菱形的判定证明题 经典

合集下载

全等菱形的判定精选练习题(分专题)

全等菱形的判定精选练习题(分专题)

全等菱形的判定精选练习题(分专题)题目1: 判定全等菱形的条件判定以下四边形为全等菱形的条件是什么?在图纸上标出所有已知等长和等角的边和角。

![题目1图](题目1图.png)两个条件需要满足才能判定一个四边形为全等菱形:1. 所有四条边的长度相等。

2. 所有角度都是直角(90度)。

题目2: 证明全等菱形已知图中的四边形 ABCD 是一个全等菱形,现在请你证明它是全等菱形。

![题目2图](题目2图.png)证明方法如下:1. 根据已知信息,可以得出 AB = AD 和∠ABC = ∠ADC。

2. 因为ABCD是一个菱形,所以 AB = BC,AD = DC。

3. 根据等长和等角的性质,我们可以得出∠BAC = ∠ACD。

4. 综上所述,根据SSS和ASA全等定理,可以证明四边形ABCD 是全等菱形。

题目3: 判定对角线平分全等菱形的条件判定以下四边形为对角线平分全等菱形的条件是什么?在图纸上标出所有已知等长和等角的边和角。

![题目3图](题目3图.png)两个条件需要满足才能判定一个四边形为对角线平分全等菱形:1. 对角线 AC 和 BD 的长度相等。

2. 对角线 AC 和 BD 互相垂直且平分彼此。

题目4: 证明对角线平分全等菱形已知图中的四边形 ABCD 是一个对角线平分全等菱形,现在请你证明它是对角线平分全等菱形。

![题目4图](题目4图.png)证明方法如下:1. 根据已知信息,可以得出 AC = BD。

2. 因为 ABCD 是一个菱形,所以 AD = BC。

3. 设交点为 E,连接 BE 和 DE。

4. 因为 AC = BD,且对角线互相垂直且平分彼此,所以 AE = CE,BE = DE。

5. 综上所述,根据 SSS和ASA全等定理,可以证明四边形ABCD 是对角线平分全等菱形。

题目5: 判定已知两角和边长的全等菱形判定以下四边形为全等菱形的条件是什么?在图纸上标出所有已知等长和等角的边和角。

菱形的判定

菱形的判定

菱形的判定证明题练习1如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.2 已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.3如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形?请证明你的结论.4如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP . 求证:(1)∠E=∠F .(2)□ABCD 是菱形.AB C D E A D G CBFEDC BAOE5. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF △≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.6. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF .(1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.7. 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.8. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为AB 中点.求证:四边形BCDE 是菱形.F DE CAB∥,∥.9. 如图,矩形ABCD的对角线相交于点O,DE CA AE BD(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE 是_____________.Array 10. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.。

菱形的性质及判定知识点及典型例题

菱形的性质及判定知识点及典型例题

菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2 .菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以咼,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4 .三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质和判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质, 同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条 件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措, 教师在教学过程 中 应给予足够重视。

在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 【例3】 如图2,一活动菱形衣架中,菱形的边长均为 1 __________ 度.16cm 若墙上钉子间的距离 AB BC 16cm ,则【例4】 如图,在菱形 ABCD 中, A 60 , E 、 的边长是 __________________ •F 分别是AB 、AD 的中点,若 EF 2,则菱形ABCD【例5】 如图, 证明:E 是菱形ABCD 的边AD 的中点, AB 与EF 互相平分.EF AC 于H ,交CB 的延长线于 F ,交AB 于P ,【例6】 所示,菱形 ABCD 中,对角线 AC 、BD 相交于点O , H 为AD 边中点,菱形 ABCD 的周如图1 长为24,则OH 的长等于DAD图【例7】如图,已知菱形ABCD的对角线AC 8cm , BD 4cm , DE BC于点E,则DE的长为【例8】菱形周长为52cm,一条对角线长为10cm,则其面积为 __________________【例9】菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为__________________________【例11】如图3,在菱形ABCD中, A 110,E、F分别是边AB和BC的中点, EP CD于点P,则【例10】如图2,在菱形ABCD 中,AC 6, BD 8,则菱形的边长为()A . 5B . 10C . 6D . 8A __________________ DB 图2 CFPC ()C. 50D. 55PC 【例12】如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60的菱形,剪口与折痕所成的角的度数应为()A.15 或30 B . 30 或45 C . 45 或60 D . 30 或60菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ,AF CD ,那么 EAF 等于已知菱形的一个内角为 60,一条对角线的长为 2 3,则另一条对角线的长为已知菱形ABCD 的两条对角线 AC,BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的 大小是如图,菱形花坛 ABCD 的周长为20m , ABC 60 , ?沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.如图,在菱形 ABCD 中,AB 4a ,E 在BC 上,BE 2a , BAD 120 ,P 点在BD 上,则PE PC的最小值为 ___________【例13】 【例14】【例15】如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚 线)剪下,再打开,得到的菱形的面积为( 2A. 10cm 2B. 20cm)2C. 40cm【例16】 【例17】 【例18】 D. 80cmAOC图2B如图,在 ABC 中,BD 平分 ABC , BD 的中垂线交 AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形如图,在 ABC 中,AB AC , D 是BC 的中点,连结AD ,在AD 的延长线上取一点 E ,连结BE , CE •当AE 与AD满足什么数量关系时,四边形 ABEC 是菱形?并说明理由.【例19】 已知,菱形ABCD 中,E 、 【例20】 已知,菱形ABCD 中,E 、 CEF 的度数.板块二、 【例21】 菱形的判定如图,如果要使平行四边形是 ____________ .F 分别是BC 、CD 上的点,若 AE AF EF AB ,求 C 的度数.F 分别是BC 、CD 上的点,且 B EAF 60 , BAE 18 .求:ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件【例22】 【例23】 DA【例24】已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F . 求证:四边形AFCE 是菱形•【例25】如图,在梯形纸片ABCD中,AD//BC,AD CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C E.求证:四边形CDC E是菱形.【例26】如图,E是菱形ABCD的边AD的中点,EF AC于H,交CB的延长线于F,交AB于P,证明:AB与EF互相平分【例27】已知:如图,在平行四边形ABCD中,AE是BC边上的高,将ABE沿BC方向平移,使点E与点C重合,得GFC •若 B 60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【例28】如图,在ABC中,AB AC ,M是BC的中点.分别作MD AB于D , ME AC于E , DF AC 于F , EG AB于G .DF、EG相交于点P •求证:四边形DMEP是菱形.【例30】如图,M 是矩形ABCD 内的任意一点,将 MAB 沿AD 方向平移,使 AB 与DC 重合,点M 移动 到点M '的位置⑴画出平移后的三角形;⑵连结MD , MC , MM ',试说明四边形 MDM 'C 的对角线互相垂直,且长度分别等于 AB, AD 的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形 MDM 'C 是菱形?为什么?【例31】如图, ACD 、 ABE 、 BCF 均为直线BC 同侧的等边三角形•已知 AB AC .⑴顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件. ⑵ 当 BAC 为 ___________ 度时,四边形 ADFE 为正方形.三、与菱形相关的几何综合题【例32】已知等腰△ ABC 中,AB AC , AD 平分 BAC 交BC 于D 点,在线段AD 上任取一点P ( A 点 除外),过 P 点作EF II AB ,分别交 AC 、BC 于E 、F 点,作PM II AC ,交AB 于M 点,连【例29】如图, 于F ,ABC 中, ACB 90 , AD 是 DE AB 于E ,求证:四边形BAC 的平分线,交BC 于D , CH 是AB 边上的高,交AD CDEF 是菱形.M'A结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形 AEPM 的面积为四边形 EFBM 面积的一半?【例33】问题:如图1在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一条直线上, P 是线段DF 的中点,连结PG ,PC •若 ABC BEF 60,探究PG 与PC 的位置关系及匹的值. PC小聪同学的思路是:延长 GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题: ⑴ 写出上面问题中线段 PG 与PC 的位置关系及 空的值;PC⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边 AB 在同一条直线上,原问题中的其他条件不变(如图 2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明. ⑶若图1中 ABC BEF 20 90,将菱形BEFG 绕点B 顺时针旋转任意角度, 原问四、中位线与平行四边形【例34】顺次连结面积为 20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一 个 ,其面积为 .【例35】如图,在四边形 ABCD 中,AB CD , E 、F 、G 、H 分别是 AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形 ABCD 还满足的一个条件是 ___________________________________ ,并说明理由.题中的其他条件不变,求匹的值(用含的式子表示)PCFD【例36】在四边形ABCD中,AB CD , P , Q分别是AD、BC的中点,M , N分别是对角线AC , BD 中点,证明:PQ与MN互相垂直.【例37】四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD 上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关【例38】如图,ABC中,AD是BAC的平分线,CE AD于E , M为BC的中点,AB 14cm ,AC 10cm,贝U ME的长为 ________________ .【例39】如图,四边形ABCD中,AB CD , E, F分别是BC, AD的中点,连结EF并延长,分别交BA, CD 的延长线于点G, H,求证:BGE CHEH【例40】如图,已知BE 、CF 分别为 ABC 中 B 、 证:MN // BC .【例41】如图,四边形ABCD 中,E ,F 分别是边 AB , CD 的中点,贝U AD , BC 和EF 的关系是()A. AD BC 2EF B . AD BC > 2EF C. AD BC 2EFD. AD BC < 2EFF C.【例42】已知如图所示,行四边形.E 、F 、G 、H 分别是四边形 ABCD 的四边的中点,求证:四边形 EFGH 是平DC 厶FAEB【例43】如图,在四边形 ABCD 中,E 为AB 上一点, ADE 和 BCE 都是等边三角形, AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且 PQ PN .C 的平分线,AMBE 于 M , AN CF 于 N ,求AD【例44】如图,四边形 ABCD 中,AB CD ,E ,F ,G ,H 分别是 AD , BC , BD , AC 的中点,求证:EF , GH相互垂直平分1【例46】在平行四边形ABCD 的对角线BD 上取一点E ,使BE -DE ,连接AE 并延长与DC 的延长线交3于 F ,贝V CF 2AB .【例45】 ABC 的三条中线分别为AD II EH .AD 、BE 、CF , H 为BC 边外一点,且 BHCF 为平行四边形,求证:CQC图D【例47】如图,ABC中,E、F分别是AB、BC的中点,G、H是AC的三等分点,连结并延长EG、ADFH 交于点D •求证:四边形 ABCD 是平行四边形.【例49】如图,线段AB, CD 相交于点0,且AB CD ,连结AD , BC , E , F 分别是AD , BC 的中点,EF分别交AB ,CD 于M ,N ,求证:OM ON如图,梯形ABCD 中,AD // BC, AB CD ,对角线AC , BD 相交于点 分别是OA,OB, CD 的中点,求证: EFG是等边三角形【例51】如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.【例48】如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC , BD 和AC 相交于点0 ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF .【例50】BCBL D【例52】如图,0是平行四边形ABCD内任意一点,E, F, G, H分别是OA, OB, OC, OD的中点.若DE , CF 交于P , DG , AF 交于 Q , AH , BG 交于R, BE , CH 交于S,求证:PQ SR.AENO FH。

