参数方程高考真题专题训练
极坐标与参数方程高考真题58题(学生) (1)

极坐标与参数方程高考真题1、(2018北京理10)在极坐标系中,直线cos sin a ρθρθ+=(0a >)与圆2cos ρθ=相切,则_______a =.2、(2018江苏21C )在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.3、(2018新课标Ⅰ理22)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4、(2018新课标Ⅱ理22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5、(2018新课标Ⅲ理22)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.6、(2018天津理12)已知圆2220x y x +-=的圆心为C ,直线1232x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为_______.7、(2017新课标Ⅰ理22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .8、(2017新课标Ⅱ理22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.9、(2017新课标Ⅲ理22)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ),M 为l 3与C 的交点,求M 的极径.10、(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP|的最小值为___________.11、(2017江苏21C )在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为2x 2s ,y ⎧=⎪⎨⎪=⎩(s 为参数)。
参数方程大题及答案

参数方程大题及答案【篇一:高考极坐标参数方程含答案(经典39题)】p class=txt>a,b两点.(1)求圆c及直线l的普通方程.(224.已知直线lc(1)求圆心c的直角坐标;(2)由直线l上的点向圆c引切线,求切线长的最小值.l,且ll分别交于b,c两点.在极坐标系(与直角坐标系5.在直角坐标系xoy 中,直线lxoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆c的方程为??4cos?. (Ⅰ)求圆c在直角坐标系中的方程;(Ⅱ)若圆c与直线l相切,求实数a的值.6.在极坐标系中,o为极点,已知圆c(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线l和直线l(Ⅱ)求|bc|的长.3.在极坐标系中,点m轴为x轴的正半轴建立平面直角坐标系,斜率是?1(1)写出直线l的参数方程和曲线c的直角坐标方程;(2)求证直线l和曲线c相交于两点a、b,并求|ma|?|mb|的值.cr=1,p在圆c上运动。
(i)求圆c的极坐标方程;(ii)在直角坐标系(与极坐标系取相同的长度单位,且以极点o为原点,以极轴为x轴正半轴)中,若q为线段op的中点,求点q轨迹的直角坐标方程。
l的极坐7.在极坐标系中,极点为坐标原点o,已知圆c(1)求圆c的极坐标方程;(2)若圆c和直线l相交于a,b两点,求线段ab的长.9.在直角坐标平面内,以坐标原点o为极点,x轴的正半轴为极轴建立极坐标系,曲线c的极坐标方程是??4cos?,直线lt为参数)。
求极点在直线l上的射影点p的极坐标;若m、n分别为曲线c、直线l10.已知极坐标系下曲线c的方程为??2cos??4sin?,直线l?x?4cos??y?sin?8.平面直角坐标系中,将曲线?(?为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线c1 .以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线c2的方程为??4sin?,求c1和c2公共弦的长度.(Ⅰ)求直线l在相应直角坐标系下的参数方程;(Ⅱ)设l与曲线c相交于两点a、b,求点p到a、b两点的距离之积.11.在直角坐标系中,曲线c1的参数方程为??x?4cos?(?为参数).以坐标原点为极点,x轴的正?y?3sin?14.已知椭圆cf1,f2为其左,右焦点,直线l的参数半轴为极轴的极坐标系中.曲线c2(1)分别把曲线c1与c2化成普通方程和直角坐标方程;并说明它们分别表示什么曲线.(2)在曲线c1上求一点q,使点q到曲线c2的距离最小,并求出最小距离.12.设点m,n分别是曲线??2sin??01)求直线l和曲线c的普通方程;(2)求点f1,f2到直线l的距离之和.?x?3cos?15.已知曲线c:?,直线l:?(cos??2sin?)?12.y?2sin??⑴将直线l的极坐标方程化为直角坐标方程;⑵设点p在曲线c上,求p点到直线l距离的最小值.m,n间的最小距离.16.已知?o1的极坐标方程为??4cos?.点a的极坐标是(2,?).(Ⅰ)把?o1的极坐标方程化为直角坐标参数方程,把点a的极坐标化为直角坐标.(Ⅱ)点m(x0,y0)在?o1上运动,点p(x,y)是线段am的中点,求点p运动轨迹的直角坐标方程.求曲线c2上的点到直线l距离的最小值.19.在直接坐标系xoy中,直线l的方程为x-y+4=0,曲线c的参数方程为(1)已知在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,点p17.在直角坐标系xoy中,直线l为参数),若以o为极点,x轴正半轴为极轴建立极坐标系,则曲线c的极坐标方程为?长.18.已知曲线c1的极坐标方程为??4cos?,曲线c2p与直线l的位置关系;,求直线l被曲线c所截的弦(2)设点q 是曲线c上的一个动点,求它到直线l的距离的最小值.20l交曲线c:?比数列,求直线l的方程.?x?2cos?(?为参数)于a、b?y?2sin?的方程是4x?y?4, 直线l的参数方程22(t为参数).(1)求曲线c1的直角坐标方程,直线l的普通方程;(2)21.已知曲线c1的极坐标方程是,曲线c2的参数方程是(1)写出曲线c和直线l的普通方程;(2)若|pm|,|mn|,|pn|成等比数列,求a的值.1)写出曲线c1的直角坐标方程和曲线c2的普通方程;(2)求t 的取值范围,使得c1,c2没有公共点.22.设椭圆e24.已知直线lc(1)设y?sin?,?为参数,求椭圆e的参数方程;(2)点p?x,y?