第二章 对称性与分子点群
分子的对称性与群论基础群与分子点群

群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
点群

5、 Dnh群
在Dn 基础上,还有垂直于主轴的镜面σh .
D2h群分子结构呈长方形或长方体
2-
CI
CI
Pt
CI
CI
D4h
D5h:重叠型的二茂铁属D5h对称性,IF7、UF7 -离子为五角
双锥构型,也属D5h对称性。
IF7 D5h
6、 Dnd群
在Dn基础上, 增加了n个包含主轴且平分二次副轴夹角的镜面σd.
第二章 共价键理论和分子结构 2-6 分子对称性
一、对称元素和对称操作
1、对称操作:每一次操作都能够产生一个和原来图形等价的图形, 经过一次或连续几次操作能使图形完全复原。
等价图形:当一个操作作用于一个分子上时,所产生的新的分子几
何图形和作用前的图形如果不借助标号(原子的标号)
是无法区分的。
(四)分子点群(熊夫利符号)
1、Cn群 分子只有一个对称元素 n 重旋转轴 Cn
Cn分子具有风扇形特点
1,3,5-三甲基苯 C3
1,3,5-三甲基苯是C3点 群的例子,若不考虑 甲基上H原子,分子的 对称性可以很高,但 整体考虑, C6H3(CH3)3只有C3对 称元素。C3轴位于苯 环中心,垂直于苯环 平面,分子绕C3轴转 动120°,240°都能复原。
Cl
②Ci群:
③
9、高阶群
数学已证明,有且只有五种正多面体即四面体, 立方体、八面体、十二面体和二十面体。
面(F)、棱(E)、顶点(V) 满足Euler方程:
F+V=E+2
(1)Td群 具有正四面体构型的分子
C3
C2 (S4)
3C2:对边中点连线(3S4) 4C3:顶角与对面中心连线 6d:通过一个C2轴,平分两个C3轴夹角
分子的对称性与点群

(1)群的构成:群元素可以是各种数学对象或物理动作,可以进行某种数学运算
或物理动作。
(2)群的分类:群有各种类型,如旋转群,置换群,点群,空间群,李群……
(3)群阶:群所含的元素个数称为群阶,
(4)类:群中某些对称元素在相似变换中互为共轭元素的可分为一类。如C3v 点
σ 群中的元素可分为三类,E元素成一类,C31与 C32旋转成一类。三个 v
VI.H3BO3分子
C3h
Cl Cl
Cl
Cs
Cl
C3h
N N
N
N C4h
3. Sn 和Ci点群
分子中有1个Sn轴,当n为奇数时,属Ci群;当n 为偶数但不为4的整数倍时,属 Cn/2h点群;当n为4的整数倍时,属Sn点群。
分子中只含有一个映转轴Sn的点群属于这一类。映转轴所对应的操作是绕轴转 2π/n,接着对垂直于轴的平面进行反映。
(图IV)也是C3对称性分
子。
CO2H
H
HO
H
C3
CH3
C1
Cl
H
C2
C CC
Cl
H
2. Cnv 点群
Cnv群中有1个Cn轴,通过此轴有n个σv 。阶次为2n。 若分子有n重旋转轴和通过Cn轴的对称面σ,就生成一个Cnv群。由于Cn轴的存在, 有一个对称面,必然产生(n-1)个对称面。两个平面交角为π/n。它也是2n阶群。
平面正方形的PtCl42- SiF4不
具有对称中心
四面体
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋转n次轴再平面反映,两个动 作组合成一个操作。
S1n=σC1n
如甲烷分子,一个经过C原子的四 次映转轴S4,作用在分子上,H1旋转 到1’的位置后,经平面反映到H4的位 置,同时H2旋转到2’的位置再反映到 H3的位置……整个分子图形不变,
分子的对称性与点群