菱形的性质和判定经典试题综合训练(含解析)

菱形的性质和判定经典试题综合训练(含解析)

菱形的性质和判定经典试题综合训练(含解析)一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.757.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.412.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣114.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.27.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(2)若∠ADB=30°,BD=6,求AD的长.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(2)若AF=8,CF=6,求四边形BDFG的面积.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.菱形的性质和判定经典试题综合训练参考答案与试题解析一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故选:B.5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.75【分析】连AP,由菱形ABCD的周长为16,根据了菱形的性质得AB=AD=4,并且S菱形ABCD=2S△ABD,则S△=×12=6,由于S△ABD=S△APB+S△APD,再根据三角形的面积公式得到•PE•AB+•PF•AD=6,即可得到ABDPE+PF的值.【解答】解:连AP,如图,∵菱形ABCD的周长为16,∴AB=AD=4,∴S菱形ABCD=2S△ABD,∴S△ABD=×12=6,而S△ABD=S△APB+S△APD,PE⊥AB,PF⊥AD,∴•PE•AB+•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3.故选B.7.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm【分析】作出图形,根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO=AC,BO=DO=BD,然后根据菱形的面积等于对角线乘积的一半列式整理可得AO•BO=60,根据菱形的周长求出AB=13,再利用勾股定理可得AO2+BO2=169,然后利用完全平方公式整理并求出AO+BO,再求解即可.【解答】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC,BO=DO=BD,∵菱形的面积为120cm2,∴AC•BD=120,即×2AO•2BO=120,所以,AO•BO=60,∵菱形的周长为52cm,∴AB=13cm,在Rt△AOB中,由勾股定理得,AO2+BO2=AB2=132=169,所以,(AO+BO)2=AO2+2AO•BO+BO2=169+60×2=289,所以,AO+BO=17,所以,AC+BD=2(AO+BO)=2×17=34cm.故选D.8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm【分析】通过解直角三角形ADE得到边AD的长度,然后由菱形的周长公式进行解答.【解答】解:在菱形ABCD中,AD=CD.∵E为CD的中点,AE⊥CD,∴ED=CD=AD,∴∠DAE=30°,∵AE=cm,∴AD===2(cm),∴菱形ABCD的周长=4AD=8cm.故选:D.9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据菱形的性质、平行线的性质、平行四边形的判定和性质等知识一一判断即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,AB=AD,∠ABC=2∠ABD,∵AE∥BD,∴AE⊥AC,∴∠EAC=90°,故①正确,∵AB∥DE,AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∠E=∠ABD,∴AD=DE,故②正确,∴∠ABC=2∠E,故③正确,故选D.10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°【分析】根据等边三角形性质得出BD=AB,BE=BC,∠DBA=∠EBC=60°,求出∠DBE,证△DBE≌△ABC,推出DE=AC=AF,同理AD=EF得出平行四边形ADEF,根据菱形的判定判断即可.【解答】解:∵△ABD和△BCE是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°,∴∠DBE=∠CBA=60°﹣∠EBA,在△DBE和△ABC中,,∴△DBE≌△ABC(SAS),∴DE=AC,∵△AFC是等边三角形,∴AF=AC,∴AF=DE,同理AD=EF,∴四边形ADEF是平行四边形,当AB=AC时,∵AD=AB,AC=AF,∴AD=AF,∴四边形ADEF是菱形,故选A.11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.12.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣1【分析】A、由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出A正确;B、由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG=,求出AC,AG,即可得出B正确;C、由勾股定理求出DF=,由GE=tan∠2•ED求出GE,即可得出C正确;D、由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出D不正确.【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.14.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.【解答】解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确,由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t的值.【解答】解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为4cm.【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是①②③④(只填写序号)【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件AC=BD.【分析】添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于 2.5.【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【解答】解:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD=12.5,∵分别作P点到直线AB、AD的垂线段PE、PF,∴×AB×PE+×PF×AD=12.5,∴×10(PE+PF)=12.5,∴PE+PF=2.5.故答案为:2.5.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.【分析】作BM⊥FG于M,交EC于N,如图,根据菱形的性质得BC=CD=3,CG=GF=4,AB∥CE∥GF,∠ABC=∠BCD=∠CGF=120°,则∠BCN=∠BGM=60°,再根据含30度的直角三角形三边的关系,在Rt△BCN中可计算出BN=CN=,在Rt△BMG中可计算出BM=GM=,则MN=BM﹣BN=﹣=2,然后根据三角形面积公式和梯形面积公式,利用S阴影部分=S△BCD+S梯形CDFG﹣S△BGF进行计算即可.另一种解法为把阴影部分的面积转化为△BCD的面积进行计算.【解答】解:连接CF,如图,∵四边形ABCD和四边形CGFE为菱形,∠A=120°,∴∠DBC=∠FCG=30°,∴BD∥CF,∴S△FDB=S△CDB=S菱形ABCD=•2••32=.故答案为.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足AB=CD条件时,四边形EFGH是菱形.【分析】首先利用三角形的中位线定理证出EF∥AB,EF=AB,HG∥AB,HG=AB,可得四边形EFGH是平行四边形,再根据邻边相等的平行四边形是菱形,添加条件AB=CD后,证明EF=EH即可.【解答】解:需添加条件AB=CD.∵E,F是AD,DB中点,∴EF∥AB,EF=AB,∵H,G是AC,BC中点,∴HG∥AB,HG=AB,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵E,H是AD,AC中点,∴EH=CD,∵AB=CD,∴EF=EH,∴四边形EFGH是菱形.故答案为:AB=CD.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为2.【分析】根据正方形的判定定理得到BQ=BP时,四边形QPBP′为正方形进行解答即可.【解答】解:由题意得,当△BPQ为等腰直角三角形时,四边形QPBP′为正方形,则BQ=BP,即6﹣t=×t,解得t=2.故答案为:2.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形;【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA∴AF=DF,∴四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB 、DF .根据菱形四边相等得出AB=AD=FA ,再利用SAS 证明△BAD ≌△FAD ,得出DB=DF ,那么D 在线段BF 的垂直平分线上,又AB=AF ,即A 在线段BF 的垂直平分线上,进而证明AD ⊥BF ;(2)设AD ⊥BF 于H ,作DG ⊥BC 于G ,证明DG=CD .在直角△CDG 中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA ,AD=DE=EF=FA .在△BAD 与△FAD 中,,∴△BAD ≌△FAD ,∴DB=DF ,∴D 在线段BF 的垂直平分线上, ∵AB=AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG=BH=BF .∵BF=BC ,BC=CD ,∴DG=CD .在直角△CDG 中,∵∠CGD=90°,DG=CD ,∴∠C=30°,∵BC ∥AD ,∴∠ADC=180°﹣∠C=150°.27.如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求证:四边形ABFE 是菱形.【分析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全等.(2)根据对角相等的四边形是平行四边形,可证得四边形ABFE 是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS).(2)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.【分析】(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中.∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形;(2)若AF=8,CF=6,求四边形BDFG的面积.【分析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可证明四边形BDFG是菱形;(2)首先过点B作BH⊥AG于点H,由AF=8,CF=6,可利用勾股定理求得AC的长,即可求得DF的长,然后由菱形的性质求得BG=GF=DF=5,再求出EF的长即可解决问题.【解答】证明:(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形,(2)∵AF=8,CF=6,CF⊥AG,∴AC==10,∴DF=AC=5,∵四边形BDFG是菱形,∴BD=GF=DF=5,∵DE∥AG,CD=AD,∴CE=EF=3∴S菱形BDFG=GF•EF=15.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE ≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】(1)证明:连接AC,如下图所示,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变,△CEF的面积发生变化.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.答:最大值是.。

菱形的判定证明题(5篇)

菱形的判定证明题(5篇)

菱形的判定证明题(5篇)第一篇:菱形的判定证明题菱形的判定证明题练习1如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB 于点E.求证:四边形AECD是菱形.CBAE已知:如图,在ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论. DBEF3如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.4如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F.(2)□ABCD是菱形.BE平分∠ABC交AD于点E,DF平分∠ADC5.如图,在平行四边形ABCD中,交BC于点F.求证:(1)△ABE≌CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.DEABCF6.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.7.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.AOEB8.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点.求证:四边形BCDE是菱形.9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.11.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.k的图像经过点(1,x4),菱形OABC的顶点A在函数的图像上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.12.如图,在平面直角坐标系中,点O为原点,反比例函数y=13.如图,在平行四边形ABCD中,点P是对角线AC上一点,PE⊥AB,PF⊥AD,垂足分别为点E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?F A B C E14.(2011 山东省济宁市)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E 和F.求证:四边形BEDF是菱形.DC F15.(2011 山东省临沂市)如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外角的平分线. F(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.AB E C16.(2011 山东省青岛市)已知:□ABCD中,E、F分别是AB、CD 的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.DEFC第二篇:菱形的判定证明题练习姓名1、如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和F.求证:四边形BEDF是菱形.DFC2.已知:□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.ED F C3、已知:如图,在ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.DBEF4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.5.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;,(2)若∠G=90°求证:四边形DEBF是菱形.(提示:直角三角形斜边上的中线等于斜边的一半)第三篇:菱形的判定证明题练习菱形的判定证明题练习1如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB 于点E.求证:四边形AECD是菱形.CBA E已知:如图,在ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论. DψB EF3如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.4如图,在□ABCD中,EF∥BD,分别交BC、CD于点P、Q,分别交AB、AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F.(2)□ABCD是菱形.5.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于点F.求证:(1)△ABE≌CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.7.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.AEDBFC6.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.求证:四边形BCDE是菱形.AOBE8.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点.9.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是_____________.10.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC 于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.11.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;,(2)若∠G=90°求证:四边形DEBF是菱形.12.如图,在平面直角坐标系中,点O为原点,反比例函数y=k的图像经过点(1,4),菱形xOABC的顶点A在函数的图像上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.13.如图,在平行四边形ABCD中,点P是对角线AC上一点,PE⊥AB,PF⊥AD,垂足分别为点E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?FABCEAC、BD相交于点O,过14.(2011 山东省济宁市)如图,在平行四边形ABCD中,对角线点O作直线EF⊥BD,分别交AD、BC于点E和F.求证:四边形BEDF是菱形.角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.(1)求证:△BEC≌△DFA;DFC15.(2011 山东省临沂市)如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外F ABCE16.(2011 山东省青岛市)已知:□ABCD中,E、F分别是AB、CD 的中点,连接AF、CE.(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.ED FC第四篇:证明题(旋转得到菱形)64363811、平行四边形ABCD中,AB⊥AC,AB=1,BC= 根号5,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形。

