基本射频及网络知识
射频和无线电的知识点总结

射频和无线电的知识点总结一、基本概念1. 射频信号:射频信号是指频率在几十千赫兹到几千兆赫兹之间的电磁波信号,是一种无线通信中常用的信号类型。
射频信号可以通过调制解调技术传输数据和声音等信息。
2. 无线电信号:无线电信号是指通过无线电波传播的电信号,在通信、广播、遥控等方面有着广泛的应用。
无线电信号可以分为射频信号和微波信号两种类型。
3. 射频技术:射频技术是指在射频范围内进行信号处理和传输的技术,包括调制解调、频谱分析、功率放大等方面。
4. 无线电技术:无线电技术涉及到无线电信号的发射、接收、解调、解调等方面,是现代通信领域中的重要组成部分。
二、常用技术1. 调制解调技术:调制技术是指将数字信号或模拟信号转换成适合无线传输的射频信号的过程,而解调技术则是指将这些射频信号还原成原始信号的过程。
2. 天线设计:天线是用来发送和接收射频信号的设备,天线的设计可以影响信号的发送和接收效果,包括指向性天线、全向天线、定向天线等多种类型。
3. 频谱分析:频谱分析是对射频信号进行频率分析和功率分析的过程,用来确定信号的频率、占用带宽和信号强度等参数。
4. 功率放大:功率放大是指通过将信号经过放大器放大来增加信号的功率,常用于提高信号的传输距离和覆盖范围。
5. 射频链路设计:射频链路设计涉及到传输介质、信号传输距离、覆盖范围、抗干扰能力等多个方面,是无线通信系统设计中重要的一环。
6. 无线电频谱管理:无线电频谱管理是指对无线电频谱的合理规划、分配和监管,以确保不同无线设备之间的信号不干扰以及频谱资源的有效利用。
三、应用1. 无线通信系统:无线通信系统是利用无线电波进行通信的系统,包括蜂窝网络、无线局域网、蓝牙、Zigbee等多种技术。
2. 无线电广播:无线电广播是利用无线电波进行广播传输的技术,包括调频广播、中波广播、短波广播等多种广播方式。
3. 无线电遥控:无线电遥控是通过无线电信号控制设备或机器的技术,包括无人机、遥控车、遥控船等多种应用场景。
Wi-Fi射频测试技术

OFDM(正交频分复用)
正交频分复用技术OFDM是一种多载波发射技术,它将可用频谱划分为 许多载波,每一个载波都用低速率数据流进行调制。它获取高数据传输率的 诀窍就是,把高速数据信息分开为几个交替的、并行的BIT流,分别调制到 多个分离的子载频上,从而使信道频谱被分到几个独立的、非选择的频率子 信道上,在AP与无线网卡之间进行传送,实现高频谱利用率。
MCS
空间流
调制方式
0
1
CCK
1
1
CCK
2
1
PBCC
3
1
PBCC
4
1
OFDM
5
1
OFDM
6
1
OFDM
7
1
OFDM
8
1
OFDM
9
1
OFDM
10
1
OFDM
11
1
OFDM
编码率
传输速率 5.5 11 22 33 6 9 12 18 24 36 48 54
备注 b/g b/g b/g b/g g g g g g g g g
定义了推荐方法和公用接入点协议,使得接入点之间能够交换需要的信息,以支持分 布式服务系统,保证不同生产厂商的接入点的互联性,例如支持漫游。
2003年推出,工作在2.4GHz ISM频段,组合了802.11b和802.11a标准的优点,在兼容 802.11b标准的同时,采用OFDM调制方式,速率可高达54Mbps。
射频基础知识

1、射频RF (Radio Frequency )是指频率较高,可用于发射无线电频率,一般常指几十到几百兆赫的频段,即VHF-UHF 频段。
2、由传输系统引导向一定方向传输的电磁波称为导行波。
3、传输线的几何长度(l )与其上传输电信号的波长(λ)之比l /λ ,称为传输线的相对长度或者叫电长度。
只要线的几何长度l 与其传输电信号的波长λ可以比拟时(通常为十分之一左右或以上),即可视为长线4、)。