是椭圆e 上的动点,求x?3y的取值范围.23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线a2c?s??,已知过点0p??2,?4?的直线l的参数方程为?oal与曲线c(i)求圆心c的直角坐标;(Ⅱ)由直线l上的点向圆c引切线,求切线长的最小值.25.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方弦长.?x?2cos?c的参数方程为?(?为对数),求曲线c截直线l所得的?y?sin? c:?si2n??分别交于m,n【篇二:2015高考理科数学《参数方程》练习题】lass=txt>一、选择题?x=1+3t,1.若直线的参数方程为?答案:d?x=3t+2,2.参数方程为?2?y=t-1a.线段 c.圆弧2(t为参数),则直线的倾斜角为( )y-2-3t3(0≤t≤5)的曲线为( )b.双曲线的一支 d.射线解析:化为普通方程为x=3(y+1)+2,即x-3y-5=0,由于x =3t2+2∈[2,77],故曲线为线段.故选a. 答案:a3.曲线?解析:曲线化为普通方程为答案:c4.若直线2x-y-3+c=0与曲线?x2b.3 d.2312+y218=1,∴c=6,故焦距为26.b.6或-4-----欢迎登陆明师在线浏览更多的学习资讯!-----c.-2或8解析:将曲线?22d.4或-6|-3+c|=0与圆x+y=5相切,可知=5,解得c=-2或8.5答案:c5.已知曲线c:??x=t,?y=t+b(t为参数,b为实数),若曲线c上恰有3个点到直线l的距离等于1,则b=( )a.2 c.0解析:将曲线c和直线l的参数方程分别化为普通方程为x2+y2=4和y=x+b,依题意,若要|b|使圆上有3个点到直线l的距离为1,只要满足圆心到直线的距离为1即可,得到=1,解得b=答案:d?x=4t,6.已知点p(3,m)在以点f为焦点的抛物线??y=4ta.1 c.3b.2 d.42(t为参数)上,则|pf|=( )解析:将抛物线的参数方程化为普通方程为y2=4x,则焦点f(1,0),准线方程为x=-1,又p(3,m)在抛物线上,由抛物线的定义知|pf|=3-(-1)=4.答案:d 二、填空题??x=-2-2t,7.(2014年深圳模拟)直线??y=3+2t?坐标是________.??x=-2-2t,1222??y=3+2t2222(t为参数)上与点a(-2,3)的距离等于2的点的(t-----欢迎登陆明师在线浏览更多的学习资讯!-----为参数),得所求点的坐标为(-3,4)或(-1,2).答案:(-3,4)或(-1,2)8.(2014年东莞模拟)若直线l:y=kx与曲线c:?解析:曲线c化为普通方程为(x-2)2+y2=1,圆心坐标为(2,0),半径r=1.由已知l与圆相切,则r=|2k|333解析:利用直角坐标方程和参数方程的转化关系求解参数方程. 1?21?2x-+y=将x+y-x=0配方,得?2?4?22所以圆的直径为1,设p(x,y),?2210.已知曲线c的参数方程为?24??-----欢迎登陆明师在线浏览更多的学习资讯!-----(1)将曲线c的参数方程化为普通方程;解析:(1)由?2x2+y=1,x∈[-1,1].4???x+y+2=0,?2?x+y=1得x2-x-3=0.解得x=[-1,1],故曲线c与曲线d无公共点.2?x=2cos t,11.已知动点p、q都在曲线c:?(1)求m的轨迹的参数方程;m的轨迹的参数方程为?212.(能力提升)在直角坐标系xoy中,圆c1:x+y=4,圆c2:(x-2)+y=4.(1)在以o为极点,x轴正半轴为极轴的极坐标系中,分别写出圆c1,c2的极坐标方程,并求出圆c1,c2的交点坐标(用极坐标表示);222-----欢迎登陆明师在线浏览更多的学习资讯!-----3(2)解法一由?得圆c1与c2交点的直角坐标分别为(1,3),(1,-3).?x=1,故圆c1与c2的公共弦的参数方程为??y=t,?x=1,(或参数方程写成??y=y,-3≤t≤3.-3 ≤ y ≤3)解法二将x=1代入?于是圆c1与c2的公共弦的参数方程为 ?x=1,?======*以上是由明师教育编辑整理======------欢迎登陆明师在线浏览更多的学习资讯!-----【篇三:坐标系与参数方程典型例题(含高考题----答案详细)】ass=txt>一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. ⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.二、基础知识归纳总结:?x????x,(??0),1.伸缩变换:设点p(x,y)是平面直角坐标系中的任意一点,在变换?:?的作用下,?y???y,(??0).?点p(x,y)对应到点p?(x?,y?),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高三最后一题1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6,2(π,直线l 过点A 且与极轴成角为3π,圆C 的极坐标方程为)4cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程;(2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值.【答案】(1)直线lC 的直角坐标方程为02222=--+y x y x ;(22、已知曲线C的参数方程为31x y αα⎧=+⎪⎨=+⎪⎩(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹.(2)若直线的极坐标方程为1sin cos θθρ-=,求直线被曲线C 截得的弦长.【答案】(1)6cos 2sin ρθθ=+(23、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (225225⎪⎪⎩⎪⎪⎨⎧+=+-=为参数),若以O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为θρcos 4=。
