运动对免疫系统的影响
体育运动在预防疾病方面的作用

体育运动在预防疾病方面的作用体育运动是一种积极的生活方式,对身体健康和疾病预防起着重要作用。
通过参与体育运动,我们可以增强身体的免疫系统,保持良好的心理状态,并减少患上许多慢性疾病的风险。
本文将探讨体育运动在预防疾病方面的作用,并提供一些实用的建议。
一、增强免疫系统参与体育运动可以增强我们的免疫系统,从而提高身体对抗疾病的能力。
体育运动可以促进血液循环,增加血液中的白细胞数量,清除体内的毒素和废物。
此外,运动还可以提高体温,抑制病毒和细菌的生长。
因此,经常参与体育运动可以帮助我们更好地抵抗感冒、流感等常见疾病。
二、预防心血管疾病心血管疾病是导致许多人死亡的主要原因之一,而体育运动可以显著降低患上心血管疾病的风险。
有氧运动,如慢跑、游泳和有氧操,可以增强心脏肌肉,改善心血管系统的功能。
此外,体育运动还可以降低体重、控制血压和血脂,减少动脉堵塞的风险。
因此,每周进行适度的有氧运动是预防心血管疾病的有效方法。
三、降低肥胖风险肥胖是许多慢性疾病的主要风险因素之一,包括糖尿病、高血压和关节炎等。
体育运动可以帮助我们消耗多余的热量,控制体重。
此外,通过体育锻炼可以增强肌肉,提高新陈代谢率,使我们在休息时也能消耗更多的能量。
因此,定期参与体育运动可以帮助我们远离肥胖和其相关疾病。
四、改善心理健康体育运动对心理健康也起着重要作用。
运动可以促进大脑内多巴胺等神经递质的分泌,提高我们的幸福感和满足感。
此外,体育运动还可以减轻压力、焦虑和抑郁情绪,增强自尊心和自信心。
因此,通过体育运动,我们可以保持积极的心态,更好地应对生活中的困难和挑战。
五、建议与总结为了充分享受体育运动的益处,以下是一些建议:1. 持续性:定期参与体育运动,每周至少进行3-5次,每次30分钟以上。
2. 多样性:尝试不同类型的体育运动,包括有氧运动、力量训练和灵活性训练。
3. 适度性:根据自身健康状况和体能水平选择适合自己的运动方式和强度。
4. 安全性:在进行体育运动之前,进行热身运动并确保运动场所和装备的安全。
哪些因素会影响免疫系统的正常功能

哪些因素会影响免疫系统的正常功能免疫系统是人体抵御外部病原体入侵的重要组成部分,它对于维护身体健康至关重要。
然而,有些因素会干扰免疫系统的正常功能,使其失去对外界威胁的识别和应对能力。
本文将探讨影响免疫系统正常功能的几个主要因素,并分析其可能带来的影响。
一、生活方式因素1. 饮食习惯:饮食习惯对免疫系统有着直接的影响。
不良饮食习惯,如摄入过多的高糖、高脂肪和加工食品,会削弱免疫系统的功能。
相反,均衡饮食、多摄入富含维生素C、E等抗氧化物质以及纤维素丰富的水果和蔬菜,则有助于增强免疫系统。
2. 运动锻炼:适度而规律的运动可以促进血液循环,提高免疫细胞在身体中的流动性,并增加机体产生抗体的能力。
长期缺乏运动或过度运动都可能造成免疫系统紊乱,导致免疫功能下降。
3. 睡眠质量:睡眠对于维护免疫系统正常功能至关重要。
长期睡眠不足或睡眠质量差会使身体处于亚健康状态,减弱机体抵御外界侵略的能力,从而影响免疫系统的正常工作。
二、环境因素1. 空气污染:空气中存在的细菌、病毒和有害物质如PM2.5等可以刺激免疫反应并导致免疫系统失调。
长期生活在空气污染严重的地区,会增加免疫相关疾病发生的风险。
2. 化学物质暴露:某些化学物质,如农药、有机溶剂和重金属等,可能对人体内部的免疫系统产生直接毒性作用,干扰其正常功能。
接触这些化学物质过多且频率高,会增加自身免疫性疾病以及感染性疾病的患病风险。
3. 辐射:长期接触高强度辐射(如X射线、紫外线)或者次生辐射(如电离辐射产生的放射性废物)可能直接或间接地干扰免疫系统功能。
这种辐射能够损伤机体内重要的细胞,抑制免疫细胞的活性,增加罹患恶性肿瘤和免疫相关性疾病的风险。
三、心理因素1. 长期压力:长期处于高压力状态下会导致身体分泌应激激素增多,这些激素可影响免疫系统的平衡,并导致免疫抑制。
进而使得人体对感染和其他疾病的抵抗力下降。
2. 消极情绪:消极情绪,如焦虑、抑郁等,对免疫系统有负面影响。
运动和免疫力的联系

