上海市松江、闵行区2018届高三下学期质量监控(二模)数学试题 Word版含解析

合集下载

上海市松江区2018届高三下学期质量监控(二模)数学试卷

上海市松江区2018届高三下学期质量监控(二模)数学试卷
闵行区、松江区 2017-2018 学年第二学期高三年级质 量调研考试 数学试卷
注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 3. .考试结束后保留试卷方便讲解,只交答卷 一、填空题 (本大题共有 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~ 12 题每题 5 分 )考
.
n n an
7.已知向量 a 、 b 的夹角为 60 , a 1 , b 2 ,若 (a 2b) ( xa b) ,则实数 x 的值

.
8.若球的表面积为 100 ,平面


与球心的距离为 3 ,则平面
截球所得的圆面面积
x 9.若平面区域的点 ( x, y) 满足不等式
k
y 1 ( k 0) ,且 z x y 的最小值为 5,则
.
12.设 n N* , an 为 ( x 4)n ( x 1)n 的展开式的各项系数之和,
3 c t 2,t R,
4
bn
a1
5
2a2 52
nan 5n
( x 表示不 超过实数 x 的 最大 整数 ) . 则
(n t) 2 (bn c)2 的最小值为
.
二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.考生 应在答题纸的相应位置,将代表正确选项的小方格涂黑.
13.“ x y 0 ”是“ x 0 且 y 0 ”成立的 (
).
(A)充分非必要条件 (C)充要条件
(B)必要非充分条件 (D)既非充分也非必要条件
14.如图,点 A、B、C 分别在空间直角坐标系 O xyz 的三条坐标轴上, OC (0, 0, 2) ,

复数练习题(有答案)

复数练习题(有答案)

复数学校:___________姓名:___________班级:___________考号:___________1.复数21−i (i 为虚数单位)的共轭复数是A . 1+iB . 1−iC . −1+iD . −1−i2.已知a ∈R,i 是虚数单位.若z =a +√3i ,z ·z =4,则a =( )A . 1或-1B . √7或-√7C . -√3D . √33.已知复数1z i =+(i 为虚数单位)给出下列命题:①z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A . 0B . 1C . 2D . 34.(2018兰州模拟)若复数z 满足(3−4i )z =4+3i ,则|z |=( )A . 5B . 4C . 3D . 15.(2018北京大兴区一模)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i 的点是( )A . EB . FC . GD . H6.(2018江西省景德镇联考)若复数z =a−2i 2在复平面内对应的点在直线x +y =0上,则|z |=( )A . 2B . √2C . 1D . 2√27.(福建省三明市2018届高三下学期质量检查测试)已知复数a +bi =(1−i )21+i (i 是虚数单位,a,b ∈R ),则a +b =( )A . −2B . −1C . 0D . 28.(山东K 12联盟2018届高三开年迎春考试)若复数z = 1 + i + i 2 + i 3 +⋯+ i 2018 +|3−4i |3−4i ,则z 的共轭复数z̅的虚部为 A . −15 B . −95C.95D.−95i9.(上海市徐汇区2018届高三一模)在复平面内,复数5+4ii(i为虚数单位)对应的点的坐标为_____10.(上海市松江、闵行区2018届高三下学期质量监控(二模))设m∈R,若复数(1+ mi )(1+i )在复平面内对应的点位于实轴上,则m=______.11.(2018届浙江省杭州市第二中学6月热身)若复数z满足(1−2i)⋅z=3+i(i为虚数单位),则z=__________;|z|=__________.12.已知z=(a+i)2,(a∈R),i是虚数单位.(1)若z为纯虚数,求a的值;(2)若复数z在复平面上对应的点在第四象限,求实数a的取值范围.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