(1)求曲线C 的直角坐标方程及直线l 的普通方程;(2)将曲线C 上各点的横坐标缩短为原来的21,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值【答案】(1)()4222=+-y x ,052=+-y x (2)4、在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()4πρθ+=O的参数方程为cos sin x r y r θθ⎧=⎪⎪⎨⎪=⎪⎩,(θ为参数,0r >).(1)求圆心的一个极坐标;(2)当r 为何值时,圆O 上的点到直线l 的最大距离为3.【答案】(1)5(1,)4π;(2)22- 5、已知曲线C 的极坐标方程是2ρ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l的参数方程为12x t y =+⎧⎪⎨=+⎪⎩(t 为参数), (1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换后得到曲线C ',设(,)M x y 为C '上任意一点,求222x y -+的最小值,并求相应的点M 的坐标.【答案】(1)圆C 的方程为224x y +=,直线L方程为20y -=.(2)当⎪⎪⎭⎫ ⎝⎛231,M 或⎪⎪⎭⎫ ⎝⎛--231,M 时,原式的最小值为1 6、已知直线52:12x t l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直坐标方程;(2)设点M的直角坐标为,直线l 与曲线C 的交点为A 、B ,求||||MA MB ⋅的值.【答案】(1)22(1)1x y -+=;(2)18.7、在极坐标系中,曲线23)3cos(:),0(cos 2=->=πθρθρl a a C :,曲线C 与l 有且仅有一个公共点.(1)求a 的值;(2)O 为极点,A ,B 为C 上的两点,且3π=∠AOB ,求OB OA +的最大值. 8、在直角坐标系x y O 中,圆C 的方程为()2211x y -+=.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)射线:OM 4πθ=与圆C 的交点为O 、P 两点,求P 点的极坐标.【答案】(1)2cos ρθ=;(2)4π⎫⎪⎭. 9、已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若曲线1C 的极坐标方程为28sin 15ρρθ=-,曲线2C 的参数方程为⎩⎨⎧==ay x sin 2cos 22α(α为参数). (1)将1C 的极坐标方程化为直角坐标方程;(2)若2C 上的点Q 对应的参数为34απ=,P 为1C 上的动点,求PQ 的最小值。
高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总1.在直角坐标系xoy 中,圆C 的参数方程1cos (sinx y 为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是(sin 3cos )33,射线:3OM 与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程是22(1)1x y,又cos ,sinx y ;所以圆C 的极坐标方程是2cos. ---5分(2)设11(,)为点P 的极坐标,则有1112cos 3解得1113.设22(,)为点Q 的极坐标,则有2222(sin 3cos )333解得2233由于12,所以122PQ,所以线段PQ 的长为 2.2.已知直线l 的参数方程为431x t ayt (t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin8.(1)求圆M 的直角坐标方程;(2)若直线l 截圆M 所得弦长为3,求实数a 的值.解:(1)∵2222268(36si )n81xyy xy ,∴圆M 的直角坐标方程为22(3)1xy ;(5分)(2)把直线l 的参数方程431x t ayt (t 为参数)化为普通方程得:34340x y a ,∵直线l 截圆M 所得弦长为3,且圆M 的圆心(0,3)M 到直线l 的距离22|163|3191()5222a da或376a,∴376a或92a.(10分)3.已知曲线C 的参数方程为sin51cos 52yx(为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。
(1)求曲线c 的极坐标方程(2)若直线l 的极坐标方程为(sin θ+cos θ)=1,求直线l 被曲线c 截得的弦长。
解:(1)∵曲线c 的参数方程为sin51cos 52yx(α为参数)∴曲线c 的普通方程为(x-2)2+(y-1)2=5将sincos yx代入并化简得:=4cos θ+2sin θ即曲线c 的极坐标方程为=4cos θ+2sin θ(2)∵l 的直角坐标方程为x+y-1=0∴圆心c 到直线l 的距离为d=22=2∴弦长为225=234.已知曲线C :2219xy,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()24.(1)写出曲线C 的参数方程,直线l 的直角坐标方程;(2)设P 是曲线C 上任一点,求P 到直线l 的距离的最大值.解:(1)曲线C 的参数方程为3cos sinxy(为参数),直线l 的直角坐标方程为2x y(2)设(3cos,sin)P ,P 到直线l 的距离10cos()23cossin 222d(其中为锐角,且1tan3)当cos()1时,P 到直线l 的距离的最大值max52d 5.设经过点(1,0)P 的直线l 交曲线C :2cos 3sinxy(为参数)于A 、B 两点.(1)写出曲线C 的普通方程;(2)当直线l 的倾斜角60时,求||||PA PB 与||||PA PB 的值.解:(1)C :22143xy.(2)设l :11232x tyt(t 为参数)联立得:254120tt 212121216||||||45PA PB t t t t t t ,1212||||||5PA PB t t 6.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,)2,若直线l 过点P ,且倾斜角为6,圆C 以M 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程;(2)设直线l 与圆C 相交于,A B 两点,求PA PB.解:(1)直线l 的参数方程为31,212,2x t yt 为参数)t (,(答案不唯一,可酌情给分)圆的极坐标方程为sin6.(2)把31,212,2x t yt 代入22(3)9xy ,得2(31)70tt ,127t t ,设点,A B 对应的参数分别为12,t t ,则12,PAt PBt ,7.PAPB7.在平面直角坐标系xOy 中,直线l 的参数方程是22222x tyt (t 为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为42cos()4.(1)将圆C 的极坐标方程化为直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,点P 的坐标为(2,0),试求11PA PB的值.