线性性质,将被积函数分为两项,分别积分。

X ,.思路:注意到r_ JI + x* x l+x 2 l+.r 1+x 2 解: ★⑵ =x + arctan .v + C解:严小+认=★★(10) I忌路:裂项分项积分。

不定积分例题及答案

不定积分例题及答案

求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)思路: 被积函数52x-,由积分表中的公式(2)可解。

解:532223x dx x C--=-+⎰ ★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰ ★★(5)4223311x x dxx +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x Cx x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x ⎰34134(-+-)2思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x--=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++★(8)23(1x+⎰思路:分项积分。

不定积分的典型例题50题

不定积分的典型例题50题

cos 2 xdx
例 14. arcsin 2 x dx arcsin 2 x d ( x 1) 1 x 1 x 例 15. I 例 16.
dx x x2 x 1 .
12 sin x cos x dx. 5 sin x 2 cos x sin xdx . 例 17. 3 sin 2 x
1 dx. 例 13. I 1 x3
d (1 sin x cos x) 1 sin x cos x ln 1 sin x cos x c (妙用“ 1”) 2 x x ( x x ) e ( x 3 x 1 ) e dx . 例 27.
例 26.
1 sin x cos x
(x
4
x dx. 1) ( x 4 x 2 )
2
例 4. 例 5.
x15 x8 1 x8 1 1 8 7 dx x dx dx ( x8 1)2 ( x8 1)2 8 ( x8 1) 2
1 cos x dx. 1 cos x sin x
dx. 分子分母同乘( x 1 x )
1
1 x2
x 1

1 cost dt
cost
cost cos t dt 1 sin xdx 2 1 cos t x x x 2 2 x 例 45. dx sin 2 cos 22sin sin x cos x cos dx 2 dx 2 csc 2 xdx cot x c 3 sin 3 x 2 sin2 x
例 6. x 2 x 2 1dx
1 1 1 1 dx [ ]dx 例 8. 4 2 1 x 2 1 x 1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档