上海市松江区2018届高三下学期质量监控(二模)数学试卷

上海市松江区2018届高三下学期质量监控(二模)数学试卷

闵行区、松江区2017-2018学年第二学期高三年级质量调研考试 数 学 试 卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上3..考试结束后保留试卷方便讲解,只交答卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a = . 2.若二元一次方程组的增广矩阵是121234c c ⎛⎫⎪⎝⎭,其解为100x y =⎧⎨=⎩,,则12c c += . 3.设m ∈R ,若复数(1i)(1i)m ++在复平面内对应的点位于实轴上,则m = . 4.定义在R 上的函数()21xf x =-的反函数为1()y fx -=,则1(3)f -= .5.直线l 的参数方程为112x t y t =+⎧⎨=-+⎩,(t 为参数),则l 的一个法向量为 .6.已知数列{}n a ,其通项公式为31n a n =+,*n ∈N ,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅ .7.已知向量a 、b 的夹角为60,1a =,2b =,若(2)()a b xa b +⊥-,则实数x 的值为 .8.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 .9.若平面区域的点(,)x y 满足不等式14x yk +≤(0)k >,且z x y =+的最小值为5-,则常数k = .10.若函数2()l o g (1)a f x x a x =-+(01)a a >≠且没有最小值,则a 的取值范围是 .11.设{}1234,,,1,0,2x x x x ∈-,那么满足123424x x x x ≤+++≤的所有有序数组1234(,,,)x x x x 的组数为 .12.设*n ∈N ,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([]x 表示不超过实数x 的最大整数).则22()()n n t b c -++的最小值为 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.“0x y =”是“00x y ==且”成立的 ( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件14.如图,点A B C 、、分别在空间直角坐标系O xyz -的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ= ( ).(A )43 (B (C )23 (D )23- 15.已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是 ( ).(A )若30S >,则20180a > (B )若30S <,则20180a < (C )若21a a >,则20192018a a > (D )若2111a a >,则20192018a a <16.给出下列三个命题:命题1:存在奇函数()f x 1()x D ∈和偶函数g()x 2()x D ∈,使得函数()()f x g x12()x D D ∈是偶函数;命题2:存在函数()f x 、g()x 及区间D ,使得()f x 、g()x 在D 上均是增函数, 但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、g()x (定义域均为D ),使得()f x 、g()x 在0x x =0()x D ∈处均取到最大值,但()()f x g x 在0x x =处取到最小值.AA 1D C BD 1 C 1B 1F•• E那么真命题的个数是 ( ).(A )0 (B )1 (C )2(D )3三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分)如图所示,在棱长为2的正方体 中,分别是的中点.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()cos f x x x ωω=+, (1)当03f π⎛⎫-= ⎪⎝⎭,且1ω<时,求ω的值; (2)在ABC △中,a b c 、、分别是角A B C 、、的对边,a =3b c +=, 当2ω=,()1f A =时,求bc 的值.19.(本题满分14分,第1小题满分8分,第2小题满分6分)某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完.据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t *()t ∈N 天的关系满足:10,110()=10200,1020t t f t t t ≤≤⎧⎨-+<≤⎩,,2()20g t t t =-+(120)t ≤≤,产品A 每件的销售利润为40,115()20,1520t h t t ≤≤⎧=⎨<≤⎩,(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知椭圆Γ:22221(0)x y a b a b+=>>,其左、右焦点分别为12F F 、,上顶点为B ,O为坐标原点,过2F 的直线l 交椭圆Γ于P Q 、两点,1sin 3BFO ∠=. (1)若直线l 垂直于x 轴,求12PF PF 的值;(2)若b =l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F E 、关于直线l 成轴对称?如果存在,求出点E 的坐标;如果不存在,请说明理由;(3)设直线1l:y =M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)无穷数列{}n a *()n ∈N ,若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++中至少有一个等于n a ,则称数列{}n a 具有性质T .集合{}*,n P p p a n ==∈N.(1)若(1)n n a =-, *n ∈N ,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且1481,3,2,{1,2,3}a a a P ====,求20a 的值; (3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足ki i a p =的项,记1k k k b i i +=-*()k ∈N ,证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.参考答案与评分标准一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.2; 2.40; 3.1-; 4.2; 5.(2,1)-不唯一; 6.12; 7.3; 8.16π; 9.5; 10.[)(0,1)2,+∞ 11.45; 12.425.二、选择题(本大题共有4题,满分20分,每题5分)13.B ; 14.C ; 15.D ; 16.D .一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 【解析】2a =2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【解析】12103040c c +=+=3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【解析】虚部为零,101m m +=⇒=-4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 【解析】1213(3)2x f --=⇒=5. 直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【解析】12(1)230y x x y =-+-⇒--=,法向量可以是(2,1)-6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则li m nn nS n a →∞=⋅【解析】2352n n n S +=,1lim 2n n nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为【解析】(2)()0(21)803a b xa b x x x +⋅-=⇒+--=⇒=8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 【解析】5R =,4r =,16S π= 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k = 【解析】数形结合,可知图像||||14x y k +=经过点(5,0)-,∴5k = 10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 【解析】分类讨论,当01a <<时,没有最小值,当1a >时,即210x ax -+≤有解, ∴02a ∆≥⇒≥,综上,(0,1)[2,)a ∈+∞11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【解析】① 1234||||||||2x x x x +++=,有10组;② 1234||||||||3x x x x +++=, 有16组;③ 1234||||||||4x x x x +++=,有19组;综上,共45组 12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++ 的最小值为【解析】52nnn a =-,2[][]155n n n n na n n n ⋅=-=-,22n n n b -=,22()()n n t b c -++的几何意义为点2(,)2n nn -()n ∈*N 到点3(,2)4t t -的距离,由图得,最小值即(2,1)到324y x =- 的距离,为0.4二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【解析】B14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz - 的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A.43B. C. 23 D. 23- 【解析】42cos 233||||OC n OC n θ⋅===⋅⋅,选C15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( ) A. 若30S >,则20180a > B. 若30S <,则20180a < C. 若21a a >,则20192018a a > D. 若2111a a >,则20192018a a < 【解析】A 反例,11a =,22a =-,34a =,则20180a <;B 反例,14a =-,22a =,31a =-,则20180a >;C 反例同B 反例,201920180a a <<;故选D16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3【解析】命题1:()()0f x g x ==,x ∈R ;命题2:()()f x g x x ==,(,0)x ∈-∞; 命题3:2()()f x g x x ==-,x∈R ;均为真命题,选D三、解答题(本大题共有5题,满分76分)17.(本题满分14分,第1小题满分7分,第2小题满分7分)[解](1)因为为正方体,所以FC ⊥平面DEC ,且1FC =,又DEC △的底2DC =,高为E 到DC 的距离等于2,所以12222DEC S =⨯⨯=△,2分 所以112=21333E DFCF DEC DEC V V S FC --=⨯⨯=⨯⨯=△ ………………7分(2)取1B B 中点G ,连接1AG ,EG .由于11//AG D F , 所以1GA E ∠为异面直线1A E 与1D F 所成的角. ………………………9分在1AGE △中,1AG 1A E GE =由余弦定理,得 14cos 5GA E ∠==, ………………12分即14arccos 5GA E ∠=,所以异面直线1A E 与1D F 所成的角为4arccos 5. …14分18.(本题满分14分,第1小题满分6分,第2小题满分8分)[解](1)()cos =2sin 6f x x x x ωωωπ⎛⎫=++⎪⎝⎭由已知,得2sin 036ωππ⎛⎫-+= ⎪⎝⎭, ………………2分 所以36k ωππ-=π-()k ∈Z , ………………4分 即132k ω=-+,又1ω<,所以12ω=. ………………6分(2)因为2ω=,所以()2sin 26f x x π⎛⎫=+⎪⎝⎭, 又因为()1f A =,所以1sin 262A π⎛⎫+= ⎪⎝⎭ ………………8分 而22666A πππ<+<π+,故266A π5π+=,所以3A π= ………………10分 由余弦定理得2221cos 22b c a A bc+-==,即223b c bc +-=,…………12分又3b c +=,解得2bc =. ………………14分19.(本题满分14分,第1小题满分8分,第2小题满分6分)[解](1)22240(30)110()40(10+200)101520(10+200)520t t t F t t t t t t t ⎧⋅-+≤≤⎪=⋅-+<≤⎨⎪⋅-+<≤⎩,,,,,1 ………………8分(2)○1当110t ≤≤时,由240(30)5000t t -+≥解得510t ≤≤;…………10分 ○2当1015t <≤时,由240(10200)5000t t -++≥解得1015t <≤; ……12分 ○3当1520t <≤时,由220(10200)5000t t -++≥,无解. 故第5天至第15天给该公司带来的日销售利润不低于5000元. …………14分 (或:注意到()F t 在[]1,10单调递增,()F t 在(]10,20单调递减且(5)(15)F F =5000=(12分)故第5天至第15天该公司日销售利润不低于5000元.(14分))20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) [解](1)因为1sin BFO ∠=,则b a =,即a =,设椭圆的半焦距为c,则c =, ………………2分在直角12PF F △中,2222121PF F F PF +=,即222224(2)c PF a PF +=-解得22b PF a ==,1PF ∴=,所以125PF PF =. ……………4分(2)由a,b =a =Γ方程为2236x y +=,…6分且2c =,12F F 、的坐标分别为(2,0)(2,0)-、,直线l 的方程为112y x =-,设点E 坐标为11(,)x y ,则由已知可得:1111(2)210211222x y y x +⋅+⋅=⎧⎪⎨-=⋅-⎪⎩,解得1125165x y ⎧=-⎪⎪⎨⎪=-⎪⎩,……8分 而22216772()3()65525-+-=≠,即点E 11(,)x y 不在椭圆Γ上, 所以,椭圆Γ上不存在这样的点E ,使得1F E 、关于直线l 成轴对称. ……10分(3)由a =,得椭圆Γ方程为222330x y b +-=,且c =,2F的坐标为,0),所以可设直线l 的方程为(c o t )x m y b m α==,代入222330x y b +-=得:()22230m y b m y b ++-=因为点M 满足2OP OQ OM +=,所以点M 是线段PQ 的中点设M 的坐标为(),x y '',则y '=122y y += ………………12分因为直线1:l y =M 满足2OP OQ OM +=所以23y m '=-=+0m <,所以36b m m ⎫=-+≥=⎪-⎭,当且仅当3m m-=-,即m =. ………………14分所以当cot m α==min 6b =,此时直线l 的倾斜角56πα=. …………16分21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)[解](1)因为(1)n n a =-,*n ∈N ,{}n a 是由2个不同元素组成的无穷数列,且是周期为2的周期数列,故2t =, ……………………2分{}n a 是周期为2的周期数列,对于任意的正整数n ,2n n a a +=,满足性质T 的条件,故数列{}n a 具有性质T . ……………………4分(2)202a =.由条件可知3t =,考虑8a 后面连续三项91011,,a a a ,若112a ≠,由82a =及T 性质知910,a a 中必有一数等于2,于是1098,,a a a 中有两项为2,故必有1或3不在其中,不妨设为(13)i i =或,考虑17,,a a 中最后一个等于i 的项,则该项的后三项均不等于i ,故不满足性质T 中条件,矛盾,于是112a =. ……………8分同理1417202,2,2a a a ===. ……………………10分 证明:(3)充分性:由数列{}n a 是周期为t 的周期数列,每个周期均包含P 中t 个不同元素.对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,故由周期性得1k k i i t +=+,于是1k k k b i i t +=-=,数列{}k b 为常数列,显然满足性质T . ……12分必要性:取足够大的N 使12,,,N a a a 包含P 中所有t 个互不相同的元素,考虑N a 后的连续t 项12,,,N N N t a a a +++,对于P 中任意元素i p ,必等于12,,,N N N t a a a +++中的某一个,否则考虑12,,,N a a a 中最后一个等于i p 的项,该项不满足性质T 中条件,矛盾.由i p 的任意性知12,,,N N N t a a a +++这t 个元素恰好等于P 中t 个互不相同的元素,再由数列{}n a 性质T 中的条件得11N t N a a +++=,22N t N a a +++=,…. ……15分于是对于P 中的任意元素i p ,存在N ',有1k k k b i i t +=-=()n N '≥,即数列{}*()N k b k '+∈N 为常数列,而数列{}k b 满足性质T ,故{}k b 为常数列,从而{}n a 是周期数列,故数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数.…18分。