解:(1)由42cos()4,展开化为2242(cos sin )4(cos sin )2,将代入,得22440xyx y ,所以,圆C 的直角坐标方程是22440xyxy.cos sinxy(2)把直线l 的参数方程22222x tyt(t 为参数)代入圆的方程并整理,可得:22240tt.设A ,B 两点对应的参数分别为12,t t ,则121222,40t t t t ,所以2121212()426t t t t t t .∴121212111126642t t PAPBt t t t .8.已知曲线C 的极坐标方程为2sin cos10,曲线13cos :2sin x C y(为参数).(1)求曲线1C 的标准方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值.解:(1)曲线1C 的标准方程是:22194xy(2)曲线C 的标准方程是:210xy 设点(3cos ,2sin)M ,由点到直线的距离公式得:3cos 4sin 1015cos()1055d其中34cos,sin550时,min5d ,此时98(,)55M 9.在平面直角坐标系xOy 中,直线l 的参数方程为122322x t yt(t 为参数),直线l 与曲线C :22(2)1yx交于A ,B 两点.(1)求AB 的长;(2)在以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,设点P 的极坐标为322,4,求点P 到线段AB 中点M 的距离.解:(1)直线l 的参数方程为122322x t yt ,,(t 为参数),代入曲线C 的方程得24100tt .设点A ,B 对应的参数分别为12t t ,,则124t t ,1210t t ,所以12||||214AB t t .(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22),,所以点P 在直线l 上,中点M 对应参数为1222t t ,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM .10.已知直线l 经过点(1,1)P ,倾斜角6,(1)写出直线l 的参数方程。
高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线的参数方程为(为参数)的普通方程为___________.【答案】【解析】由x=1+t得t=x-1代入y=-1+3t整理得,,即为曲线C的普通方程.考点:参数方程与普通方程互化2.直线(为参数)的倾斜角是【答案】.【解析】直线的斜率为,因此该直线的倾斜角为.【考点】1.直线的参数方程;2.直线的斜率3.在直角坐标系中,曲线C1的参数方程为(为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为。
【答案】2【解析】曲线,,由圆心到直线的距离,故与的交点个数为2.4.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【答案】(1)(2)(, ),(2, )【解析】(1)将消去参数t,化为普通方程 , 即C1:.将代入得.所以C1的极坐标方程为.(2)C2的普通方程为 .由解得或所以C1与C2交点的极坐标分别为(, ),(2, )5.如图,以过原点的直线的倾斜角为参数,则圆的参数方程为 .【答案】(为参数)【解析】x2+y2-x=0圆的半径为,圆心为C(,0).连接CP,则∠PCx=2所以P点的坐标为:(为参数)6.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|= .【答案】16【解析】直线的普通方程为x=4,代入曲线的参数方程得t=±2,当t=2时x=4,y=8;当t=-2时,x=4,y=-8,即有两个交点的直角坐标为A(4,8),B(4,-8)于是|AB|=8-(-8)=167.在极坐标系中,圆上的点到直线的距离的最小值为________.【答案】1【解析】圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.【考点】直角坐标与极坐标、距离公式.8.已知曲线的极坐标方程是,直线的参数方程是(为参数).设直线与轴的交点是,是曲线上一动点,求的最大值.【答案】【解析】首先将曲线的极坐标方程、直线的参数方程转化为直角坐标方程,可知,曲线是以为圆心,1为半径的圆,由直线的直角坐标方程得,令,可求出点的坐标,则点与圆心的距离可以求,从而可得曲线上的动点与定点的最大值为.试题解析:曲线的直角坐标方程为,故圆的圆心坐标为(0,1),半径直线l的直角坐标方程, 令,得,即点的坐标为(2,0).从而,所以.即的最大值为。
(完整)高中数学参数方程大题(带答案)

参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.专题:计算题;压轴题;转化思想.分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆;(2)把t的值代入曲线C1的参数方程得点P的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出Q的坐标,利用中点坐标公式表示出M的坐标,利用点到直线的距离公式表示出M到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.分析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用x=ρcosθ,y=ρsinθ即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,解答:解(1)∵P点的极坐标为,∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.点评:本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:直线与圆.分析:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.点评:本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得d的最小值,以及此时的α的值,从而求得点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.考点:简单曲线的极坐标方程.专题:计算题.