菱形--判定

菱形--判定

18.2.2(3)菱形--判定一.【知识要点】二.【经典例题】1.如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为( )A.平行四边形B.矩形C.菱形D.正方形2. 如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.求证:四边形BMDN是菱形.3.是等边三角形,D是射线BC上的一个动点(与点B、C不重合),是以AD 为边的等边三角形,过点E作,交射线AC于点F,连结BE.(1)如图1,当点D在线段BC上运动时。

①求证:;②探究四边形BCFE是怎样的四边形?并说明理由;(2)如图2,当点D在线段BC的延长线上运动时,请直接写出(1)的两个结论是否依然成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由。

ABC∆ADE∆BCEF//ADCAEB∆≅∆三.【题库】【A】1.下列命题正确的()A.对角线相等且互相平分的四边形是菱形;B.对角线相等且互相垂直的四边形是菱形;C.对角线相等且互相平分的四边形是矩形;D.对角线相等的四边形是等腰梯形2.如图所示,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧分别相交于C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是( ).A.矩形 B.菱形C.正方形 D.等腰梯形【B】1.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是: .2.如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC. 若BD= 6,则四边形CODE 的周长是__________.3.已知四边形ABCD 是平行四边形,下列结论不一定正确的是( ).A. AB CD =B. AC BD =C.当AC BD ⊥时,它是菱形D. 当90ABC ∠=时,它是矩形4.如图,四边形ABCD 的对角线互相垂直,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)5.两张全等的矩形纸片ABCD ,AECF 按如图方式交叉叠放在一起,AB =AF ,AE =BC .若AB =2,BC =6,则图中阴影部分的面积为( )A .4B .C .D .66.下面真命题的个数是( )(1)对角线互相垂直且相等的四边形是菱形(2)对角线互相垂直的平行四边形是菱形(3)对角线互相平分且相等的四边形是菱形(4)以一条对角线所在直线为对称轴的平行四边形是菱形A .5个B .4个C .3个D .2个【C】1. 如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B.4.8cm C.4.6cm D.4cm2.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.33.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.C 0G F ED B A【D 】1.(本小题共10分)如图,矩形ABCD 中,AD=2AB ,E 是AD 边上一点,DE=AD (n 为大 于2的整数),连接BE ,作BE 的垂直平分线分别交AD ,BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)(4分)试判断四边形BFEG 的形状,并说明理由;(2)(4分)当AB=a (a 为常数),n=3时,求FG 的长;(3)(2分)记四边形BFEG 的面积为S 1,矩形ABCD 的面积为S 2,当时,求n 的值.(直接写出结果,不必写出解答过程)1n121730S S【E】1.如图,已知直线l∥AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BCA′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为或7.其中正确的是()A. ①②④B. ①③④C. ①②③D. ①②③④2.如图,在四边形ABCD中,AD∥BC,AD=CD,点E在DC的延长线上,AE交BC边于点F,且AE=AB.求证:∠B=∠E.3.在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.。

菱形的判定(含答案)