2018届上海市高三(二模模拟)检测理科数学试题及答案

2018届上海市高三(二模模拟)检测理科数学试题及答案

2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。

2018年上海市闵行区高考数学二模试卷

2018年上海市闵行区高考数学二模试卷

2018年上海市闵行区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 双曲线x 2a −y 29=1(a >0)的渐近线方程为3x ±2y =0,则a =________【答案】2【考点】双曲线的离心率 【解析】根据题意,由双曲线的标准方程可得渐近线方程,结合题意可得3a =32,解可得a 的值. 【解答】 根据题意,双曲线x 2a−y 29=1的焦点在x 轴上,其渐近线方程y =±3a x ,若双曲线的渐近线方程为3x ±2y =0,即y =±32x 则有3a =32,则a =2;2. 若二元一次方程组的增广矩阵是(12c 134c 2),其解为{x =10y =0 ,则c 1+c 2=________【答案】 40【考点】系数矩阵的逆矩阵解方程组 【解析】由题意{c 1=10+2×0=10c 2=3×10+4×0=30 ,由此能求出c 1+c 2的值. 【解答】∵ 二元一次方程组的增广矩阵是(12c 134c 2),其解为{x =10y =0 ,∴ {c 1=10+2×0=10c 2=3×10+4×0=30,∴ c 1+c 2=10+30=40.3. 设m ∈R ,若复数z =(1+mi)(1+i)在复平面内对应的点位于实轴上,则m =________ 【答案】 −1【考点】 复数的运算 【解析】利用复数代数形式的乘法运算化简,再由虚部等于0求解即可得答案. 【解答】∵ 复数z =(1+mi)(1+i)=1−m +(1+m)i 在复平面内对应的点位于实轴上, ∴ 1+m =0,即m =−1.4. 定义在R 上的函数f(x)=2x −1的反函数为y =f −1(x),则f −1(3)=________ 【答案】 2【考点】 反函数 【解析】求出函数的解析式,代值计算即可. 【解答】∵ f(x)=2x −1,∴ y =f −1(x)=log 2(x +1), ∴ f −1(3)=2.5. 直线l 的参数方程为{x =1+ty =−1+2t (t 为参数),则l 的一个法向量为________【答案】 (2, −1) 【考点】直线的参数方程 【解析】根据题意,将直线的参数方程变形为普通方程,分析可得直线l 的方向向量,进而由方向向量的定义分析可得答案. 【解答】根据题意,直线l 的参数方程为{x =1+ty =−1+2t ,则直线的普通方程2x −y −3=0, 其一个方向向量为(1, 2), 则其一个法向量为(2, −1);6. 已知数列{a n },其通项公式为a n =3n +1,n ∈N ∗,{a n }的前n 项和为S n ,则limn→∞S nn∗a n=________【答案】 12【考点】数列的求和 数列的极限 【解析】由等差数列的求和公式和极限的运算性质,计算可得所求值. 【解答】数列{a n },其通项公式为a n =3n +1,n ∈N ∗, {a n }的前n 项和为S n , 可得S n =12n(4+3n +1)=3n 2+5n2,则limn→∞S nn∗a n=limn→∞3n 2+5n2n(3n+1)=lim n→∞3+5n 6+2n=3+06+0=12,7. 已知向量a →、b →的夹角为60∘,|a →|=1,|b →|=2,若(a →+2b →)⊥(xa →−b →),则实数x 的值为________ 【答案】 3【考点】平面向量数量积的性质及其运算律 【解析】根据题意,由数量积的计算公式可得a →⋅b →的值,又由向量垂直与向量数量积的关系可得(a →+2b →)⋅(xa →−b →)=xa →2+a →⋅b →+2xa →⋅b →−2b →2=x +(2x −1)−8=0,解可得x的值,即可得答案. 【解答】根据题意,向量a →、b →的夹角为60∘,|a →|=1,|b →|=2,则a →⋅b →=1×2×12=1,若(a →+2b →)⊥(xa →−b →),则(a →+2b →)⋅(xa →−b →)=xa →2−a →⋅b →+2xa →⋅b →−2b →2=x +(2x −1)−8=0, 解可得x =3;8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为________ 【答案】 16π【考点】球的体积和表面积 【解析】先求出球的半径,然后利用球的半径、球心到平面α的距离,平面α截球所得圆面的半径三者满足勾股定理可计算出截面圆的半径,从而求出截面圆的面积. 【解答】设球的半径为R ,球心到平面α的距离为d ,平面α截球所得圆面的半径为r ,则d =3, 由于球的表面积为100π,即4πR 2=100π,则R =5, 由勾股定理可得r =2−d 2=√52−32=4,因此,平面α截球所得圆面的面积为πr 2=π×42=16π,9. 若平面区域的点(x, y)满足不等式|x|k+|y|4≤1(k >0),且z =x +y 的最小值为−5,则常数k =________ 【答案】 5【考点】 简单线性规划 【解析】画出约束条件的可行域,利用目标函数的最小值,转化求解k即可.【解答】平面区域的点(x, y)满足不等式|x|k +|y|4≤1(k>0),可行域如图:可知图象|x|k +|y|4=1(k>0),经过点(−5, 0),目标函数取得最小值,∴k=510. 若函数f(x)=log a(x2−ax+1)(a>0且a≠1)没有最小值,则a的取值范围是________【答案】(0, 1)∪[2, +∞)【考点】对数函数的图象与性质【解析】当0<a<1时,没有最小值,当a>1时,即x2−ax+1≤0有解,△=a2−4≥0,解得a≥2,由此能求出a的取值范围.【解答】函数f(x)=log a(x2−ax+1)(a>0且a≠1)没有最小值,当0<a<1时,没有最小值,当a>1时,即x2−ax+1≤0有解,∴△=a2−4≥0,解得a≥2,综上,a的取值范围是(0, 1)∪[2, +∞).11. 设x1,x2,x3,x4∈{−1, 0, 2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数对(x1, x2, x3, x4)的组数为________【答案】45【考点】分类加法计数原理【解析】根据分类计数原理可得.【解答】①|x1|+|x2|+|x3|+|x4|=2,0+0+0+2=2,有4种,1+0+1+0=2,有6种,故有10组;②:|x1|+|x2|+|x3|+|x4|=3,0+1+1+1=3,有4种,0+1+2+0=3,有C41C31=12种,故有16组;③:|x1|+|x2|+|x3|+|x4|=4,1+1+1+1=4,有1种,0+1+1+2=4,有C41C31=12种,0+0+2+2=4,有12C41C31=6种,故有19组;综上,共45组,12. 设n∈N∗,a n为(x+4)n−(x+1)n的展开式的各项系数之和,c=34t−2,t∈R,b n=[a15]+[2a252]+...+[na n5n]([x]表示不超过实数x的最大整数),则(n−t)2+(b n+c)2的最小值为________ 【答案】425【考点】二项式定理的应用【解析】令x=1可得,a n=5n−2n,[na n5n ]=[n−n∗2n5nbrack=n−1,b n=n2−n2,则(n−t)2+(b n+c)2的几何意义为点(n, n2−n2)(n∈N∗)到点(t, 2−34t)的距离,然后由点到直线的距离公式求解即可得答案.【解答】令x=1可得,a n=5n−2n,[na n5n ]=[n−n∗2n5nbrack=n−1,b n=[a15]+[2a252]+...+[na n5n]=1+2+...+(n−1)=n2−n2,则(n−t)2+(b n+c)2的几何意义为点(n, n2−n2)(n∈N∗)到点(t, 2−34t)的距离的平方,最小值即(2, 1)到y=2−34x的距离d的平方,∵d=√32+42=0.4,∴(n−t)2+(b n+c)2的最小值为425.二.选择题(本大题共4题,每题5分,共20分)“xy=0”是“x=0且y=0”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】根据充分条件和必要条件的定义进行判断即可.【解答】由xy=0得x=0或y=0,即当x=0,y≠0时,也成立,但x=0且y=0不成立,若x=0且y=0,则xy=0成立,即“xy=0”是“x=0且y=0”成立的必要不充分条件,如图,点A、B、C分别在空间直角坐标系O−xyz的三条坐标轴上,OC→=(0, 0, 2),平面ABC的法向量为n→=(2, 1, 2),设二面角C−AB−O的大小为θ,则cosθ=()A.43B.√53C.23D.−23【答案】 C【考点】二面角的平面角及求法 【解析】 利用cosθ=OC →∗n→|OC →|∗|n →|直接求解.【解答】∵ 点A 、B 、C 分别在空间直角坐标系O −xyz 的三条坐标轴上, OC →=(0, 0, 2),平面ABC 的法向量为n →=(2, 1, 2), 二面角C −AB −O 的大小为θ, ∴ cosθ=OC →∗n→|OC →|∗|n →|=42×3=23.已知等比数列{a n }的前n 项和为S n ,则下列判断一定正确的是( ) A.若S 3>0,则a 2018>0 B.若S 3<0,则a 2018<0C.若a 2>a 1,则2019>a 2018D.若1a 2>1a 1,则a 2019<a 2018【答案】 D【考点】等比数列的前n 项和 【解析】A .反例,a 1=1,a 2=−2,a 3=4,即可判断出正误;B .