分析:(I)先利用三角函数的和角公式展开圆C的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而得到圆心C的直角坐标.(II)欲求切线长的最小值,转化为求直线l上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线C1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q的轨迹C2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:压轴题;直线与圆.分析:(I)先将圆C1,直线C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),从而直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,从而构造关于a,b的方程组,解得a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.点评:本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.考点:简单曲线的极坐标方程.专题:计算题.分析:(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得曲线C2及曲线C1的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:计算题.分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值,最后列出关于r的方程即可求出r值.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.。
(完整版)高中数学参数方程大题(带答案)
hingsintheirbeingadforso参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题. 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l的极坐标方程为:,ti m e an dAl h ei r be i ng ar e g o o d f o rs o ∴,∴x ﹣y+1=0.(2)根据曲线C 的参数方程为:(α为参数).得(x ﹣2)2+y 2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C 上的点到直线l 的距离的最大值=.点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C 1:(t 为参数),C 2:(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t=,Q 为C 2上的动点,求PQ 中点M 到直线C 3:(t 为参数)距离的最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.专题:计算题;压轴题;转化思想.分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C 1表示一个圆;曲线C 2表示一个椭圆;(2)把t 的值代入曲线C 1的参数方程得点P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C 2的参数方程设出Q 的坐标,利用中点坐标公式表示出M 的坐标,利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C 1:(t 为参数)化为普通方程得:(x+4)2+(y ﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C 2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x 轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C 1的参数方程得:P (﹣4,4),把直线C 3:(t 为参数)化为普通方程得:x ﹣2y ﹣7=0,Al l thi n gs in th e i r be i n g ar eg o o d f o rs o 所以M 到直线的距离d==,(其中sin α=,cos α=)从而当cos θ=,sin θ=﹣时,d 取得最小值.点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为,直线l 的参数方程为(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB 面积的最大值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入即可得出.(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入可得:圆C 的普通方程为x 2+y 2﹣2x+2y=0,即(x ﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l 的参数方程(t 为参数),把t=x 代入y=﹣1+2t 可得直线l 的普通方程:,∴圆心到直线l 的距离,∴|AB|=2==,点P 直线AB 距离的最大值为,.点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、andAllthibeingaregoodforso 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.分析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;ai n th ei r be i ng ar e g oo d f o rs o(2)可设圆的参数方程为:(θ为参数),则设M (,),则x+y==sin (),由于θ∈R ,则x+y 的最大值为1.点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C 的极坐标方程为.(Ⅰ)写出点P 的直角坐标及曲线C 的普通方程;(Ⅱ)若Q 为C 上的动点,求PQ 中点M 到直线l :(t 为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用x=ρcos θ,y=ρsin θ即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,解答:解 (1)∵P 点的极坐标为,∴=3,=.