运动和免疫力的联系运动是保持健康的重要途径,而免疫力则是我们身体对抗疾病的重要武器。
那么,运动和免疫力之间是否存在联系呢?本文将为大家深入探讨运动和免疫力之间的关系,并为大家介绍一些科学有效的运动方式,来提升我们的免疫力。
一、运动如何提升免疫力运动对于我们的身体来说,不仅能够增强肌肉力量、改善心肺功能,还能提高免疫系统的活力。
运动可以帮助我们身体产生一系列有益的变化,包括增加白细胞数量、提高抗体产生能力以及改善淋巴系统的循环等。
这些变化都有助于加强我们身体的抵抗力,帮助我们更好地对抗病毒和细菌的入侵。
二、适宜的运动方式什么样的运动方式能够更好地提升我们的免疫力呢?这里为大家推荐几种科学有效的运动方式。
1. 有氧运动有氧运动是指那些能够加速心率、加强心肺功能的运动,例如跑步、游泳、骑行等。
这些运动可以提高我们身体的耐力和代谢水平,加速血液循环,从而增强机体的免疫功能。
每周进行3至5次,每次30分钟的有氧运动,对于提升免疫力十分有效。
2. 慢跑慢跑是一种简单而又普遍的运动方式,对于提高免疫力具有很大的帮助。
适当的慢跑能够加强肺活量,提高血液氧合能力,增强心血管功能。
建议每周进行2至3次,每次30分钟的慢跑,能够有效增强机体免疫系统。
3. 瑜伽瑜伽运动可以平衡身心,帮助我们释放压力,改善睡眠质量。
研究表明,压力和睡眠质量与免疫力息息相关。
通过经常练习瑜伽,可以调节我们的自律神经,减少身体的应激反应,提高免疫系统的功能。
三、注意事项在进行运动时,我们还需要注意以下几点。
1. 合理安排运动时间和强度运动的时间和强度应根据自身情况进行合理安排。
过度运动可能导致身体疲劳,反而会对免疫力产生负面影响。
因此,在制定运动计划时,我们需要根据自己的体力状况和日常生活节奏,选择适合自己的运动方式和时长。
2. 不要集中运动我们每天可以进行适量的运动,但不要将所有时间都集中在一段时间内进行。
适量分散的运动可以更好地调节我们的身体机能,增强免疫力。
运动与健康的关系研究

运动与健康的关系研究运动和健康一直有着密切的联系。
运动可以增强人体免疫系统、提高身体素质、减轻心理压力、降低心血管疾病等许多好处。
在日常生活中,我们可以通过各种形式的运动来保持健康。
一、运动与免疫系统运动能够促进人体免疫系统的正常运作,增加机体对疾病的抵抗力,从而预防感染疾病的发生。
运动可提高T淋巴细胞的数目,这些细胞能够寻找并杀死病毒、细菌和其他病原体。
此外,运动还可以增加抗体的产生,使身体有更好的应对力。
二、运动与身体素质适量的运动有益身体健康。
经常参加体育锻炼能够增强肌肉、骨骼的力量,提高心肺功能和耐力,帮助我们保持身体的协调性和平衡感。
同时,运动还能够增加身体的灵活性和反应速度,让我们更加敏捷。
三、运动与心理压力运动是舒缓压力的最好方式之一。
运动能够分散我们的注意力,减轻对生活中烦恼的关注度,给我们一个放松的机会。
适量的运动可以使人感到轻松、愉快、兴奋和精力充沛。
对于宿舍、工作生活压力过大的人群,运动可是一个重要的选择。
四、运动与心血管疾病运动对于预防心血管疾病有着积极的作用,如冠状动脉疾病、高血压和心脏病等。
适度的运动可以提高我们的心肺功效,减少胆固醇的积累,防止动脉硬化。
长期坚持适量的运动,有助于心脏的健康,增强心脏的容量和功能,减少心脏病的风险。
在日常生活中,我们可以通过许多不同的方式参加运动,以保持身体的健康。
跑步、游泳、骑自行车、健身操、瑜伽等等,不同的运动方式适合不同的年龄段和需求。
但无论我们选择什么类型的运动,都需要注意安全性和适度性。
充分休息,科学合理的锻炼,才能达到保健和防病的目的。
综上所述,运动和健康是密不可分的。
人们应该养成良好的运动习惯,定期锻炼身体,以保持身体的健康和免疫力。
一个健康、充满活力的生命是每一个人的追求。
运动与免疫力的提升效果研究