1一、证明题1. 如图AD FE ∥,点B 、C 在AD 上,12∠=∠,.BF BG =(1) 求证:四边形BCEF 是菱形; [证](2)若.AB BC CD ACF BDE ==,求证:△≌△ [解]2. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F . 求证:(1)ABE CDF △≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.3. 如图,A 、B 、C 三点在同一条直线上,2AB BC =.分别以AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN EC ,. 求证:.FN EC =4. 如图,在正方形ABCD 中,E 是CD 上一点,点F 在CB 的延长线上,且.DE BF = (1)求证:ADE ABF △≌△;(2)问:将ADE △顺时针旋转多少度后与ABF △重合,旋转中心是什么?FEB ACD12FDEC AB ADB CE BBF25. 如图,在正方形ABCD 中,G 是BC 上的任意一点(G 与B C 、两点不重合),E F 、是AG 上的两点(E F 、与A G 、两点都不重合),若AF BF EF =+,12∠=∠,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论.6. 如图,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1 =∠2.(1)求证:四边形ABCD 是矩形;(2)若∠BOC =120°,AB = 4cm ,求四边形ABCD 的面积.2 ABCDEF G 1D37. 如图,在ABC △中,AB AC ,D 为BC 中点.四边形ABDE 是平行四边形. 求证:四边形ADCE 是矩形.8. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 、F 分别为边AB 、AD 的中点,连接EF 、OE 、OF .求证:四边形AEOF 是菱形.9. 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠A F DB E O4CD10. 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)11. 如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o ,且EF 交正方形外角的平分线CF 于点F . (1)证明:∠BAE =∠FEC ; (2)证明:△AGE ≌△ECF ; (3)求△AEF 的面积.12. 如图, 已知四边形ABCD 是菱形, DE ⊥AB ,DF ⊥BC . 求证:△ADE ≌△CDF .A DB E FO C513. 已知梯形ABCD 中,BC AD //,AD AB = (如图所示).BAD ∠的平分线AE 交BC 于点E ,联结DE . (1) 在图中,用尺规作BAD ∠的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形;(2) 若︒=∠60ABC ,BE EC 2=,求证:DC ED ⊥.14. 如图,正方形ABCD 中,E F 、分别是AB BC 、边上的点,且.AE BF =求证.AF DE ⊥15. 如图,将矩形纸片ABCD 沿EF 折叠,使点A 与点C 重合,点D 落在点G 处,EF 为折痕. (1)求证:FGC EBC △≌△;(2)若84AB AD ==,,求四边形ECGF (阴影部分)的面积.A BC D D C F B E A616. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.一、证明题1. (1)证:2.AD FE FEB ∴∠=∠∥,12 1.FEB ∠=∠∴∠=∠,..BF BC BC EF BF EF =∴=∴=,∴四边形BCEF 是平行四边形.BF BC =,∴四边形BCEF 是菱形. (5分) (2)证:EF BC AB BC CD AD FE ===,,∥,∴四边形ABEF 、四边形CDEF 均为平行四边形,AF BE FC ED ∴==,.(8分) 又2AC BC BD ==,.ACF BDE ∴△≌△ (10分)2. 证明:(1)∵四边形ABCD 是平行四边形,∴A C AB CD ABC ADC ∠=∠=∠=∠,,∵BE 平分ABC ∠,DF 平分ADC ∠,∴ABE CDF ∠=∠ 2′ ∴()ABE CDF ASA △≌△4′ (2)由ABE CDF △≌△,得AE CF =5′在平行四边形ABCD 中,AD BC AD BC =∥,7∴DE BF DE BF =∥,∴四边形EBFD 是平行四边形 6′ 若BD EF ⊥,则四边形EBFD 是菱形 8′3. 证明:在正方形ABEF 和正方形BCMN 中,90AB BE EF BC BN FEN EBC ===∠=∠=,,°. (2分) 2AB BC =, .EN BC ∴=(4分) FEN EBC ∴△≌△. (5分).FN EC ∴= (6分)4. (1)证明:在正方形ABCD 中, 90D ABC AD AB ∠=∠==°,, (1分) 90ABF D ABF ∴∠=∴∠=∠°,, (3分) 又DE BF =,4分)ADE ABF ∴△≌△;5分)(2)将ADE △顺时针旋转90度后与ABF △重合, (7分) 旋转中心是A 点.(9分)5. 根据题目条件可判断.DE BF ∥证明如下:∵四边形ABCD 为正方形,∴ 290AB AD BAF ∠+∠==,°. ∵,AF AE EF =+又,AF BF EF =+ ∴AE BF =,∵12,∠=∠∴().ABF DAE SAS △≌△5分∴AFB DEA ∠=∠,BAF ADE ∠=∠. ∴290ADE ∠+∠=°.∴90AED BFA ∠=∠=°. ∴.DE BF ∥ 9分6. (1)∵∠1 =∠2,∴BO=CO 即2 BO=2CO (1分) ∵四边形ABCD 是平行四边形∴ AO=CO ,BO=OD (2分) 即AC=2CO ,BD= 2 BO ∴AC= BD (3分)∵四边形ABCD 是平行四边形 ∴四边形ABCD 是矩形 (4分)(2)在△BOC 中,∠BOC =120°, ∴ ∠1 =∠2 =(180°—120°)÷2 = 30° (5分) ∴在Rt △ABC 中,AC=2AB=2⨯4=8(cm ),D8∴BC=344822=-(cm ) (6分) ∴四边形ABCD 的面积=24)= (7分)7. 证明:四边形ABDE 是平行四边形, AE BC ∴∥,AB DE =,.AE BD = 2分 D 为BC 中点, ∴.CD BD =3分.CD AE CD AE ∴=∥∴四边形ADCE 是平行四边形.5分AB AC =, ∴.AC DE =∴平行四边形ADCE 是矩形.7分8. 证明:点E F 、分别为AB AD 、的中点,1122AE AB AF AD ∴=,=. 2分又四边形ABCD 是菱形, AB AD ∴=. AE AF ∴=.4分又菱形ABCD 的对角线AC 与BD 相交于点O , O ∴为BD 的中点.OE OF ∴、是ABD △的中位线. 6分 OE AD OF AB ∴∥,∥.