∴点P 的直角坐标把ρ2=x 2+y 2,y=ρsin θ代入可得,即∴曲线C 的直角坐标方程为.(2)曲线C 的参数方程为(θ为参数),直线l 的普通方程为x ﹣2y ﹣7=0设,则线段PQ 的中点.那么点M 到直线l 的距离.l l thi n gs in th e i r be i n g a r e g o o df o rs o ∴点M 到直线l 的最小距离为.点评:本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:直线与圆.分析:(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简即可得到此圆的极坐标方程.(II )由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程.(II )如图所示,由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.l l t h i n gs i n t h ei r b e i n g a r eg oo 点评:本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系xoy 中,曲线C 1的参数方程为(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+)=4.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcos θ、y=ρsin θ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y ﹣8=0的距离为,可得d 的最小值,以及此时的α的值,从而求得点P的坐标.解答:解:(1)由曲线C 1:,可得,两式两边平方相加得:,即曲线C 1的普通方程为:.由曲线C 2:得:,即ρsin θ+ρcos θ=8,所以x+y ﹣8=0,即曲线C 2的直角坐标方程为:x+y ﹣8=0.(2)由(1)知椭圆C 1与直线C 2无公共点,椭圆上的点到直线x+y ﹣8=0的距离为,∴当时,d 的最小值为,此时点P 的坐标为.点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l 的参数方程是(t 为参数),圆C 的极坐标方程为ρ=2cos (θ+).(Ⅰ)求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.e an d A l l t h h ei r be i ng a r e g o o d f o r s 分析:(I )先利用三角函数的和角公式展开圆C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程,从而得到圆心C 的直角坐标.(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I )∵,∴,∴圆C 的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II )∵直线l 的普通方程为,圆心C 到直线l 距离是,∴直线l 上的点向圆C 引的切线长的最小值是(10分)点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.11.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t 为参数),曲线C 1的方程为ρ(ρ﹣4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.(1)求点Q 的轨迹C 2的直角坐标方程;(2)直线l 与直线C 2交于A ,B 两点,若|AB|≥2,求实数a 的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线C 1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹C 2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:(1)根据题意,得曲线C 1的直角坐标方程为:x 2+y 2﹣4y=12,设点P (x ′,y ′),Q (x ,y ),根据中点坐标公式,得,代入x 2+y 2﹣4y=12,得点Q 的轨迹C 2的直角坐标方程为:(x ﹣3)2+(y ﹣1)2=4,(2)直线l 的普通方程为:y=ax ,根据题意,得,ti m e a n dAl lr b e i n g a r e g o o d f o rs o 解得实数a 的取值范围为:[0,].点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ()=2.(Ⅰ)求C 1与C 2交点的极坐标;(Ⅱ)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 的参数方程为(t ∈R 为参数),求a ,b 的值.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:压轴题;直线与圆.分析:(I )先将圆C 1,直线C 2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3),从而直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,从而构造关于a ,b 的方程组,解得a ,b 的值.解答:解:(I )圆C 1,直线C 2的直角坐标方程分别为 x 2+(y ﹣2)2=4,x+y ﹣4=0,解得或,∴C 1与C 2交点的极坐标为(4,).(2,).(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3),故直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,ti mn dAl l thi n gs i n t h ei r be i n g ar es o 解得a=﹣1,b=2.点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.13.在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ(Ⅰ)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(Ⅱ)若曲线C 与直线相交于不同的两点M 、N ,求|PM|+|PN|的取值范围.