反例,a 1=−4,a 2=2,a 3=−1,即可判断出正误;C .反例同B 反例; 进而判断出D 的正误. 【解答】A .反例,a 1=1,a 2=−2,a 3=4,则a 2008<0;B .反例,a 1=−4,a 2=2,a 3=−1,则a 2008>0;C .反例同B 反例,a 2019<0<a 2018;给出下列三个命题:命题1:存在奇函数f(x)(x ∈D 1)和偶函数g(x)(x ∈D 2),使得函数f(x)g(x)(x ∈D 1∩D 2))是偶函数;命题2:存在函数f(x)、g(x)及区间D ,使得f(x)、g(x)在D 上均是增函数,但f(x)g(x)在D上是减函数;命题3:存在函数f(x)、g(x)(定义域均为D),使得f(x)、g(x)在x=x0(x o∈D)处均取到最大值,但f(x)g(x)在x=x0处取到最小值;那么真命题的个数是()A.0B.1C.2D.3【答案】D【考点】命题的真假判断与应用【解析】根据题意,举例说明命题是否正确即可.【解答】对于命题1,当f(x)=g(x)=0,x∈R时;满足f(x)是奇函数,g(x)是偶函数,且f(x)g(x)是偶函数;对于命题2,当f(x)=g(x)=x,x∈(−∞, 0)时,满足f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;对于命题3:当f(x)=g(x)=−x2,x∈R时,f(x)、g(x)在x=0处均取到最大值,但f(x)g(x)在x=0处取到最小值;综上,命题1,2,3均为真命题.三.解答题(本大题共5题,共14+14+14+16+18=76分)如图所示,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别是AB、CC1的中点.(1)求三棱锥E−DFC的体积;(2)求异面直线A1E与D1F所成的角的大小.【答案】∵在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别是AB、CC1的中点.∴点E到平面DFC的距离d=AD=2S△DFC=12×FC×DC=12×1×2=1,∴三棱锥E−DFC的体积V=13×S△DFC×d=13×1×2=23.取BB1的中点G,连结A1G,EG,则A1G // D1F,∴∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),∵A1G=√A1B12+B1G2=√4+1=√5,A1E=A1G=√5,EG=√BE2+BG2=√1+1=√2,∴cos∠EA1G=A1E2+A1G2−EG22×A1E×A1G =2×5×5=45,∴∠EA1G=arccos45,∴异面直线A1E与D1F所成角为arccos45.【考点】柱体、锥体、台体的体积计算异面直线及其所成的角【解析】(1)点E到平面DFC的距离d=AD=S△DFC=12×FC×DC=12×1×2=1,由此能求出三棱锥E−DFC的体积.(2)取BB1的中点G,连结A1G,EG,则A1G // D1F,从而∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),由此能求出异面直线A1E与D1F所成角.【解答】∵在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别是AB、CC1的中点.∴点E到平面DFC的距离d=AD=2S△DFC=12×FC×DC=12×1×2=1,∴三棱锥E−DFC的体积V=13×S△DFC×d=13×1×2=23.取BB1的中点G,连结A1G,EG,则A1G // D1F,∴∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),∵A1G=√A1B12+B1G2=√4+1=√5,A1E=A1G=√5,EG=√BE2+BG2=√1+1=√2,∴cos∠EA1G=A1E2+A1G2−EG22×A1E×A1G =2×√5×√5=45,∴∠EA1G=arccos45,∴异面直线A1E与D1F所成角为arccos45.已知函数f(x)=√3sinωx+cosωx.(1)当f(−π3)=0,且|ω|<1,求ω的值;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=√3,b+c=3,当ω=2,f(A)=1时,求bc的值.【答案】函数f(x)=√3sinωx+cosωx=2sin(ωx+π6).∵f(−π3)=0,即−πω3+π6=kπ,k∈Z且|ω|<1,∴ω=12.由ω=2,f(A)=1,即2sin(2A+π6)=1∵0<A<π∴A=π3由余弦定理,cosA=b2+c2−a22bc即bc=(b+c)2−bc−a2解得:bc=2.【考点】三角函数中的恒等变换应用正弦函数的图象【解析】(1)利用辅助角公式化简,f(−π3)=0,且|ω|<1,即可求解ω的值;(2)由a=√3,b+c=3,当ω=2,f(A)=1时,利用余弦定理即可求解bc的值.【解答】函数f(x)=√3sinωx+cosωx=2sin(ωx+π6).∵f(−π3)=0,即−πω3+π6=kπ,k∈Z且|ω|<1,∴ω=12.由ω=2,f(A)=1,即2sin(2A+π6)=1∵0<A<π∴A=π3由余弦定理,cosA=b2+c2−a22bc即bc=(b+c)2−bc−a2解得:bc=2.某公司利用APP线上、实体店线下销售产品A,产品A在上市20天内全部售完,据统计,线上日销售量f(t)、线下日销售量g(t)(单位:件)与上市时间t(t∈N∗)天的关系满足:f(t)={10t,1≤t ≤10−10t +200,10<t ≤20 ,g(t)=−t 2+20t(1≤t ≤20),产品A 每件的销售利润为ℎ(t)={40;1≤t ≤1520;15<t ≤20 (单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为F(t),写出F(t)的函数解析式;(2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元? 【答案】F(t)={40(−t 2+30t),1≤t ≤1040(−t 2+10t +200),10<t ≤1520(−t 2+10t +200),15<t ≤20.令F(t)≥5000,①当1≤t ≤10时,40(−t 2+30t)≥5000,解得5≤t ≤25, ∴ 5≤t ≤10.②当10<t ≤15时,40(−t 2+10t +200)≥5000,解得−5≤t ≤15, ∴ 10<t ≤15.③当15<t ≤20时,20(−t 2+10t +200)≥5000,方程无解. 综上,5≤t ≤15.∴ 产品上市的第5天到第15天给公司带来的日销售利润不低于5000元. 【考点】根据实际问题选择函数类型 【解析】(1)根据利润公式和产品销量得出F(t)的解析式; (2)分情况解不等式得出t 的范围. 【解答】F(t)={40(−t 2+30t),1≤t ≤1040(−t 2+10t +200),10<t ≤1520(−t 2+10t +200),15<t ≤20.令F(t)≥5000,①当1≤t ≤10时,40(−t 2+30t)≥5000,解得5≤t ≤25, ∴ 5≤t ≤10.②当10<t ≤15时,40(−t 2+10t +200)≥5000,解得−5≤t ≤15, ∴ 10<t ≤15.③当15<t ≤20时,20(−t 2+10t +200)≥5000,方程无解. 综上,5≤t ≤15.∴ 产品上市的第5天到第15天给公司带来的日销售利润不低于5000元.已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0),其左、右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,过F 2的直线l 交椭圆Γ于P 、Q 两点,sin∠BF 1O =√33. (1)若直线l 垂直于x 轴,求|PF 1||PF 2|的值;(2)若b =√2,直线l 的斜率为12,则椭圆Γ上是否存在一点E ,使得F 1、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →,当b 的取值最小时,求直线l 的倾斜角α. 【答案】∵ sin∠BF 1O =√33,∴ ba =√33,∴ c =√a 2−b 2=√2b ,∴ 直线l 的方程为:x =√2b .把x =√2b 代入椭圆方程可得:2b 23b +y 2b =1,解得y P =√33b ,∴ |PF 2|=√33b ,∴ |PF 1|=√4c 2+(√33b)2=5√33b ,∴ |PF 1||PF 2|=5.b =√2时,椭圆的标准方程为:x 26+y 22=1.c =2.F 2(2, 0),直线l 的方程为:y =12(x −2), 设点关于l 对称点E(m, n),则n2=12(2+m2−2),nm−2×12=−1,解得m =−25,n =−165,即E(−25, −165). 代入椭圆方程:425×6+16225×2≠1,因此点E 不在椭圆上.设l:y =k(x −√2b),(k <0) 代入椭圆的方程可得:x 23b 2+k 2(x−√2b)2b 2=1,化为:(1+3k 2)x 2−6√2k 2bx +6k 2b 2−3b 2=0, ∴ x 1+x 2=6√2k 2b 1+3k 2, ∵ 直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →, ∴ 点M 是线段PQ 的中点.∴ x M =3√2k 2b 1+3k 2,y M =k(3√2k 2b1+3k2−√2b)=√6,解得:b =−√3(1+3k 2)k,∴ x M =−3√6k ,可得M(−3√6k,√6), ∴ b =−√3(1+3k 2)k=−√3k−3√3k ≥6,当且仅当k =−√33时,b 取得最小值6.