∴四边形AEOF 是菱形. 10分9. (1)证明:∵四边形ABCD 是正方形∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分 ∴△ABE ≌△ADE ……………………3分 (2)∵△ABE ≌△ADE∴∠BEC =∠DEC =12∠BED …………4分 ∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分 ∴∠EFD =60°+45°=105° …………………………6分10. 证明:(1)∵四边形ABCD 是正方形,AF DBEO9∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF .4分(2)四边形AEMF 是菱形.∵四边形ABCD 是正方形, ∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.8分11. (1)证明:∵∠AEF =90°,∴∠FEC +∠AEB =90°.………………………………………1分 在Rt △ABE 中,∠AEB +∠BAE =90°,∴∠BAE =∠FEC ;……………………………………………3分 (2)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180°-45°=135°. 又∵CF 是∠DCH 的平分线,∴∠ECF =90°+45°=135°.………………………………………4分在△AGE 和△ECF 中,135AG EC AGE ECF GAE FEC =⎧⎪∠=∠=⎨⎪∠=∠⎩,,AD BEF O C10∴△AGE ≌△ECF ; …………………………………………6分 (3)解:由△AGE ≌△ECF ,得AE=EF .又∵∠AEF =90°,∴△AEF 是等腰直角三角形.………………………………7分由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2.…………………………9分12. 证明:在△ADE 和△CDF 中,∵四边形ABCD 是菱形,∴∠A =∠C ,AD =CD .……………………2分又DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =900.……………………4分∴△ADE ≌△CDF . ……………………6分13. (1) 图略(有作图痕迹,且正确).证明:∵AE 为BAD ∠的平分线,∴DAE BAE ∠=∠. 又∵BC AD //,∴AEB DAE ∠=∠.∴AEB BAE ∠=∠.∴BE AB =. ∵AB AD =,∴BE AD =.∵BE AD //,∴四边形ABED 是平行四边形. ∵AB AD =,∴四边形ABED 是菱形.(2)证明:由(1) 知,四边形ABED 是菱形,∴AB DE //,BE DE =. ∴︒=∠=∠60ABC DEC .(方法一)设线段EC 中点为F ,联结DF ,则FC EF =. ∵BE EC 2=,BE DE =.∴FC EF DE ==. ∵︒=∠60DEF ,∴△DEF 为等边三角形.∴︒=∠=∠60EFD EDF ,FC EF DF ==.∴FCD FDC ∠=∠.∴FDC FCD FDC DFE ∠=∠+∠=∠2.∴︒=∠30FDC .∴︒=∠+∠=∠90FDC EDF EDC ,即DC DE ⊥.(方法二)作EC DH ⊥,垂足为H ,则︒=∠30EDH .∴在Rt △DEH 中,ED EH 21=,ED DH 23=. ∵BE DE =,BE EC 2=,∴ED HC 23=.在Rt △DCH 中,3tan ==∠DHHCCDH .∴︒=∠60CDH .∴︒=∠+∠=∠90EDH CDH EDC ,即DC DE ⊥.14. 证明:四边形ABCD 为正方形90DA ABDAE ABF ∴=∠=∠=° 又AE BF =DAE ABF ∴△≌△ADE BAF ∴∠=∠(4分)90ADE AED ∠+∠=°90BAF AED ∴∠+∠=°AF DE ∴⊥ (3分)15. (1)证明:四边形ABCD 是矩形, 90A B BCD D AD BC ∴∠=∠=∠=∠==°,. ······························································ 1分 将矩形纸片ABCD 沿EF 折叠,点A 与点C 重合,点D 落在点G 处,90G D ∴∠=∠=°,90ECG A CG AD ∠=∠==°,, ·················································· 2分 9090G B CG BC ECG BCD ∴∠=∠==∠=∠=°,,°,90GCF BCE FCE ∴∠=∠=∠°-, ·················································································· 3分 FGC EBC ∴△≌△. ·········································································································· 4分(2)解:由(1)得FGC EBC △≌△,EBCF ECGF AEFD S S S ∴==四边形四边形四边形,2ABCD ECGF AEFD EBCF S S S S ∴=+=矩形四边形四边形四边形,11841222ABCD ECGF S S ∴==⨯⨯=矩形四边形. ······································································· 6分16. (1)证明:∵ D 是BC 的中点,∴BD =CD .………………………………1分 ∵CE ∥BF ∴∠DBF=∠DCE . ………………………………………………2分又∵∠BDF=∠CDE , …………………………………………………………3分 ∴△BDF ≌△CDE . ……………………………………………………………4分(2)证明:∵△CDE ≌△BDF ,∴DE =DF .………………………………5分 ∵BD =CD ,∴四边形BFCE 是平行四边形.…………………………………6分 在△ABC 中,∵AB =AC ,BD =CD . ∴AD ⊥BC ,即EF ⊥BC .……………7分 ∴平行四边形BFCE 是菱形. …………………………………………………8分 (另解)∵△CDE ≌△BDF ,∴CE =BF . ……………………………………5分 ∵CE ∥BF ,∴四边形BFCE 是平行四边形.……………………………………6分 ∴BE =CF .在△ABC 中,∵AB =AC ,BD =CD .∴AD ⊥BC ,即AD 垂直平分BC ,∴BE =CE .…………………………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………8分。