解答:解:(I )直线l 的参数方程为(t 为参数).曲线C 的极坐标方程ρ=4cos θ可化为ρ2=4ρcos θ.把x=ρcos θ,y=ρsin θ代入曲线C 的极坐标方程可得x 2+y 2=4x ,即(x ﹣2)2+y 2=4.(II )把直线l 的参数方程为(t 为参数)代入圆的方程可得:t 2+4(sin α+cos α)t+4=0.∵曲线C 与直线相交于不同的两点M 、N ,∴△=16(sin α+cos α)2﹣16>0,∴sin αcos α>0,又α∈[0,π),∴.又t 1+t 2=﹣4(sin α+cos α),t 1t 2=4.∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.点评:本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题. 14.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.e an dn gs in th ei r b e i n g a r e g o (II )设P ,又C .利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I )由⊙C 的极坐标方程为ρ=2sin θ.∴ρ2=2,化为x 2+y 2=,配方为=3.(II )设P ,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P (3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.15.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B 两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB 的长度.考点:简单曲线的极坐标方程.专题:计算题.分析:(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得曲线C 2及曲线C 1的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的长度.解答:解:(Ⅰ)曲线C 2:(p ∈R )表示直线y=x ,曲线C 1:ρ=6cos θ,即ρ2=6ρcos θ所以x 2+y 2=6x 即(x ﹣3)2+y 2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB 的长度.点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为ρsin (θ+)=,圆C 的参数方程为,(θ为参数,r >0)(Ⅰ)求圆心C 的极坐标;(Ⅱ)当r 为何值时,圆C 上的点到直线l 的最大距离为3.eandAllthingsintheirbeoodforsom 专题:计算题.分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值,最后列出关于r的方程即可求出r值.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,t a dA h i n 可知圆圆的极坐标方程为解,),)解法一:由,,的公共弦的参数方程为的公共弦的参数方程为)代入从而的公共弦的参数方程为。
2023年高考数学真题分训练 极坐标系与参数方程(含答案含解析)
专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。
专题75 参数方程(原卷版)
2020年领军高考数学一轮复习(文理通用)专题75参数方程最新考纲1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.基础知识融会贯通1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程重点难点突破【题型一】参数方程与普通方程的互化【典型例题】已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.【再练一题】在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(1)求曲线C1和C2的普通方程;(2)直线l的参数方程是(t为参数),直线l过定点P(0,1)且与曲线C2交于A,B两点,求|P A|•|PB|的值.思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.【题型二】参数方程的应用【典型例题】已知直线l:(t为参数),曲线C1:(θ为参数).(1)设直线l与曲线C1相交于A,B两点,求劣弧AB的弧长;(2)若把曲线C1上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线C2,设点P是曲线C2上的一个动点,求点P到直线l的距离的最小值,及点P坐标.【再练一题】在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t 为参数).(1)求曲线C 和直线l 的普通方程,(2)直线l 与曲线C 交于A ,B 两点,若|AB |=1,求直线l 的方程.思维升华 (1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【题型三】极坐标方程和参数方程的综合应用【典型例题】在直角坐标系xOy 中,曲线C 1的参数方程为(α是参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程; (2)若射线θ=β(0<β)与曲线C 1交于O ,A 两点,与曲线C 2交于O ,B 两点,求|OA |+|OB |取最大值时tan β的值. 【再练一题】在直角坐标系xoy 中,直线l 的参数方程是(t 为参数),曲线C 的参数方程是(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线与曲线C 交于O ,M 两点,射线与直线l 交于N点,若△OMN 的面积为1,求α的值和弦长|OM |.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.基础知识训练1.在平面直角坐标系xOy 中,直线l的参数方程为322x y t ⎧=−⎪⎪⎨⎪=⎪⎩(t 为参数)。
新课标高考真题,参数方程典型例题,高考必考
1、(08)选修4-4:坐标系与参数方程已知曲线C 1:cos ()sin x y θθθ=⎧⎨=⎩为参数,曲线C 2:222()22x t t y t⎧=-⎪⎪⎨⎪=⎪⎩为参数。