直线l 的倾斜角α满足:tanα=−√33,α=5π6.【考点】 椭圆的定义【解析】(1)由sin∠BF 1O =√33,可得b a =√33,c =√a 2−b 2=√2b ,可得直线l 的方程为:x =√2b .把x =√2b 代入椭圆方程可得:2b 23b 2+y 2b 2=1,解得y P ,可得|PF 2|,|PF 1|.即可得出|PF 1||PF 2|.(2)b =√2时,椭圆的标准方程为:x 26+y 22=1.c =2.F 2(2, 0),直线l 的方程为:y =12(x −2),设点关于l 对称点E(m, n),则n2=12(2+m 2−2),n m−2×12=−1,解出代入椭圆方程验证即可得出结论.(3)设l:y =k(x −√2b),(k <0).代入椭圆的方程可得:x 23b 2+k 2(x−√2b)2b 2=1,化为:(1+3k 2)x 2−6√2k 2bx +6k 2b 2−3b 2=0,根据直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →,可得点M 是线段PQ 的中点.利用根与系数的关系、中点坐标公式可得:b =−√3(1+3k 2)k,即可得出.【解答】∵ sin∠BF 1O =√33,∴ b a =√33,∴ c =√a 2−b 2=√2b ,∴ 直线l 的方程为:x =√2b .把x =√2b 代入椭圆方程可得:2b 23b2+y 2b 2=1,解得y P =√33b ,∴ |PF 2|=√33b ,∴ |PF 1|=(√33=5√33b ,∴ |PF 1||PF 2|=5.b =√2时,椭圆的标准方程为:x 26+y 22=1.c =2.F 2(2, 0),直线l 的方程为:y =12(x −2), 设点关于l 对称点E(m, n),则n2=12(2+m2−2),n m−2×12=−1,解得m =−25,n =−165,即E(−25, −165). 代入椭圆方程:425×6+16225×2≠1,因此点E 不在椭圆上. 设l:y =k(x −√2b),(k <0) 代入椭圆的方程可得:x 23b 2+k 2(x−√2b)2b 2=1,化为:(1+3k 2)x 2−6√2k 2bx +6k 2b 2−3b 2=0,∴ x 1+x 2=6√2k 2b1+3k2,∵ 直线l 1:y =√6上总存在点M 满足OP →+OQ →=2OM →,∴ 点M 是线段PQ 的中点.∴ x M =3√2k 2b 1+3k2,y M =k(3√2k 2b1+3k2−√2b)=√6,解得:b =−√3(1+3k 2)k,∴ x M =−3√6k ,可得M(−3√6k,√6), ∴ b =−√3(1+3k 2)k=−√3k−3√3k ≥6,当且仅当k =−√33时,b 取得最小值6.直线l 的倾斜角α满足:tanα=−√33,α=5π6.无穷数列{a n }(n ∈N ∗),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,a n+1,a n+2,…a n+t 中至少有一个等于a n ,则称数列{a n } 具有性质T ,集合P ={p|p =a n , n ∈N ∗}.(1)若a n =(−1)n ,n ∈N ∗,判断数列{a n } 是否具有性质T ;(2)数列{a n } 具有性质T ,且a 11,a 4=3,a 8=2,P ={1, 2, 3},求a 20的值;(3)数列{a n } 具有性质T ,对于P 中的任意元素p i ,a i k 为第k 个满足a i k =p i 的项,记b k =i k+1−i k (k ∈N ∗),证明:“数列{b k }具有性质T ”的充要条件为“数列{a n } 是周期为t 的周期数列,且每个周期均包含t 个不同实数”. 【答案】∵ a n =(−1)n ,∴ {a n }是由2个不同元素组成的无穷数列,且是周期为2的周期数列, 故t =2,{a n }是周期为2的周期数列,对任意的正整数n ,有a n+2=a n ,满足性质T 的条件, 故数列{a n } 具有性质T ;由a 1=1,a 4=3,a 8=2,P ={1, 2, 3},可知t =3,考虑a 8后面连续三项a 9,a 10,a 11,若a 11≠2,由a 8=2及T 性质知,a 9,a 10中必有一个数为2,于是,a 8,a 9,a 10中有两项为2,故必有1或3不在其中,不妨设为i(i =1或3),考虑a 1,a 2,…,a 7中,最后一个等于i 的项,则该项的后三项均不等于i ,故不满足性质T 中的条件,矛盾,于是a 11=2. 同理可得:a 14=a 17=a 20=2;证明:充分性、由数列{a n } 是周期为t 的周期数列,每个周期均包含P 中t 个不同元素, 对于P 中的任意元素p i ,a i k 为第k 个满足a i k =p i 的项,故由周期性得:i k+1=i k +t , 于是,b k =i k+1−i k =t ,数列{b k }为常数列,显然满足性质T .必要性、取足够大的N ,使a 1,a 2,a 3,…,a N 包含P 中t 个所有互不相等的元素,考虑a N 后的连续t 项a N+1,a N+2,…,a N+t ,对于P 中任意元素p i ,必等于a N+1,a N+2,…,a N+t 中的某一个,否则考虑a 1,a 2,…,a N 中最后一个等于p i 的项,该项不满足性质T 中的条件,矛盾. 由p i 的任意性知,a N+1,a N+2,…,a N+t 这t 个元素恰好等于P 中t 个互不相同的元素, 再由数列{a n } 性质T 中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…于是对于P 中的任意元素p i ,存在N′,有b k =i k+1−i k =t(n ≥N′),即数列{b N′+k }为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列,故数列{a n}是“周期为t的周期数列,且每个周期均包含t个不同实数”.【考点】数列的应用【解析】(1)由数列通项公式可得{a n}是由2个不同元素组成的无穷数列,且是周期为2的周期数列,对任意的正整数n,有a n+2=a n,满足性质T的条件,故数列{a n}具有性质T;(2)由题意可知t=3,考虑a8后面连续三项a9,a10,a11,由反证法说明a11= 2.同理可得:a14=a17=a20=2;(3)充分性、由数列{a n}是周期为t的周期数列,每个周期均包含P中t个不同元素,对于P中的任意元素p i,a ik 为第k个满足a ik=p i的项,由周期性得i k+1=i k+t,可得b k=i k+1−i k=t,则数列{b k}为常数列,满足性质T.必要性、取足够大的N,使a1,a2,a3,…,a N包含P中t个所有互不相等的元素,考虑a N后的连续t项a N+1,a N+2,…,a N+t,对于P中任意元素p i,必等于a N+1,a N+2,…,a N+t中的某一个,否则考虑a1,a2,…,a N中最后一个等于p i的项,该项不满足性质T中的条件,矛盾.由p i的任意性知,a N+1,a N+2,…,a N+t这t个元素恰好等于P中t个互不相同的元素,再由数列{a n}性质T中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…,于是对于P中的任意元素p i,存在N′,有b k=i k+1−i k=t(n≥N′),即数列{b N′+k}为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列.【解答】∵a n=(−1)n,∴{a n}是由2个不同元素组成的无穷数列,且是周期为2的周期数列,故t=2,{a n}是周期为2的周期数列,对任意的正整数n,有a n+2=a n,满足性质T的条件,故数列{a n}具有性质T;由a1=1,a4=3,a8=2,P={1, 2, 3},可知t=3,考虑a8后面连续三项a9,a10,a11,若a11≠2,由a8=2及T性质知,a9,a10中必有一个数为2,于是,a8,a9,a10中有两项为2,故必有1或3不在其中,不妨设为i(i=1或3),考虑a1,a2,…,a7中,最后一个等于i的项,则该项的后三项均不等于i,故不满足性质T中的条件,矛盾,于是a11=2.同理可得:a14=a17=a20=2;证明:充分性、由数列{a n}是周期为t的周期数列,每个周期均包含P中t个不同元素,对于P中的任意元素p i,a ik 为第k个满足a ik=p i的项,故由周期性得:i k+1=i k+t,于是,b k=i k+1−i k=t,数列{b k}为常数列,显然满足性质T.必要性、取足够大的N,使a1,a2,a3,…,a N包含P中t个所有互不相等的元素,考虑a N后的连续t项a N+1,a N+2,…,a N+t,对于P中任意元素p i,必等于a N+1,a N+2,…,a N+t中的某一个,否则考虑a1,a2,…,a N中最后一个等于p i的项,该项不满足性质T中的条件,矛盾.由p i的任意性知,a N+1,a N+2,…,a N+t这t个元素恰好等于P中t个互不相同的元素,再由数列{a n}性质T中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…于是对于P中的任意元素p i,存在N′,有b k=i k+1−i k=t(n≥N′),即数列{b N′+k}为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列,故数列{a n}是“周期为t的周期数列,且每个周期均包含t个不同实数”.。