(相应公式dB .1-V 1V lg 20R L += RL= -20log Γ VSWR=min max V V =Γ-Γ+11 5、确定移动通信工作频段可从以下几方面来考虑:①电波传播特性;②环境噪声及干扰的影响;③服务区范围、地形和障碍物影响以及建筑物的渗透性能;④设备小型化;⑤与已经开发的频段的干扰协调和兼容性;⑥用户需求及应用的特点。
1.8GHz 频段安排如下:1710~1725MHz 移动台发 1805~1820MHz 基站发(共15MHz ) 1745~1755MHz 移动台发1840~1850MHz 基站发(共10MHz )1710~1785MHz 移动台发1805~1880MHz 基站发6、“多址”(Multi Access )是指在多信道共用系统中,终端用户选择通信对象的传输方式,在陆地蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN 码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division )多址”、“时分(Time Division )多址”和“码分(Code Division )多址”。
简称FDMA, TDMA 和CDMA.7、Pt (dBm )=10lg 1mW W )(m Pt8、No= KT B (W ) No (dBw )=-174 dBm + 10lgB (G121,C114)9、当编码器每20ms 取样一次,线性预测声域分析抽头为8时,输出260bit ,此时编码速率为260/20=13Kbits/s ,即为全速率信道。
《射频技术基础》课件

军事领域:雷达、电子对抗、通信等
射频技术的发展历程
19世纪末,无线 电技术的诞生
20世纪初,无线 电技术的快速发展
20世纪中叶,射 频技术的广泛应用
21世纪初,射频 技术的创新与突破
03 射频技术基础知识
电磁波基础知识
电磁波:由电场和磁场相互激发产生的波
无线传感器网络中的射频技术
射频技术在无线传感器网 络中的应用
射频技术的特点和优势
射频技术的应用场景和案 例
射频技术在无线传感器网 络中的挑战和问题
物联网中的射频技术
射频识别 (RFID): 用于物品识别
和追踪
无线传感器网 络(WSN): 用于环境监测
和数据采集
近场通信 (NFC): 用于移动支付 和身份验证
射频技术在无线通信系统中的应用 实例
添加标题
添加题
添加标题
射频技术在无线通信系统中的发展 趋势
雷达系统中的射频技术
雷达系统:用于探测、跟踪和识别目标 射频技术:在雷达系统中用于发射和接收电磁波 应用实例:雷达系统中的射频技术用于探测、跟踪和识别目标 特点:射频技术在雷达系统中具有高精度、远距离、全天候等优点
调制:将信息信号转换为射 频信号的过程
解调方式:幅度解调、频率 解调、相位解调等
调制解调器的作用:实现射 频信号的调制和解调
射频信号的传输与接收:通 过天线进行传输和接收
射频信号的发射与接收
射频信号的发射:通过天线 将信号发射到空气中
射频信号的产生:通过振荡 器产生高频信号
射频信号的接收:通过天线 接收信号,并通过滤波器、
滤波器的类型:包括低通滤 波器、高通滤波器、带通滤 波器等
射频基础知识资料课件

WiFi技术利用了射频技术中的无线局域网技术,通过无线方式连接设备到互联网。
工作流程
WiFi路由器通过无线方式与设备建立连接,设备通过浏览器或特定的应用程序向路由器发送请求。路由器将请求 发送到互联网上的目标服务器,服务器响应并将数据返回到路由器,再由路由器将数据发送到设备。
案例三:GPS定位原理及关键技术特点
射频信号可用于治疗某些疾病,如肿瘤、 心血管疾病等,也可用于医学影像和生理 信号采集。
02
射频基础知识
射频电路基础
01
02
03
射频电路组成
射频电路主要由天线、射 频前端、射频芯片和电源 管理模块等组成。
射频电路设计原则