分子的对称性与点群摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。
分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。
例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。
关键词:对称性点群对称操作一.对称操作与点群如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。
一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。
描述分子的对称性时,常用到“点群”的概念。
所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
而全部对称元素的集合构成对称元素系。
每个点群具有一个持定的符号。
一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。
二.分子中的对称元素和对称操作2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
作分别用E、 E^表示。
这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。
2.2旋转轴和旋转操作分别用C n、C^n表示。
如果一个分子沿着某一轴旋转角度α能使分子复原,则该分子具有轴C n,α是使分子复原所旋转的最小角度,若一个分子中存在着几个旋转轴,则轴次高的为主轴(放在竖直位置),其余的为副轴。
分子沿顺时针方向绕某轴旋转角度α,α=360°/n (n=360°/α(n=1,2,3……)能使其构型成为等价构型或复原,即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分子具有 n 次对称轴。
n是使分子完全复原所旋转的次数,即为旋转轴的轴次,对应于次轴的对称操作有n个。
C n n=E﹙上标n表示操作的次数,下同﹚。
如NH3 (见图 1)旋转 2π/3 等价于旋转 2π (复原),基转角α=360°/n C3 - 三重轴;再如平面 BF3 分子,具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以上的旋转轴,则轴次最高的为主轴。
分子对称性和点群

例二:置换群(群元素为变换位置的操作,乘法规则为从右到左 相继操作). S3 群 ( 三阶置换群 )
1 2 3 E 1 2 3 1 2 3 A 1 3 2
1 2 3 D 2 3 1 1 B 3 1 2 2 3 2 1 2 3 3 1
{E,D,F}构成S3的一个3阶子群
AA BB CC E
{E,A}、 {E,B}、 {E,C}分别构成S3的2阶子群
3.2.4 群的共轭类
共轭元素: B=X-1AX ( X,A,B都是群G的元素) (A和B共轭)
元素的共轭类: 一组彼此共轭的所有元素集合称为群的 一个类.
f 类 = { x-1fx,
第三章
分子对称性和点群
分子具有某种对称性. 它对于理解和应用分子 量子态及相关光谱有极大帮助. 确定光谱的选择定则需要用到对称性. 标记分子的量子态需要用到对称性.
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
A4 =E
(2)非循环群
欲构成非循环群,只可能是各元素的逆元素为自身 即 A2 =B 2 =C 2 =E ,再根据重排定理即可得乘法表
3.2.3 群的子群
•子群: 设 H 是群 G 的非空子集, 若对于群 G 的乘法规则,集合 H 也 满足群的四个条件,则称 H 是 G 的子群. • 1) 封闭性 • 2) 结合律: H属于G并且为相同的乘法规则,因此结合律显然满足 • 3) 恒等元素:针对每个子群加入群G的恒等元素即可 • 4) 逆元素 因此满足条件1)与4)是证明子群成立的关键. 显然, 恒等元素 E 单独构成的群和群 G 自身是平庸子群.
第二章 第二节 分子点群及波函数的对称性

2V
φ H 1 + 1 × σ 3V φ H 1 )
应用正交归一化条件
1 ΨA1 = (φH 1 + φH 2 + φH 3 ) 3
(2)对于E对称性配体群轨道
• 由于E为二维,故应构建两个轨道
1 ˆ ˆ P Eφ H 1 = ∑ χ j ( R ) R φ H 1 6 R 1 1 = ( 2 × E φ H 1 + ( − 1 ) × C 3 φ H 1 + ( − 1 ) × C 32 φ H 1 + 0 × σ 1V φ H 1 + 0 × σ 2 V φ H 1 + 0 × σ 3 V φ H 1 ) 6 1 = ( 2φ H 1 − φ H 2 − φ H 3 ) 6 1 ˆ ˆ P Eφ H 2 = ∑ χ j ( R ) R φ H 2 6 R 1 1 = ( 2 × E φ H 2 + ( − 1) × C 3 φ H 2 + ( − 1) × C 32 φ H 2 + 0 × σ 1V φ H 2 + 0 × σ 2 V φ H 2 + 0 × σ 3 V φ H 2 ) 6 1 = ( 2φ H 2 − φ H 3 − φ H 1 ) 6
群 表 示 Z X Y
1 ·z
C3
= (1)z,
σv1·z = (1)z, σv3·z = (1) E C31 (1) C32 (1) σv1 (1) σv2 (1) σv3 (1)
C3V: Г(z)
(1)
NH3分子不同基函数的表示
• 以Z轴为主轴。
问题: 1.如果以(x,y,z)为基基函数,表示矩阵又怎样? 2.如果不以Z轴为主轴,表示矩阵有怎样?
点群及分子的对称性69页PPT