(完整版)复数练习题(有答案)

(完整版)复数练习题(有答案)

复数学校:___________姓名:___________班级:___________考号:___________1.复数21−i (i 为虚数单位)的共轭复数是A . 1+iB . 1−iC . −1+iD . −1−i2.已知a ∈R,i 是虚数单位.若z =a +√3i ,z ·z =4,则a =( )A . 1或-1B . √7或-√7C . -√3D . √33.已知复数1z i =+(i 为虚数单位)给出下列命题:①z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A . 0B . 1C . 2D . 34.(2018兰州模拟)若复数z 满足(3−4i )z =4+3i ,则|z |=( )A . 5B . 4C . 3D . 15.(2018北京大兴区一模)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i 的点是( )A . EB . FC . GD . H6.(2018江西省景德镇联考)若复数z =a−2i 2在复平面内对应的点在直线x +y =0上,则|z |=( )A . 2B . √2C . 1D . 2√27.(福建省三明市2018届高三下学期质量检查测试)已知复数a +bi =(1−i )21+i (i 是虚数单位,a,b ∈R ),则a +b =( )A . −2B . −1C . 0D . 28.(山东K 12联盟2018届高三开年迎春考试)若复数z = 1 + i + i 2 + i 3 +⋯+ i 2018 +|3−4i |3−4i ,则z 的共轭复数z̅的虚部为 A . −15 B . −95C.95D.−95i9.(上海市徐汇区2018届高三一模)在复平面内,复数5+4ii(i为虚数单位)对应的点的坐标为_____10.(上海市松江、闵行区2018届高三下学期质量监控(二模))设m∈R,若复数(1+ mi )(1+i )在复平面内对应的点位于实轴上,则m=______.11.(2018届浙江省杭州市第二中学6月热身)若复数z满足(1−2i)⋅z=3+i(i为虚数单位),则z=__________;|z|=__________.12.已知z=(a+i)2,(a∈R),i是虚数单位.(1)若z为纯虚数,求a的值;(2)若复数z在复平面上对应的点在第四象限,求实数a的取值范围.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

上海市松江、闵行区2018届高三下学期质量监控(二模)数学---精校解析Word版

闵行区、松江区2017-2018学年第二学期高三年级质量调研考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 双曲线的渐近线方程为,则_____________.【答案】【解析】试题分析:双曲线的渐近线为,因为与重合,所以.考点:双曲线的渐近线.2. 若二元一次方程组的增广矩阵是,其解为则______.【答案】【解析】由题意可知,二元一次方程组的解为:,即:,据此可得:.3. 设,若复数在复平面内对应的点位于实轴上,则______.【答案】【解析】,复数在复平面内对应的点位于实轴上,则复数的虚部为零,,解得:.4. 定义在上的函数的反函数为,则________.【答案】【解析】求解指数方程:可得:,由反函数的定义与性质可得.5. 直线的参数方程为(为参数),则的一个法向量为__________.【答案】不唯一【解析】消去参数可得直线的普通方程为:,整理为一般式即:,则直线的法向量可以是(不唯一,与之平行即可).6. 已知数列,其通项公式为,,的前项和为,则_________.【答案】【解析】由数列的通项公式可得数列为等差数列,且,则其前n项和,故,则.7. 已知向量、的夹角为,,,若,则实数的值为___________.【答案】【解析】由题意可得:,且,则:,据此有:,解得:.8. 若球的表面积为,平面与球心的距离为,则平面截球所得的圆面面积为__________.【答案】【解析】设球的半径为,则,解得:,设截面圆的半径为,则,则平面截球所得的圆面面积.9. 若平面区域的点满足不等式,且的最小值为,则常数_______. 【答案】【解析】绘制不等式表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点处取得最小值,即:.若约束条件中含参数,可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值10. 若函数没有最小值,则的取值范围是____________.【答案】【解析】分类讨论:当时,,函数没有最小值,当时,应满足有解,故,综上可得,的取值范围是.11. 设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:①,则这四个数为或,有组;②,则这四个数为或,有组;③,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.12. 设,为的展开式的各项系数之和,,,表示不超过实数的最大整数.则的最小值为___________. 【答案】【解析】利用赋值法,令可得:,,利用数学归纳法证明:,当时,成立,假设当时不等式成立,即,当时:据此可知命题成立,则,,,故,的几何意义为点到点的距离,如图所示,最小值即到的距离,由点到直线距离公式可得的最小值为.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

2018年上海市闵行区中考数学二模试卷及答案(解析版)

2018年上海市闵行区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:+(﹣1)2018﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC 的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.2018年上海市闵行区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)2【分析】根据单项式的定义即可求出答案.【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD 是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【分析】根据圆心到直线的距离d与半径r的大小关系解答.【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【分析】原式利用绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【分析】符合平方差公式的特点,可以直接分解.平方差公式a2﹣b2=(a+b)(a ﹣b).【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【分析】本题思路是两边平方后去根号,解方程.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【分析】由根的情况,由根的判别式可得到关于m的不等式,则可求得m的取值范围.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【分析】根据互相平行的直线的解析式的值相等确定出k,根据“截距为5”计算求出b值,即可得解.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为8.【分析】首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.【解答】解:根据题意,得:第一组到第四组的频率和是=0.7,又∵第五组的频率是0.10,∴第六组的频率为1﹣(0.7+0.10)=0.2,∴第六组的频数为:40×0.2=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=﹣(用、的式子表示).【分析】根据=+,只要求出、即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==,==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【分析】根据“亚旋转函数”的定义解答.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b 相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【分析】根据三角函数解答即可.【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为17.3米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【分析】根据题意需求AB长.由已知易知AB=BM,解直角三角形MNB求出BM 即AB,再求速度,与限制速度比较得结论.注意单位.【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【分析】过点C作CF⊥AB于点F,则四边形AFCD为矩形,根据矩形的性质可得出BF=5,结合cos∠ABC=,可得出CF的长度,进而可得出AD的长度,在Rt △BAD中利用勾股定理可求出BD的长度,由折叠的性质可得出BP=BA=12,再由PD=BD﹣BP即可求出PD的长度.【解答】解:过点C作CF⊥AB于点F,则四边形AFCD为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算:+(﹣1)2018﹣2cos45°+8.【分析】直接利用二次根式的性质和分数指数幂的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【分析】先将第二个方程分解因式可得:x﹣2y=0或x+y=0,分别与第一个方程组成新的方程组,解出即可.【解答】解:由②得:(x﹣2y)(x+y)=0,x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM【分析】(1)根据自变量与函数值的对应关系,可得A,B点坐标,根据勾股定理,可得A的长,根据锐角三角函数,可得AC,根据相似三角形的判定与性质,可得DC,AD,根据点的坐标,可得答案.(2)根据面积的和差,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)令y=0,则﹣2x+4=0,解得x=2,∴点A坐标是(2,0).令x=0,则y=4,∴点B坐标是(0,4).∴AB===2.∵∠BAC=90°,tan∠ABC==,∴AC=AB=.如图1,过C点作CD⊥x轴于点D,∠BAO+∠ABO=90°,∠BAO+∠CAD=90°,∵∴∠ABO=∠CAD,,∴△OAB∽△DAC.∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C坐标是(4,1).=AB•AC=×2×=5.(2)S△ABC=S△ABC,∵2S△ABM∴S=.△ABM∵M(1,m),∴点M在直线x=1上;令直线x=1与线段AB交于点E,ME=m﹣2;如图2,分别过点A、B作直线x=1的垂线,垂足分别是点F、G,∴AF+BG=OA=2;=S△BME+S△AME=ME•BG+ME•AF=ME(BG+AF)∴S△ABM=ME•OA=×2×ME=,∴ME=,m﹣2=,m=,∴M(1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【分析】根据题目中的关键语句“骑自行车所用时间比驾车所用时间多小时”,找到等量关系列出分式方程求解即可.【解答】解:设自行车的平均速度是x千米/时.根据题意,列方程得﹣=,解得:x1=15,x2=﹣30.经检验,x1=15是原方程的根,且符合题意,x2=﹣30不符合题意舍去.答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC 的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.【分析】(1)根据两角对应相等可得:△ABF∽△CBD,列比例式得:,则BF•BC=AB•BD.(2)先根据三角形全等证明:AF=FG,再根据两组对边分别平行证明:四边形ADGF是平行四边形,所以四边形ADGF是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•BD.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【分析】(1)将A(1,0)、C(0,3)代入抛物线的解析式可求得关于a、c的方程组,解得a、c的值可求得抛物线的解析式,最后依据配方法可求得抛物线的顶点坐标;(2)首先求得A点的坐标,即可证得OA=OC=3.得出∠CAO=∠OCA,然后根据勾股定理求得AD、DC、AC,进一步证得△ACD是直角三角形且∠ACD=90°,解直角三角形得出tan∠OCB==,tan∠DAC==,即可证得∠DAC=∠OCB,进而求得∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,由已知得出QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得出x﹣2+2y=0,然后与抛物线的解析式联立方程,解方程即可求得.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【分析】(1)先利用勾股定理AB=10,进而EH=x,EH=x,FH=x,利用勾股定理建立函数关系式;(2)先判断出∠CAE=∠EBP=∠ABC,进而得出△BEH≌△BEG,即可求出BE,即可得出结论;(3)分两种情况,讨论进行判断即可得出结论.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,BH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形。