射频电路设计需要遵循稳 定性、高效性、一致性和 可靠性等原则。
射频电路优化方法
射频技术的数字化和智能化
随着数字化和智能化技术的不断发展,射频技术也需要适 应数字化和智能化的趋势,实现更高效、更灵活、更智能 的无线通信。
射频技术发展面临的挑战
01 02
传输损耗和干扰问题
随着无线通信技术的发展,射频信号需要传输更远的距离,同时需要处 理更多的干扰问题,如何提高传输效率和抗干扰能力是射频技术面临的 重要挑战。
射频基础知识资料课件
目录
• 射频基础概念 • 射频基础知识 • 射频技术原理 • 射频技术应用 • 射频技术发展趋势与挑战 • 射频技术应用案例
01
射频基础概念
射频定义
01
射频(Radio Frequency,RF) 定义为一种电磁波,其频率在一 定范围内,常用的单位是赫兹( Hz)。
02
射频信号是指通过调制或其他方 式加载了信息的电磁波,常用于 无线通信和传输数据。
射频基础知识及其主要指标

对于G网,B = 200KHz,10lgB=53dBHz,No = -121dBm
Comba Telecom Systems
干扰协调
最大干扰容限
通常,码分系统的接收灵敏度可表示为:
SV
KT dBmHZ
10lgBdBHZ
NRdB
G
dB
P
EbdB
N0
KT:热噪声底噪-174dBm/Hz
B: 通道带宽(Hz)
为满足第三代(3G)蜂窝移动通信技术和业务发展的需求, 中国于2002年对3G系统使用的频谱作出了如下规划: ①第三代公众蜂窝移动通信系统的主要工作频段: 频分双工(FDD)方式:1920~1980 MHz / 2110~2170 MHz;
时分双工(TDD)方式:1880~1920MHz、2010~2025 MHz。
Comba Telecom Systems
3G与2G共存干扰协调
Comba Telecom Systems
32. 无线电干扰定义和分类(1)
无线电干扰是指发生在无线电频谱内的干扰。接收机收到无用信号时会导致有用信号的
接收质量下降,出现信息差错或丢失,甚至会阻断通信,这就是通常所说的无线电干扰。无
=E+20lgλ-11.6(dBμv)
对于其它接收天线,只需增加其相对于
半波偶极天线的增益Gr即可
即:A=E+20lgλ-11.6+Gr
~
半波偶 极天线
匹配网络
50Ω
接收机
Comba Telecom Systems
电场强度、电压及功率电平的换算
例如:对于900MHz频段,波长为0.33m,当采用半波偶 极天线时,输入电压A与接收场强E之间的关系为:
Comba Telecom Systems
射频基础知识培训课件知识
相位噪声 相位噪声是用来衡量本振等单音信号频谱纯度的壹个指标,在时域表现为信号过零点的抖动.理想的单音信号,在频域应为壹脉冲,而实际的单音总有壹定的频谱宽度,如下面所示.壹般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声.相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比.
无线通信使用的频段和波段
表1-1 无线通信使用的电磁波的频率范围和波段(续)
由于种种原因,在壹些欧、美、日等西方国家常常把部分微波 波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体 如表1 - 2所示.
无线通信使用的频段和波段
表 1-2 无线通信中所使用的部分微波波段的名称
第壹章 无线通信的基本概念
第壹节 概述 第二节 无线通信使用的频段和波段 第三节 无线通信的电磁波传播
无线通信的电磁波传输
无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波.理论研究表明,这壹波段的电磁波沿陆地表面和海水中传播的衰耗极小.