(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C 。
写出1'C ,2'C 的参数方程。
1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由。
【试题解析】 (1)C1时圆,C2是直线C1的普通方程为221x y +=,圆心C1(0,0),半径1r =; C2的普通方程为20x y -+=,因为圆心C1到直线20x y -+=的距离为1,所以C1与C2只有一个公共点;(2)压缩后的参数方程分别为()()''122cos 22::1sin 224x x t C C t y y t ⎧=θ=-⎧⎪⎪⎪θ⎨⎨=θ⎪⎪⎩=⎪⎩为参数,为参数化为普通方程为'2'1212::22C x C y x =+2+4y =1,,联立消元得:222210x x ++=,其判别式()2224210∆=-⨯⨯=;所以压缩后的直线与椭圆仍然只有一个公共点,和原来相同;【高考考点】参数方程与普通方程的互化及应用 2、(09)选修4—4:坐标系与参数方程。
已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。
(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t=+⎧⎨=-+⎩ (t 为参数)距离的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy?中,曲线C 1的参数方程为
2cos 22sin x y α
α
=⎧⎨
=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程
(Ⅱ)在以O 为极点,x?轴的正半轴为极轴的极坐标系中,射线3
π
θ=与C 1的异于极点的交点为A ,
与C 2的异于极点的交点为B ,求AB .
2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ
⎩⎨⎧==,以坐标原
点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点
都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π
(1)求点,,,A B C D 的直角坐标;
(2)设P 为1C 上任意一点,求2
2
2
2
PA PB PC PD +++的取值范围。
3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程
已知曲线C 1的参数方程为45cos ,
55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立
极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;
(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).
4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos ,
2sin x t y t =⎧⎨=⎩(t 为参数)上,对应
参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;
(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.
5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22
149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数)
(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;
(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.
6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.
(Ⅰ)求C 的参数方程;
(Ⅱ)设点D 在C 上,C 在D
处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标. 第一题
2,【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ
点,,,A B C D
的直角坐标为1,1)--
(2)设00(,)P x y ;则002cos ()3sin x y ϕ
ϕϕ
=⎧⎨
=⎩为参数 3,解:(1)将45cos ,
55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,
即C 1:x 2+y 2-8x -10y +16=0.
将cos ,sin x y ρθρθ
=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为
ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.
由2222
810160,20x y x y x y y ⎧+--+=⎨+-=⎩
解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2
交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭
4,解:(1)依题意有P (2cos α,2sin α),Q (2cos2α,2sin2α), 因此M (cos α+cos2α,sin α+sin2α).
M 的轨迹的参数方程为cos cos 2,
sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,0<α<2π).
(2)M 点到坐标原点的距离
d ==<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.
5解析:(Ⅰ)曲线C 的参数方程为2cos 3sin x y θ
θ=⎧⎨=⎩,直线l 的普通方程为260x y +-=;
(Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d
||2sin 30d
PA d =
=︒
,所以()()max max min min max min ||22|22PA d d PA d d ======
所以D 点坐标为1(1)22-
或1
(1,)22
+-。