(完整版)2018-2019学年松江区闵行区高三二模考试数学试卷

2018-2019学年松江区闵行区高三二模考试数学试卷模.填空题(本大题共 12题,1-6每题4分,7-12每题5分,共54 分) 1.已知集合 A {x||x 1| 1},B {x|x 1},则 Al B __________________ 【答案】(1,2)【解析】x 0x2x x 1x1 x 22.抛物线 2y 2x 的准线方程为【答案】x12【解析】p 1,准线方程x£1223.已知函数f(x) log 2x 的反函数为f 1(x),贝V f 1(2) _________________ 【答案】4【解析】f (x)的图像过点(4, 2),其反函数过点(2, 4)可得f 丫2) 4 【答案】23a 1【解析】由无穷等比数列定义可知 lim S n a12n1 q 1丄32x my 10亠十宀一… ,则 m 1的值为2x 4 y n 01 n【答案】3【解析】方程组有无穷多解,则 m2,n2 , m 1 =mn 1 31 nb 、c ,其面积 S -(a 2 c 2 b 2),则3tanB _______4【答案】44.已知等比数列{a n }的首项为1,公比为S n 表示{ 3n }的前n 项和,贝U Hm S n ____6.在厶ABC 中,角A 、B 、C 的对边分别为a333【解析】由题知 1 1 2 2 2 S acsin B S (a c b ),整理可得34sin B — cosB ,3tan B 7.若(2x 2 )n 的展开式中含有常数项, 则最小的正整数 n 为【答案】5 【解析】C ; (2x 2)n-r (x 12)r c n 2n-r5 2n- r x2 •/ 2n- - r =0 2 .n min 8.设不等式组 x y y 3y则a 的取值范围是 【答案】1,2 9.若函数f(x) 值为 【答案】14 【解析】f x 00表示的可行域为,若指数函数ysin xcos x . 3 cos 2 x 的图像关于直线 x1 sin 2wx2.3 1 cos2wx2 xa 的图像与 有公共点,3对称,则正数的最小-si n2wx2<3 2cos2wx2sin 2wx•••函数关于直线对称2w3 31 …W min4 1 3k10.在正方体ABCDABGD i的所有棱中,任取其中三条, 则它们所在的直线两两异面的概率为_________【答案】—55【解析】C i3225511.若函数f (x) 4|x| (2 |x| 9)2|x| x2 9|x| 18有零点,则其所有零点的集合为_________________ (用列举法表示)【答案】2, 1,1,2【解析】••• f x 4凶(2x-9)2凶x2-9x 184凶(2x-9)2凶(x-3) (x-6) (2卜I|x|-3) (x -6)••-(少|x -3) 0或(2x|x -6) 0解得x 1或x 22 212.如图,A是圆O:x y 9上的任意一点,B、C是uuu uur 圆0直径的两个端点,点D在直径BC上,BD 3DC ,mu mu 1 uuu点P在线段AC上,若AP PB ( )PD,则点P的2轨迹方程为_________【答案】x 1 2y2 4321•/ APPB - PD21 PB PD - PD 2设 P x , y , A 3cos ,3sinx-3cos , y -3sin2sin -0 3sin - 0 . y -3sinx-33cos -3x 2cos 1, y 2sin•••点P 的轨迹方程为 x-1 2 y 24二.选择题(本大题共 4题,每题5分,共20分) 13.已知丨、m 、n 是三条不同直线,、 是两个不同平面,下列命题正确的是(A. 若丨 m ,丨n ,贝U m // nB. 若 m , n ,// ,贝U m // nC. 若 m, n, mln A ,1 m ,1 n ,则丨D. 平面 内有不共线的三点到平面 的距离相等,则 //【答案】D【解析】不共线的三点确定一个平面【答案】D【解析】两条切线,两条与渐近线平行的线15. 十七世纪,法国数学家费马提出猜想;“当整数n 2时,关于x 、y 、z 的方程 x n y n z n 没有正整数解”,经历三百多年,1995年英国数学家安德鲁 怀尔斯给出了证明,使它终成费马大定理,则下面命题正确的是()① 对任意正整数n ,关于x 、y 、z 的方程x n y n z n 都没有正整数解;x-3cos-3 X, y-3sin 4 2,0,02x14. 过点(1,0)与双曲线— 2y 1仅有一个公共点的直线有(A. 1条B. 2条C. 3条D. 4条②当整数n 2时,关于x、y、z的方程x n y n z n至少存在一组正整数解;③当正整数n 2时,关于x、y、z的方程x n y n z n至少存在一组正整数解;【答案】D【解析】①n 1时,x 1, y 1, z2,②与题干原命题矛盾,错误。

2018届上海市闵行区高三下学期教育质量调研考试(二模)

2018届上海市闵行区高三下学期教育质量调研考试(二模)上海市闵行区2018届高三下学期教育质量调研考试(二模)地理试题(考试时间120分钟满分150分)考生注意:1.全卷共11页,包括两大题,第一大题(1-30小题)为选择题,第二大题(31-54小题)为综合分析题。

第二大题综合分析题包括共同部分(31-46小题)和选择部分(47-54小题)。

所有考生应完成第一大题和第二大题的共同部分试题;第二大题的选择部分分为A、B 两组,两组试题分值相同:A组(47-50小题)为考试手册中“任选模块一”的试题,B组(51-54小题)为“任选模块二”的试题;考生须任选一组答题,如果考生应答了两组试题,只对A组的应答进行评分。

2.请将全部答案写在答题纸上。

3.答题前,先将自己的姓名、学校填写清楚,并填涂准考证号,请仔细核对。

答题时选择题用2B铅笔按要求涂写,综合分析题用黑色水笔填写。

4.考试后只交答题纸,试卷由自己保留。

一、选择题(每小题只有一个正确答案。

每小题2分,共60分)(一)“Hi,有人在吗?”,2月13日(农历正月十四)早上849,休眠了十几天的“月球车玉兔”微博再次发声,一句简单的问候立刻引发了8万多次转发和5万余条评论。

1.玉兔的供电系统自其顶部的太阳能电池板,下列选项正确的是:A.玉兔每天600醒1800入眠B.玉兔休眠状态发生在月球进入月夜的时候C.月球自转一周的时间约需十几天D.早上849,玉兔大约位于上海的正南方2.人类把月球作为宇宙空间探测的第一站的主要原因是月球A.有高真空、强辐射、微重力的环境B.是距离地球最近的自然天体C.昼夜周期较长D.体积小,容易探测3.满月一般发生在农历十五,近两年元宵月却都是“十五的月亮十七圆”,根本原因是A.29.53天只是月相变化的平均周期B.月球的自转周期与公转周期相同C.朔望月比恒星月多2.21日D.白道面与黄道面有5o09′的交角(二)地球表面时刻不停地进行着水循环,读下图回答:4.据图中水平衡数值的大小判断A.低纬度地区大;降水多,蒸发弱B.低纬度地区小;降水少,蒸发弱C.高纬度地区大;降水多,蒸发弱D.高纬度地区小;降水少,蒸发弱5.从图中不同纬度海陆水平衡的差异可以推断出A.形成陆地降水的水汽主要自中低纬度海洋B.形成海洋降水的水汽主要自大陆C.形成陆地降水的水汽主要自高纬度海洋D.形成陆地降水的水汽主要自陆地(三)如右图,一艘轮船沿图中的航线从印度洋驶向大西洋,行进到①处时正看到海上日落,此时刚好是北京时间000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闵行区、松江区2017-2018学年第二学期高三年级质量调研考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 双曲线的渐近线方程为,则_____________.【答案】【解析】试题分析:双曲线的渐近线为,因为与重合,所以.考点:双曲线的渐近线.2. 若二元一次方程组的增广矩阵是,其解为则______.【答案】【解析】由题意可知,二元一次方程组的解为:,即:,据此可得:.3. 设,若复数在复平面内对应的点位于实轴上,则______.【答案】【解析】,复数在复平面内对应的点位于实轴上,则复数的虚部为零,,解得:.4. 定义在上的函数的反函数为,则________.【答案】【解析】求解指数方程:可得:,由反函数的定义与性质可得.5. 直线的参数方程为(为参数),则的一个法向量为__________.【答案】不唯一【解析】消去参数可得直线的普通方程为:,整理为一般式即:,则直线的法向量可以是(不唯一,与之平行即可).6. 已知数列,其通项公式为,,的前项和为,则_________.【答案】【解析】由数列的通项公式可得数列为等差数列,且,则其前n项和,故,则.7. 已知向量、的夹角为,,,若,则实数的值为___________.【答案】【解析】由题意可得:,且,则:,据此有:,解得:.8. 若球的表面积为,平面与球心的距离为,则平面截球所得的圆面面积为__________.【答案】【解析】设球的半径为,则,解得:,设截面圆的半径为,则,则平面截球所得的圆面面积.9. 若平面区域的点满足不等式,且的最小值为,则常数_______. 【答案】【解析】绘制不等式表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点处取得最小值,即:.若约束条件中含参数,可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值10. 若函数没有最小值,则的取值范围是____________.【答案】【解析】分类讨论:当时,,函数没有最小值,当时,应满足有解,故,综上可得,的取值范围是.11. 设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:① ,则这四个数为或,有组;② ,则这四个数为或,有组;③ ,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.12. 设,为的展开式的各项系数之和,,,表示不超过实数的最大整数.则的最小值为___________. 【答案】【解析】利用赋值法,令可得:,,利用数学归纳法证明:,当时,成立,假设当时不等式成立,即,当时:据此可知命题成立,则,,,故,的几何意义为点到点的距离,如图所示,最小值即到的距离,由点到直线距离公式可得的最小值为.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