线性相关概念
信号在通过射频通道(这里所谓的射频通道是指射频收发信机通道,不包括空间段衰落信道)时会有壹定程度的失真,失真可以分为线性失真和非线性失真.产生线性失真的主要有壹些滤波器等无源器件,产生非线性失真的主要有壹些放(大)器、混频器等有源器件.另外射频通道还会有壹些加性噪声和乘性噪声的引入.
线性相关概念
第二章 射频常用计算单位简介
第壹节 功率单位简介 第二节 天线传播相关单位简介 第三节 其他
天线传播相关单位简介
天线和天线增益 天线增益壹般由dBi或dBd表示.dBi是指天线相对于无方向天线的功率能量密度之比,dBd是指相对于半波振子Dipole 的功率能量密度之比,半波振子的增益为2.15dBi,因此0dBd=2.15dBi.
射频基础知识资料(最新整理)
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB 表示射频信号的功率常用dBm 、dBW 表示,它与mW 、W 的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W ,利用dBm 表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
射频基础知识培训
射频基础知识培训一、射频概述射频(Radio Frequency,简称RF)是指无线电频率范围内的电磁波信号。
射频技术在现代通信、无线电、雷达等领域起着重要作用。
本次培训将介绍射频的基础知识,包括射频信号的特性、射频电路设计及射频测量。
二、射频信号的特性1. 频率范围:射频信号的频率范围通常指300kHz至300GHz之间的频段。
这一频率范围被广泛应用于无线通信和雷达系统中。
2. 带宽:射频信号的带宽是指在频率上的范围,用于传输信息。
带宽越宽,信号传输的速率越高。
3. 衰减:射频信号在传输过程中会发生衰减,衰减的程度与信号传播距离、传输介质等因素有关。
为了保持信号的质量,需要采取衰减补偿措施。
三、射频电路设计1. 射频放大器设计:射频放大器用于增强射频信号的强度。
设计射频放大器需要考虑电源电压、功率放大系数、频率响应等因素。
2. 射频滤波器设计:射频滤波器用于去除非期望频率范围内的干扰信号。
设计射频滤波器需要考虑信号带宽、截止频率、滤波器类型等因素。
3. 射频混频器设计:射频混频器用于将不同频率的信号进行混合,产生新的频率信号。
设计射频混频器需要考虑输入信号频率、混频器类型、频率转换效率等因素。
四、射频测量1. 射频功率测量:射频功率测量用于确定射频信号的功率水平。
常用的测量仪器包括射频功率计和射频功率传感器。
2. 射频频谱分析:射频频谱分析用于分析射频信号在频率上的变化情况。
常用的仪器包括射频频谱分析仪和扫频仪。
3. 射频网络分析:射频网络分析用于测量射频电路的传输特性(如反射系数、传输系数等)。
常用的仪器包括网络分析仪和隔离器。
五、总结通过本次射频基础知识培训,我们了解了射频信号的特性、射频电路设计和射频测量等内容。
掌握这些基础知识对于从事射频相关工作或研究具有重要意义。
我们将进一步深入学习射频技术并应用于实际项目中,提升我们的专业能力和水平。
(以上文字仅供参考,具体内容可根据实际情况进行添加或修改)。
射频基础知识知识讲解
射频基础知识知识讲解第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本射频、光纤及网络知识汇编
A、射频知识:
功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm
注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式: 电平(dBm)=10lg
5W →10lg5000=37dBm