2023年中考九年级数学高频考点拔高训练--菱形的证明

2023年中考九年级数学高频考点拔高训练--菱形的证明1.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB.(1)证明:四边形ADCE为菱形;(2)若BC=6,tanB=43,求四边形ADCE的周长.2.已知:如图,四边形ABCD是平行四边形,AE△CF,且分别交对角线BD于点E,F.(1)求证:△AEB△△CFD;(2)连接AF,CE,若△AFE=△CFE,求证:四边形AFCE是菱形.3.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当△B=30°时,试猜想四边形ACEF是什么图形,并说明理由.4.如图,在ΔABC中,BD平分∠ABC交AC于D,作DE//BC交AB于点E,作DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BED=150°,∠C=45°,CD=3√2,求菱形BEDF的周长.5.如图,在平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形.②AE=cm时,四边形CEDF是菱形.6.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF△AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?7.在Rt△ABC中,△BAC=90°,D是BC的中点,E是AD的中点,过点A作AF△BC交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.8.如图,将矩形ABCD沿对角线AC对折,点B的对应点为B′,B′C交AD于E点.AF//CB′交BC于F.(1)求证:四边形AFCE是菱形;(2)若AB=4,BC=8,求EC的长.9.如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(−6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)求点D的坐标;(2)若点N是平面内任一点,在x轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.如图1,在矩形ABCD 中,AB=8,AD=10,E 是CD 边上一点,连接AE,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点 F 处,延长AE 交BC 的延长线于点G.(1)求线段CE的长;(2)如图2,M,N 分别是线段AG,DG 上的动点(与端点不重合),且△DMN=△DAM,设DN=x.①求证四边形AFGD 为菱形;②是否存在这样的点N,使△DMN 是直角三角形?若存在,请求出x 的值;若不存在,请说明理由.11.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.12.综合与探究如图,抛物线y=x2+bx+c的图象经过坐标原点O,且与x轴的另一交点为( −√33,0).(1)求抛物线的解析式;(2)若直线y=√33x+43与抛物线相交于点A和点B(点A在第二象限),设点A′是点A关于原点O的对称点,连接A′B,试判断ΔAA′B的形状,并说明理由;(3)在问题(2)的基础上,探究:平面内是否存在点P,使得以点A,B,A′,P为顶点的四边形是菱形?若存在直接写出点P的坐标;若不存在,请说明理由.13.在平面直角坐标系中,直线y=−3x−52交x轴于点A,交y轴于点B,直线y=−34x+3交x轴于点C,交y轴于点D.(1)如图1,连接BC,求△BCD的面积;(2)如图2,在直线y=−34x+3上存在点E,使得∠ABE=45°,求点E的坐标;(3)如图3,在(2)的条件下,连接OE,过点E作CD的垂线交y轴于点F,点P在直线EF上,在平面中存在一点Q,使得以OE为一边,O,E,P,Q为顶点的四边形为菱形,请直接写出点Q的坐标.14.定义:如图(1),E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.(1)动手操作:如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由36个小正方形组成一个大正方形ABCD,点E、F在格点上,请在图(2)中画出四边形ABCD的内接菱形EFGH;(2)特例探索:如图3,矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD的内接菱形,求GC的长度;(3)拓展应用:如图4,平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,①请你在图4中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;②在①的条件下,当BF的长最短时,BC的长为.15.如图,在△ABC中,AB=AC,以AB为直径的△O交BC于D,交AC于E,连接OE,过点D 作DF△AC于F.(1)求证:DF与△O相切;(2)填空:①若△CDF的面积为3,则△CDE的面积为.②当△CDF的度数为时,OE∥BC,此时四边形ODCE的形状是:.16.如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD△y轴,且BD△AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.答案解析部分1.【答案】(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=12AB=AD,∴四边形ADCE为菱形;(2)解:在RtΔABC中,BC=6,tanB=ACBC=43,∴AC=43BC=43×6=8,∴AB=√AC2+BC2=√82+62=10,∴CD=12AB=5,∵四边形ADCE为菱形,∴CD=DA=AE=EC=5,∴菱形ADCE的周长为:5×4=20.2.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AB△DC,AB=DC,∴△1=△2,∵AE△CF,∴△3=△4,在△AEB和△CFD中,{∠3=∠4∠1=∠2 AB=CD,∴△AEB△△CFD(AAS)(2)证明:∵△AEB△△CFD,∴AE=CF,∵AE△CF,∴四边形AFCE是平行四边形.∵△5=△4,△3=△4,∴△5=△3.∴AF=AE.∴四边形AFCE是菱形3.【答案】(1)证明:∵DE垂直平分BC,∴D为BC的中点,ED△BC,又∵AC△BC,∴ED△AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD△AC.∴CE是是△ABC斜边上的中线∴CE=12AB,∵CE=AE=AF.∴△F=△5=△1=△2.∴△FAE=△AEC.∴AF△EC.又∵AF=EC,∴四边形ACEF是平行四边形(2)解:当△B=30°时,四边形ACEF为菱形;理由:∵△ACB=90°,△B=30°,∴AC=12AB,由(1)知CE=12AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形.4.【答案】(1)证明:∵DE//BC,DF//AB,∴四边形BEDF是平行四边形,∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠EDB,∴BE=DE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=BE,∴∠DFB=∠BED=150°,∴∠DFH=180°−∠DFB=30°,∵DH⊥BC,∴∠DHF=∠DHC=90°,∴DH=12DF,∵∠C=45°,∴ΔCDH是等腰直角三角形,∴DH=CH=√22CD=√22×3√2=3,∴DF=2DH=6,∴菱形BEDF的周长=4DF=24.5.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵G是CD的中点,∴GD=GC,∴△GED△ △GFC,∴DE=CF,而DE//CF,∴四边形CEDF是平行四边形(2)4;26.【答案】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE△BC.又∵EF△AB,∴四边形DBFE是平行四边形(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD= 12AB.∵DE是△ABC的中位线,∴DE= 12BC.∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形7.【答案】(1)证明:∵E是AD的中点,∴AE=DE,∵AF△BC,∴△AFE=△DBE,在△AEF和△DEB中,{∠AFE=∠DBE ∠AEF=∠DEBAE=DE,∴△AEF△△DEB(AAS),∴AF=DB,又∵AF△BC,∴四边形ADCF是平行四边形,∵△BAC=90°,D是BC的中点,∴AD=12BC=CD,∴平行四边形ADCF是菱形.(2)解:∵D是BC的中点,∴S△ACD=S△ABD=12S△ABC,∵四边形ADCF是菱形,∴S菱形ADCF=2S△ACD=S△ABC=12AC·AB=12×3×4=6.8.【答案】(1)证明:在矩形ABCD中,∠ADC=90°,AD//BC ∴∠DAC=∠BCA.由题意得:∠BCA=∠B′CA∴∠DAC=∠B′CA,∴EA=EC∵AD//BC,AF//CE,∴四边形AFCE为平行四边形∵EA=EC∴四边形AFCE是菱形.(2)解:如图所示,在矩形ABCD中,∠ADC=∠AB′C′=90°,AD=BC=B′C=8,AB=AB′=4设AE=CE=x,则EB′=(8−x).在Rt△AB′E中,∠AB′E=90°,AB′=4,由勾股定理得:AB′2+B′E2=AE2,即42+(8−x)2=x2,∴x=5.∴EC=5.9.【答案】(1)解:∵四边形ABCO是矩形,点B的坐标是(−6,8).∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,∴BO=√OC2+BC2=10;由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,∴OE=BO−BE=10−6=4,∠OED=90°,设D(0,a),则OD=a,DE=AD=OA−OD=8−a,在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,即(8−a)2+42=a2,解得:a=5,∴D(0,5);(2)解:存在,①OM,OE都为边时,OM=OE=4,∴M的坐标为(4,0),(-4,0)②OM为边OE为对角线时,MN垂直平分OE,垂足为G,如图1则OG= 12OE=2,∵B(−6,8),∴OB的解析式为:y=−43x,设E(x,−43x),M(a,0),∴x2+(43x)2=16, ∴x =−125,x =125 (舍去), ∴E(−125,165),由 OM =EM 可得: (a +125)2+(165)2=a 2,解得: a =−103∴M ( −103,0) ③OM 为对角线,OE 为边,如图2由②得:M ( −245,0) 综上所述:点M 的坐标为 (4,0) 或 (−4,0) 或 (−103,0) 或 (−245,0) ; 10.【答案】(1)解:∵四边形ABCD 是矩形,∴AD =BC =10,AB =CD =8, ∴△B =△BCD =90°,由翻折可知:AD =AF =10.DE =EF ,设CE =x ,则DE =EF =8−x . 在Rt△ABF 中,BF = √AF 2−AB 2=6 , ∴CF =BC−BF =10−6=4,在Rt△EFC 中,则有:(8−x)2=x 2+42, ∴x =3, ∴CE =3.(2)解:①证明:∵四边形ABCD 是矩形, ∴AD△BC ∴△ADE△△GCE ,∴ADGC=DECE,∵AD=10,CE=3,DE=5,∴10GC=53,∴GC=6,由(1)可得:CF=4,∴GF=6+4=10,∴四边形AFGD是平行四边形,又∵AD=AF,∴平行四边形AFGD是菱形.②∵△DMN=△DAM,∴若△DMN 是直角三角形,则有两种情况,当△MDN=90°时,∵AD=GD,∴△DAG=△DGA又∵△ADE=△GDM=90°,∴△ADE△△GDM(ASA)∴DM=DE=5,又∵△DMN=△DAM,△ADE=△MDN=90°,∴△ADE△△MDN∴ADMD=DEDN,即105=5x,∴x=5 2;当△DNM=90°时,则△MDN+△DMN=90°,又∵△DMN=△DAM,△DAG=△DGA,∴△DMN=△DGA,∴△MDN+△DGA=90°,∴△DMG=90°,∵sin△DAE= DEAE=DMAD,∵AE=√AD2+DE2=5√5,∴5√5=DM10,∴DM= 2√5,∵△DMN=△DAM∴sin△DMN=sin△DAM∴DEAE=DNDM,即5√5=2√5解得:x=2,综上所述:x=52或2.11.【答案】(1)证明:∵四边形ABCD是矩形,∴AD△BC,∴△AEF=△EFC,由折叠的性质,可得:△AEF=△CEF,AE=CE,AF=CF,∴△EFC=△CEF,∴CF=CE,∴AF=CF=CE=AE,∴四边形AFCE为菱形(2)a、b、c三者之间的数量关系式为:a2=b2+c2.理由:由折叠的性质,得:CE=AE,∵四边形ABCD是矩形,∴△D=90°,∵AE=a,ED=b,DC=c,∴CE=AE=a,在Rt△DCE中,CE2=CD2+DE2,∴a、b、c三者之间的数量关系式为:a2=b2+c212.【答案】(1)解:∵抛物线y=x2+bx+c的图象经过点(0,0)和( −√33,0),∴{c=01 3−√33b+c=0,解得:{b=√3 3c=0;∴y=x2+√33x.(2)解:ΔAA′B是等边三角形;∵{y=x2+√33xy=√33x+43,解得:{x1=2√33y1=2,{x2=−2√33y2=23,∴A( −2√33,23),B( 2√33,2),过点A分别作AC△ x轴,AD△A′B,垂足分别为C,D,∴AC= 23,OC=2√33,在RtΔAOC中OA= √AC2+OC2=43,∵点A′与点A关于原点对称,∴A′( 2√33,−23),AA′= 83,∵B( 2√33,2),∴A′B=2-(- 23)=83,又∵A( −2√33,23),B( 2√33,2),∴AD= 4√33,BD= 43,在RtΔABD中AB= √AD2+BD2=83,∴AA′=A′B=AB,∴ΔAA′B是等边三角形(3)解:存在正确的点P ,且以点A 、B 、A′、P 为顶点的菱形分三种情况; 设点P 的坐标为:(x ,y ).①当A′B 为对角线时,有 {x −2√33=2√33×2y =23, 解得: {x =2√3y =23, ∴点P 为: (2√3,23) ;②当AB 为对角线时,有 {x =−2√33y −23=23+2, 解得: {x =−2√33y =103, ∴点P 为: (−2√33,103) ;③当AA′为对角线时,有 {x =−2√33y +2=23−23 , 解得: {x =−2√33y =−2, ∴点P 为: (−2√33,−2) ;综合上述, P 1(−2√33,103) , P 2(−2√33,−2) , P 3(2√3,23)13.【答案】解:对于直线 y =−3x −52 ,令 x =0 ,则 y =−52 ,故点 B(0,−52) ;对于 y =−34x +3 ,令 x =0 ,则 y =3 ,令 y =0 ,即 −34x +3=0 ,解得: x =4 ,故点 D(0,3) 、 (4,0) ,则 BD =3+52=112,CC =4 , ΔBCD 的面积 =12×BD ×OC =12×112×4=11 ; (2) 如图2,在直线 y =−34x +3 上存在点E ,使得 ∠ABE =45° ,求点E 的坐标;解:过点E 作 BE 的垂线交 AB 于点R ,过点E 作y 轴的平行线交过点R 与x 轴的平行线于点G ,交过点B 与x 轴的平行线于点H ,设点 E(m,−34m +3) ,点 R(n,−3n −52) ,∵∠ABE =45° ,故 ER =EB ,∵∠REG +∠BEH =90° , ∠BEH +∠EBH =90° , ∴∠REG =∠EBH ,∵∠EHB =∠RGE =90° , EB =ER , ∴ΔEHB ≅ΔRGE(AAS) , ∴RG =EH , BH =GE ,即 m =−3n −52+34m −3 , −34m +3+52=m −n ,解得 {m =2n =−2,故点 E(2,32) ;(3) 如图3,在 (2) 的条件下,连接 OE ,过点 E 作 CD 的垂线交y 轴于点F ,点P 在直线 EF 上,在平面中存在一点Q ,使得以 OE 为一边, O ,E ,P ,Q 为顶点的四边形为菱形,请直接写出点Q 的坐标.(6,173) 或 (625 , −15175) 或 (32 , 2) 或(−32 , −2) (1)解:对于直线 y =−3x −52 ,令 x =0 ,则 y =−52 ,故点 B(0,−52) ;对于 y =−34x +3 ,令 x =0 ,则 y =3 ,令 y =0 ,即 −34x +3=0 ,解得: x =4 ,故点D(0,3)、(4,0),则BD=3+52=112,CC=4,ΔBCD的面积=12×BD×OC=12×112×4=11;(2)解:过点E作BE的垂线交AB于点R,过点E作y轴的平行线交过点R与x轴的平行线于点G,交过点B与x轴的平行线于点H,设点E(m,−34m+3),点R(n,−3n−52),∵∠ABE=45°,故ER=EB,∵∠REG+∠BEH=90°,∠BEH+∠EBH=90°,∴∠REG=∠EBH,∵∠EHB=∠RGE=90°,EB=ER,∴ΔEHB≅ΔRGE(AAS),∴RG=EH,BH=GE,即m=−3n−52+34m−3,−34m+3+52=m−n,解得{m=2n=−2,故点E(2,3 2);(3)(6,173)或(625,−15175)或(32,2)或(−32,−2)14.【答案】(1)解:如图2所示,菱形EFGH即为所求;(2)解:如图3,连接HF,∵四边形ABCD是矩形,∴∠D=∠B=90°,AD//BC,AB=CD=5,∴∠DHF=∠HFB,∵四边形EFGH是菱形,∴GH=EF,GH//EF,∴∠GHF=∠HFE,∴∠DHF−∠GHF=∠BFH−∠HFE,即∠DHG=∠BFE,∴ΔDHG≅ΔBFE(AAS)∴DG=BE=2,∴CG=CD−DG=5−2=3;(3)解:①如图4所示,由(2)知:ΔDHG≅ΔBFE,∴DG=BE=2,作法:作DG= 2,连接EG,再作EG的垂直平分线,交AD、BC于H、F,得四边形EFGH即为所求作的内接菱形EFGH;②1+√615.【答案】(1)证明:∵AB=AC,∴△ABC=△C,连接OD,∵OB =OD ,∴△ABC =△ODB ,∴△ODB =△C ,∴OD ∥AC ,∵DF△AC ,∴OD△DF ,∴DF 与△O 相切;(2)6;30;菱形16.【答案】(1)①当x=4时, y =4x=1 ∴点B 的坐标是(4,1)当y=2时,由得 y =4x得x=2 ∴点A 的坐标是(2,2)设直线AB 的函数表达式为 y =kx +b∴{2k +b =24k +b =1 解得 {k =−12b =3∴直线AB 的函数表达式为 y =−12x +3 ②四边形ABCD 为菱形,理由如下:如图,由①得点B (4,1),点D (4,5)∵点P 为线段BD 的中点∴点P 的坐标为(4,3)当y=3时,由 y =4x 得 x =43 ,由 y =20x 得 x =203, ∴PA= 4−43=83,PC= 203−4=83 ∴PA=PC而PB=PD ∴四边形ABCD 为平行四边形又∵BD△AC∴四边形ABCD 是菱形(2)四边形ABCD 能成为正方形当四边形ABCD 时正方形时,PA=PB=PC=PD (设为t ,t≠0),当x=4时, y =m x =m 4∴点B 的坐标是(4, m 4 )则点A 的坐标是(4-t , m 4+t )∴(4−t)(m 4+t)=m ,化简得t= 4−m 4∴点D 的纵坐标为 m 4+2t =m 4+2(4−m 4)=8−m 4则点D 的坐标为(4, 8−m 4 )所以 4×(8−m 4)=n ,整理得m+n=32。