对于此题中的新概念,对阅读理解能力有一定的要求。

但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝。

二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. “”是“”成立的 ( ).A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】B【解析】若,可能,充分性不成立,若且,则,必要性成立,综上可得:“”是“且”成立的必要非充分条件.本题选择B选项.14. 如图,点分别在空间直角坐标系的三条坐标轴上,,平面的法向量为,设二面角的大小为,则 ( ).A. B. C. D.【答案】C【解析】由题意可知,平面的一个法向量为:,由空间向量的结论可得:.本题选择C选项.点睛:(1)本题求解时关键是结合题设条件进行空间联想,抓住条件有目的推理论证.(2)利用空间向量求线面角有两种途径:一是求斜线和它在平面内射影的方向向量的夹角(或其补角);二是借助平面的法向量.15. 已知等比数列的前项和为,则下列判断一定正确的是 ( ).A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】利用排除法:考查等比数列:,,,,满足,但是,选项A错误;.....................满足,但是,选项B错误;该数列满足,但是,选项C错误;本题选择D选项.16. 给出下列三个命题:命题1:存在奇函数和偶函数,使得函数是偶函数;命题2:存在函数、及区间,使得、在上均是增函数, 但在上是减函数;命题3:存在函数、(定义域均为),使得、在处均取到最大值,但在处取到最小值.那么真命题的个数是 ( ).A. B. C. D.【答案】D【解析】对于命题1,取,,满足题意;对于命题2,取,,满足题意;对于命题3,取,,满足题意;即题中所给的三个命题均为真命题,真命题的个数是.本题选择D选项.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. 如图所示,在棱长为的正方体中,分别是的中点.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】试题分析:(1)由题意可得平面,且,又的底,,转换顶点可得(2)取中点,连接,.由题意可得为异面直线与所成的角.由余弦定理计算可得异面直线与所成的角为.试题解析:(1)因为所给的几何体为正方体,所以平面,且,又的底,高为到的距离等于2,所以,所以(2)取中点,连接,.由于,所以为异面直线与所成的角.在中,,,,由余弦定理,得,即,所以异面直线与所成的角为.18. 已知函数,(1)当,且时,求的值;(2)在中,分别是角的对边,,,当,时,求的值.【答案】(1);(2)2.【解析】试题分析:(1)整理函数的解析式可得,则,结合题意求解三角方程可得. (2)由题意可知,结合可得,由余弦定理得,结合题意可得. 试题解析:(1)由已知,得,所以,即,又,所以.(2)因为,所以,又因为,所以而,故,所以由余弦定理得,即,又,解得.19. 某公司利用线上、实体店线下销售产品,产品在上市天内全部售完.据统计,线上日销售量、线下日销售量(单位:件)与上市时间天的关系满足:,产品每件的销售利润为(单位:元)(日销售量线上日销售量线下日销售量).(1)设该公司产品的日销售利润为,写出的函数解析式;(2)产品上市的哪几天给该公司带来的日销售利润不低于元?【答案】(1)(2)第5天至第15天该公司日销售利润不低于元. 【解析】试题分析:(1)由题意分类讨论,分别求得销售量,然后与相应的利润相乘可得利润函数的解析式为(2)结合(1)中的利润函数分类讨论求解二次不等式可得第5天至第15天给该公司带来的日销售利润不低于元.试题解析:(1)由题意可得:当时,销售量为,销售利润为:;当时,销售量为,销售利润为:;当时,销售量为,销售利润为:;综上可得:(2)当时,由,解得;当时,由,解得;当时,由,无解.故第5天至第15天给该公司带来的日销售利润不低于元.点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20. 已知椭圆:,其左、右焦点分别为,上顶点为,为坐标原点,过的直线交椭圆于两点,.(1)若直线垂直于轴,求的值;(2)若,直线的斜率为,则椭圆上是否存在一点,使得关于直线成轴对称?如果存在,求出点的坐标;如果不存在,请说明理由;(3)设直线:上总存在点满足,当的取值最小时,求直线的倾斜角.【答案】(1)5;(2)答案见解析;(3).【解析】试题分析:(1)由题意可得,则,结合勾股定理可得,,则.(2)由题意可得椭圆方程为,且,的坐标分别为,由对称性可求得点坐标为,该点不在椭圆上,则椭圆上不存在满足题意的点.(3)由题意可得椭圆方程为,且,的坐标为,设直线的y轴截距式方程,与椭圆方程联立有,由题意可知点是线段的中点,据此计算可得,当且仅当时取等号.则直线的倾斜角.试题解析:(1)因为,则,即,设椭圆的半焦距为,则,在直角中,,即解得,,所以.(2)由,,得,因此椭圆方程为,且,的坐标分别为,直线的方程为,设点坐标为,则由已知可得:,解得,而,即点不在椭圆上,所以,椭圆上不存在这样的点,使得关于直线成轴对称.(3)由,得椭圆方程为,且,的坐标为,所以可设直线的方程为,代入得:,因为点满足,所以点是线段的中点,设的坐标为,则,因为直线上总存在点满足,所以,且,所以,当且仅当,即时取等号.所以当时,,此时直线的倾斜角.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 无穷数列,若存在正整数,使得该数列由个互不相同的实数组成,且对于任意的正整数,中至少有一个等于,则称数列具有性质.集合.(1)若,,判断数列是否具有性质;(2)数列具有性质,且,求的值;(3)数列具有性质,对于中的任意元素,为第个满足的项,记,证明:“数列具有性质”的充要条件为“数列是周期为的周期数列,且每个周期均包含个不同实数”.【答案】(1)具有;(2)2;(3)答案见解析.【解析】试题分析:(1)由题意可知是周期为2的周期数列,对于任意的正整数,,满足性质的条件,故数列具有性质.(2)由条件可知,考虑后面连续三项,由反证法可知.同理可得. (3)充分性:由数列是周期为的周期数列,每个周期均包含中个不同元素.则由周期性得,于是数列为常数列,显然满足性质.必要性:取足够大的使包含中所有个互不相同的元素,考虑后的连续项,由反证法可知中任意元素,必等于中的某一个,再由数列性质中的条件得,,则数列为常数列,为常数列,据此可得数列是周期为的周期数列,且每个周期均包含个不同实数.试题解析:(1)因为,,是由2个不同元素组成的无穷数列,且是周期为2的周期数列,故,是周期为2的周期数列,对于任意的正整数,,满足性质的条件,故数列具有性质. (2).由条件可知,考虑后面连续三项,若,由及性质知中必有一数等于2,于是中有两项为2,故必有1或3不在其中,不妨设为,考虑中最后一个等于的项,则该项的后三项均不等于,故不满足性质中条件,矛盾,于是.同理.(3)充分性:由数列是周期为的周期数列,每个周期均包含中个不同元素.对于中的任意元素,为第个满足的项,故由周期性得,于是,数列为常数列,显然满足性质.必要性:取足够大的使包含中所有个互不相同的元素,考虑后的连续项,对于中任意元素,必等于中的某一个,否则考虑中最后一个等于的项,该项不满足性质中条件,矛盾.由的任意性知这个元素恰好等于中个互不相同的元素,再由数列性质中的条件得,,于是对于中的任意元素,存在,有,即数列为常数列,而数列满足性质,故为常数列,从而是周期数列,故数列是周期为的周期数列,且每个周期均包含个不同实数.2。

相关文档
最新文档