10W →10lg10000=40dBm
20W →10lg20000=43dBm
从上不难看出,功率每增加一倍,电平值增加3dBm
增益(dB):即放大倍数,单位可表示为分贝(dB)。
即:dB=10lgA(A为功率放大倍数)
插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。
阻抗匹配:使系统反射系数为零,即无反射时称为匹配。
相应传输线有两种状态:1、无反射状态(行波)2、全反射状态(驻波)3、行驻波 驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR) 附:驻波比——回波损耗对照表:
SWR 1.2 1.25 1.30 1.35 1.40 1.50
回波损耗
(dB)
21 19 17.6 16.6 15.6 14.0
三阶交调:若存在两个正弦信号ω
1和ω
2
由于非线性作用将产生许多互调分
量,其中的2ω
1-ω
2
和2ω
2
-ω
1
两个频率分量称为三阶交调分量,其功率(mw)
1(mw)
功率P
3和信号ω
1
或ω
2
的功率之比称三阶交调系数M
3。
即M
3 =10lg P
3
/P
1
(dBc)
噪声系数:指电路噪声恶化程度,一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。
单位用dB。
耦合度:耦合端口与输入端口的功率比, 单位用dB。
隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。
天线增益(dBi):指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线的最大辐射方向上的场强E与理想多向同性天线均匀辐射场
场强E
0相比,以功率密度增加的倍数定义为增益。
Ga=E2/ E
2
天线方向图:就是天线辐射出的电磁波在自由空间存在的范围。
方向图宽度一般是指主瓣宽度即从最大值下降一半时两点所张的夹角。
E面方向图指与电场平行的平面内辐射方向图;
H面方向图指与磁场平行的平面内辐射方向图。
一般是方向图越宽,增益越低;方向图越窄,增益越高。
天线前后比:指最大正向增益与最大反向增益之比,用分贝表示。
所谓天线的极化:就是指天线辐射时形成的电场强度方向。
当电场强度
方向垂直于地面时,此电波就称为垂直极化波;在移动通信系统中,一般均
采用垂直极化的传播方式。
另外,随着新技术的发展,又出现了一种双极化天线
单工:亦称单频单工制,即收发使用同一频率,由于接收和发送使用同一个频率,所以收发不能同时进行,称为单工。
双工:亦称异频双工制,即收发使用两个不同频率,任何一方在发话的同时
都能收到对方的讲话。
12 1 2 2 1
单工、双工都属于移动通信的工作方式。
B、射频器件知识:
放大器:(am plifier)用以实现信号放大的电路。
滤波器:(filter)通过有用频率信号抑制无用频率信号的部件或设备
衰减器:(attenuator)在相当宽的频段范围内一种相移为零、其衰减和特性阻抗均为与频率无关的常数的、由电阻元件组成的四端网络,其主要用途是调
整电路中信号大小、改善阻抗匹配。
功分器:进行功率分配的器件。
有二、三、四….功分器;接头类型分N头(50Ω)、SMA头(50Ω)、和F头(75Ω)三种,我们公司常用的是N头
和SMA头。
耦合器:从主干通道中提取出部分信号的器件。
按耦合度大小分为5、10、15、20….dB不同规格;从基站提取信号可用大功率耦合器(300W),其
耦合度可从60~65dB中选用;耦合器的接头多采用N头。
负 载:终端在某一电路(如放大器)或电器输出端口,接收电功率的元/器件、部件或装置统称为负载。
对负载最基本的要求是阻抗匹配和所能
承受的功率。
环形器:使信号单方向传输的器件.