经典特殊的菱形证明题

经典特殊的菱形证明题
问题描述
给定一个菱形,我们要证明:菱形的对角线互相垂直。

证明过程
首先,设菱形的四个顶点为A、B、C和D。

由于菱形的定义,四边相等且两两相交于90度角。

我们先证明线段AC和线段BD相等,即证明ABCD是一个菱形。

假设ABCD是一个菱形,则有以下两个等式成立:
AB = BC (菱形的定义)
AC ⊥ BD (菱形的性质)
接下来,我们可以利用勾股定理进行证明。

根据勾股定理,直
角三角形的对角线满足以下关系:
AC^2 + BD^2 = AB^2
由于AB = BC,我们可以将AB代入上式,得到:
AC^2 + BD^2 = BC^2
由菱形的定义可知,BC = CD,代入上式得到:
AC^2 + BD^2 = CD^2
我们再次利用勾股定理,将另一个直角三角形的对角线代入上式:
AD^2 + BD^2 = CD^2
由于AD = AC,代入上式得到:
AC^2 + BD^2 = AD^2 + BD^2
化简后可得:
AC^2 = AD^2
通过化简发现,AC = AD,即菱形的对角线AC和BD相等。

由于两条对角线互相垂直的定义是:两条线段交于一个直角,则我
们可以得出结论:经典特殊的菱形证明题中,菱形的对角线互相垂直。

总结
经典特殊的菱形证明题是一种富有挑战性和创造性的数学问题。

通过运用勾股定理和菱形的性质,我们可以证明菱形的对角线互相
垂直。

这个证明过程展示了数学中的推理和逻辑思维,让我们更好
地理解了菱形的性质和特点。

菱形的判定证明题 经典

菱形的判定经典习题 1.如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.2.已知:在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.3.如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形?请证明你的结论.4.如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP .求证:(1)∠E=∠F .(2)□ABCD 是菱形.5. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF △≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.6. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF .(1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.7. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为AB 中点. 求证:四边形BCDE 是菱形.8. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE . A B C D E A D G C B F E A B C D E F G H F D E C A B(1)说明四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.9. 如图,在平行四边形ABCD 中,E F 、分别为边AB CD 、的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点.G(1)求证:DE BF ∥;(2)若90G ∠=°,求证:四边形DEBF 是菱形.10.如图,在平行四边形ABCD 中,点P 是对角线AC 上一点,PE ⊥AB ,PF ⊥AD ,垂足分别为点E 、F ,且PE =PF ,平行四边形ABCD 是菱形吗?为什么?11. (济宁) 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF BD ⊥,分别交AD 、BC 于点E 和F .求证:四边形BEDF 是菱形.12. (临沂) 如图,ABC △中,AB AC =,AD 、CD 分别是ABC △两个外角的平分线.(1)求证:AC AD =;(2)若60B ∠=°,求证:四边形ABCD 是菱形.13. (青岛) 已知:□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DF A ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论. F D EA CP B A E D C F B O A F E C BA EBC F D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形的判定经典习题
1.如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.
2.已知:在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.
(1)求证:BE DG =;
(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形证明你的结论.
3.如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形请证明你的结论.
4.如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP .
求证:(1)∠E=∠F .
(2)□ABCD 是菱形.
5. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .
求证:(1)ABE CDF △≌;
(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.
6. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF .
(1)求证:△BDF ≌△CDE ;
(2)若AB =AC ,求证:四边形BFCE 是菱形.
7. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为AB 中点. 求证:四边形BCDE 是菱形.
8. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且 A B C D E A D G C B F E A B C D E G H F D E C A B
AF =CE =AE .
(1)说明四边形ACEF 是平行四边形;
(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.
9. 如图,在平行四边形ABCD 中,E F 、分别为边AB CD 、的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点.G
(1)求证:DE BF ∥;
(2)若90G ∠=°,
求证:四边形DEBF 是菱形.
10.如图,在平行四边形ABCD 中,点P 是对角线AC 上一点,PE ⊥AB ,PF ⊥AD ,垂足分别为点E 、F ,且PE =PF ,平行四边形ABCD 是菱形吗为什么
11. (济宁) 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF BD ⊥,分别交AD 、BC 于点E 和F .求证:四边形BEDF 是菱形.
12. (临沂) 如图,ABC △中,AB AC =,AD 、CD 分别是ABC △两个外角的平分线.
(1)求证:AC AD =;
(2)若60B ∠=°,求证:四边形ABCD 是菱形.
13. (青岛) 已知:□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .
(1)求证:△BEC ≌△DFA ;
(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形并证明你的结论. F D E
A C
P B A E D C F B O A F E C B
A E
B
C F D。

相关文档
最新文档