▪
26、要使备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
69
点群及分子的对称性
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
2分子对称性和群论初步

点群表示 点群示例
C
nv
= E ,C ,C n
2 n
,
…
,C
n 1 n
1 v
,s
,s
2 v
,
…
,s
n v
C2 v
C2 H 2Cl2
C3 v
NH 3
C v
CO
C3v
3). Cnh群
群中含有一个Cn轴,还有一个垂直于Cn轴σh面
点群示例
C 2h
C4 H 6
S8
2.5 假轴向群 Sn群
Sn:有一个n重象转轴,须考虑n的奇偶性。n为偶数时, 群中有n个元素,n为奇数时,Sn不独立存在。 只有S4是独立的点群。例如:1,3,5,7-四甲基环辛四烯, 有一个S4映转轴,没有其它独立对称元素。
S2 S4
2.6 六方群
1). Td群
若一个四面体骨架的分子,存在4个C3轴,3个C2轴,同时每 个C2轴还处在两个互相垂直的平面sd的交线上,这两个平面还 平分另外2个C2轴(共有6个这样的平面)则该分子属Td对称性。 对称操作为{E,3C2,8C3,6S4,6sd}共有24阶。 四 面 体 CH4 、 CCl4 对 称 性 属 Td 群 , 一 些 含 氧 酸 根 SO42- 、 PO43-等亦是。在CH4分子中,每个C-H键方向存在1个C3轴,2 个氢原子连线中点与中心C原子间是C2轴,还有6个sd平面。
s Z 2
Y x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4 3 旋转90◦ 2 4 3
1
2
1
2
1
反映
4 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O+ h (垂直C4)
C8H8
(12) O, Oh点群 Oh点群{3C4, 4C3, 6C2(对边中点),3h(赤道面), 6d(对顶 角), i} C3 阶次为48
O+ h (垂直C4)
Oh点群 SF6 (13) I, Ih点群 Ih点群 {6C5, 10C3, 15C2,15 , i} 阶次为120 I点群 {6C5,10C3, 15C2} 阶次为60
边的对称面(六条边)
C2 C3
T+ d (过C2,平分C3夹角) Td{4C3,3C2, 3S4 , 6d } 阶次为24
Td点群
21
(12) O, Oh点群 O点群 {3C4, 4C3, 6C2}
阶次为24
Oh点群{3C4, 4C3, 6C2(对边中点),3h(赤道面), 6d(对顶 角), i} 阶次为48 C3 C4 Oh点群
1、对称操作
换言之:能不改变物体内部任何两点间距离而使物体复原的操作。
简单对称操作:旋转、反映、反演 2、对称元素
对称操作所依据以进行的旋转轴、镜面和对称中心等几何元素 称为对称元素。
常见对称元素:旋转轴、镜面、对称中心
3
n重对称轴 旋转2π/n Cn
2 NH3 的三重旋转轴 C 3 C 3
8
反轴和旋转反演操作 In (非独立操作) 先旋转2π/n , 再按轴上的中心点进行反演
In 轴: (1)当n为奇数时, Cn +i (2)当n为偶数(非4整数倍) 时, Cn/2+ σh (3)当n为4的整数倍时,为独 立对称元素,且In与Cn/2 同时存在
不含C4和i 含 C2
9
对称操作与对称元素
y
元素相乘符合结合律 :
EC 2 C 2 E C 2 点群中有一恒等操作E : -1 -1 C C C C 每个元素都有其逆元素: 2 2 2 2 E
-1 x z xz
13
2.几种主要分子点群
(1) C1点群 Schoenflies symbol (2) Cn 点群 [除C1外,无任何对称元素 ] 阶次为1 阶次:独立对称操作
4
镜面反映 σ