转接头:把不同类型的传输线连接在一起的装置。
馈 线:是传输高频电流的传输线。
天 线:(antenna)是将高频电流或波导形式的能量变换成电磁波并向规定方向发射出去或把来自一定方向的电磁波还原为高频电流的一种设备。
C、光纤知识:
光功率:衡量光信号的大小,可用光功率计直接测试,常用dBm表示
光端机:主要由光发送机和光接收机组成,功能是将要传送的电信号及时、准确的变成光信号并输入进光纤中进行传播(光发送机);在接收端
再把光信号及时、准确的恢复再现成原来的电信号(光接收机)。
由
于通信是双向的,所以光端机同时完成电/光(E/O)和光/电(O/E)
转换。
激光器:把电信号转换为光信号,用在光发射机中,主要指标是能够发出的光功率的大小。
光接收器:把光信号转换为电信号,用在光接收机中,主要指标是接收灵敏度。
光耦合器:光耦合是表示有源的或无源的或有源与无源光学器件之间的一种光的联系。
联系形式多种:光的通道,光功率的积聚与分配,不同
波长光的合波与分波,以及光的转换和转移等。
能实现光的这种联
系的器件称为光耦合器。
波分复用器:光分波器或光合波器统称光复用器,它能将多个载波进行分波或合波,使光纤通信的容量成倍的提高。
目前采用1310nm/1550nm
波分复用器较多,它可将波长为1310nm和1550nm的光信号进行合
路和分路。
光衰减器:就是在光信息传输过程中对光功率进行预定量的光衰减的器件。
按衰减值分3、5、10、20dB五种,根据实际需要选用。
光法兰头:光法兰头又称光纤连接器。
实现两根光纤连接的器件,目前公司
采用的有FC型和SC型两种活动连接器,既可以连接也可以分离。
光 纤:传输光信号的光导纤维,分多模光纤、单模光纤两大类。
光纤材料是玻璃芯/玻璃层,多模光纤的标准工作波长为850/1310nm,单模光
纤的标准工作波长为1310/1550nm,衰减常数为:
光 缆:由若干根光纤组成,加有护套及外护层和加强构件,具有较强的机械性能和防护性能。
种类有室外光缆、室内光缆、软光缆、设备内光缆、
海底光缆、特种光缆等。
尾 纤:一端带有光纤连接器的单芯光缆。
跳 线:两端都装有连接器的单芯光缆。
D、网络知识
移动通信:指利用无线信道进行移动体之间或移动体与固定体之间的相互通信。
通信网的三个基本要素是:终端、传输系统和交换系统。
模拟通信网(频分制):终端、传输和交换系统都是以模拟方式实现的通信网。
数字通信网(时分制):终端、传输和交换系统都是以数字方式实现的通信网。
CDMA:码分多址数字移动通信。
利用不同编码的方法实现多址通信。
TDMA:时分多址数字移动通信。
利用时间分割的方法实现多址通信。
目前我公司研制生产的GSM900/1800MHz直放站即属于TDMA系统。
信道:传输信号的通道。
基站(BS):又称无线基地站/基地站。
是一套为无线小区(通常是一个全向
或三个扇形小区)服务的设备。
基站在呼叫处理过程中处于主导地位,呼叫处理过程包括三个主要内容:1、在控制信道中对移动台的控制,
提供系统参数常用信息;2、对移动台入网提供支持;3、在话音信道
中对移动台加以控制。
直放站:同频双向放大的中继站,又称同频中继器,传输方式是透明传输。
功能是接收和转发基站与移动台之间的信号。
微蜂窝:用正六边形无线小区(又称蜂窝小区)邻接构成的整个通信面状服务区的形状很象蜂窝,故形象地称为蜂窝状网(Cellular System),
也称为蜂窝移动通信网。
不同网络及上、下行频段的划分:
GSM和DCS系统即泛欧数字蜂窝移动通信系统,是蜂窝移动通信系统的第二代。
其工作频段分为:
GSM系统 上行:890~915MHz; 下行:935~960MHz
DCS系统 上行:1710~1785MHz;下行:1805~1880MHz
移动:1710-1725,1805-1820(移动将扩到1710-1735,1805-1830)
联通:1745-1755,1840-1850
1805载频号为512
f(上行)=1710.2M+(n-512)*0.2M
f(下行)= f(上行)+95M
自由空间衰减的计算公式;
空间衰减(dB)=32.45+20LgD +20Lgf (D的单位:Km; f的单位:MHz)
空间距离增加一倍,空间衰减增加6dB
载频--载频号计算方法:
载频938.6MHz的信号,其载频号为18。
计算方法:(938.6-935)/0.2=18 载频号为75的信号, 其下行载频为950MHz。
计算方法935+75×0.2=950 其上行载频为905MHz。
计算方法890+75×0.2=905。