σv(vertical): σ通过主轴Cn
σh(horizontal): σ垂直于主轴Cn σd(diagonal or dihedral):平分 副轴C2
C6H6分子的镜面 H2O分子的两个镜面
5
反演中心 反演 i
注意i与C2的区别
H
6
n重旋转反映(非真旋转)轴(improper rotation) Sn
非对称化合物
[仅含有一个n次轴 ] 阶次为n
14
几种主要分子点群
(3) Cs点群 仅含有一个镜面
(4) Cnv 点群
阶次为2n
含有一个Cn轴和 n个通过Cn轴对 称面
15
(5) Cnh 点群 含有一个Cn轴和一个垂直于Cn轴的面h,阶次为2n
= C2Dn 点群 一个Cn轴和n个垂直于Cn轴的C2 轴
10
§1.2 分子点群
1.群的定义:
按照一定规律相互联系着的元素(元)的集合。
符合特殊条件的集合 群 G{a,b,c….} 的判据(基本性质):
(a ) 封闭性:若:a G, b G, 则有:ab c, c G (b) 结合律成立:若:a, b, c G, 则有:a(bc) (ab)c
阶次为2n
D3点群
16
(6) Dn 点群
一个Cn轴和n个垂直于Cn轴的C2 轴
阶次为2n
D3点群 C31
17
(7) Dnh 点群
具有一个Cn轴, n个垂直于Cn轴的C2轴 和一个 h
D4h 点群
Dn+h
(8) Dnd 点群 具有一个Cn轴, n个垂直于Cn轴的C2 轴 和n个分角对称面 d 阶次为4n d C
对称元素 对称操作
恒等操作 n重对称轴 旋转2π/n 镜面 反映 反演中心 反演 n重非真旋转轴 先旋转2π/n 或旋转反映轴 再对垂直于旋转轴的 镜面进行反映 反轴 先旋转2π/n 再按中心点反演
对称符号 E(1) Cn(n) σ (m) i (1) Sn
实操作
虚 操 作
In (n)
进行这些操作时,分子中至少有一个点保持不动 ---“点群对称”操作。
水分子为例:C2v 点群
C2v {C2 , yz , xz , E}
C2v 点群乘法表
12
水分子的C2v 点群 例析
z
C2v {C2 , yz , xz , E}
封闭性:
C2 xz yz
x
C2 ( xz yz ) C2C2 E (C2 xz ) yz C yzC yz E C2 ( xz yz ) (C2 xz ) yz
第二章:对称性与分子点群
基本要求:
1、理解对称元素和对称操作 2、能够确定分子所属点群 3、分子对称性和群论在无机化学中的简单 应用 a. 分子对称性与分子极性 b. 分子对称性与旋光性
1
§1.1 对称操作与对称元素
对称:物体的组成部分之间或不同物体之间特征的 对应、等价或相等的关系。
2
分子中的对称操作与对称元素
(c) 存在一个恒等元素(主操作): 若:a G, E G, 则有:aE Ea a, E为恒等元素 (d ) 存在逆元素(逆操作): 若:a G, 则必有:ab ba E
-1 b a a 这里 为 的逆元素,记作: b
11
点群:一个有限分子的对称操作群。
(1)这些对称操作是点操作;操作时分子中至少有一点不动。 (2)操作时全部对称元素至少通过一个公共点;对称元素交汇于空间的一点。
先旋转2π/n , 再对垂直于旋转轴的 镜面进行反映
CH4分子的四重旋转反映轴S4
7
Sn 轴:(1)当n为奇数时,Cn+ σh (2)当n为偶数时,Cn/2+i (3)当n为4的整数倍时,为独立对称元素,且Sn与Cn/2 同时存在 (4) S1=σh, S2= i
(a) S1=σh
(b) S2= i
2
D5d点群
C5
18
(9) Sn 点群
只具有一个Sn轴
阶次为n
S4 点群
19
(10) Ci 点群
阶次为2n
Cni点群
Ci 点群
S2= C1 (i)
20
(11) T,Th, Td点群
T {4C3,3C2} T+ h (垂直C2) Th{4C3,3C2, 3h, i } 阶次为12
阶次为24
d:过一条边且平分另一不相接的