运动与免疫力的提升效果研究运动是促进健康的重要因素之一,而免疫力则是保持身体强壮、抵抗疾病的关键。
近年来,研究人员对运动和免疫力之间的关系进行了深入探索,并发现了一系列令人惊喜的发现。
本文将通过对相关研究的综述,详细介绍运动对免疫力的提升效果。
一、运动能够增强免疫细胞活性研究表明,适度而持续的运动可以提高免疫细胞(如白细胞、NK细胞)的活性,增强其抵抗病毒和细菌感染的能力。
通过运动促进血液循环,免疫细胞得以更快地到达受感染区域,帮助身体快速消灭病原体。
此外,运动还能够刺激免疫细胞释放细胞因子,提高免疫功能。
二、运动有助于调节免疫系统的平衡免疫系统的平衡是维持身体健康的关键。
过强或过弱的免疫反应都可能导致疾病的产生。
研究发现,运动可以使免疫系统达到良好的平衡状态。
适度的运动能够抑制炎症反应,减少炎症因子的释放,从而预防慢性炎症疾病的发生。
同时,运动还能够刺激免疫系统的应激反应,提高身体对紧急情况的抵抗力。
三、运动对心理健康的影响间接提升免疫力心理健康与免疫力密切相关。
焦虑、抑郁等负面情绪会削弱免疫系统的功能。
运动作为一种身心健康的保护因素,可以帮助人们缓解压力、减少焦虑,提高情绪稳定性,从而间接地提升免疫力。
研究发现,通过运动释放的内啡肽和多巴胺等神经递质可以改善心情,增强人们的抗压能力和免疫功能。
四、运动的免疫增强效果与运动种类、强度相关不同种类和强度的运动对免疫力的提升效果有差异。
一般来说,有氧运动(如跑步、游泳)和无氧运动(如举重、爬山)都可以增强免疫功能,但研究表明,适度的有氧运动对免疫系统的调节效果更为显著。
此外,运动的强度也是影响免疫增强效果的重要因素。
适度强度的运动能够提高免疫细胞的活性,但过度激烈的运动则可能抑制免疫系统的功能。
结论通过对相关研究的综述,我们可以得出结论:运动对免疫力的提升效果是客观存在的。
适度而持续的运动可以增强免疫细胞的活性,调节免疫系统的平衡,并通过改善心理健康间接地提升免疫力。
体育锻炼有助于增强免疫力

体育锻炼有助于增强免疫力
一、体育锻炼:增强免疫力的有效途径
体育锻炼是一种非常有效的增强免疫力的方法。
通过适当的运动,可以提高身体的免疫系统功能,增强抵抗力,减少患病的风险。
在这个充满挑战和压力的社会中,保持良好的免疫系统对于我们的
健康至关重要。
二、运动对免疫系统的影响
研究表明,适量的运动可以增强免疫系统的功能。
运动可以促
进血液循环,加速新陈代谢,提高白细胞的活性,增强身体对抗病
毒和细菌的能力。
此外,运动还可以减少慢性炎症,降低患病风险。
三、选择适合自己的运动方式
每个人的身体状况和运动需求都不同,因此选择适合自己的运
动方式非常重要。
可以选择跑步、游泳、瑜伽、健身操等不同的运
动方式,根据自己的兴趣和身体状况进行选择。
坚持每天适量的运动,可以有效增强免疫力。
四、注意运动的时间和强度
运动的时间和强度也是影响免疫力的重要因素。
过度运动会导
致身体疲劳,降低免疫系统的功能,增加感染的风险。
因此,要根
据自己的身体状况和运动需求,合理安排运动时间和强度,避免过
度运动对免疫系统的负面影响。
五、坚持运动,享受健康生活
通过适量的运动,可以增强免疫系统的功能,提高身体的抵抗力,减少患病的风险。
坚持每天适量的运动,不仅可以保持健康的
身体,还可以享受健康的生活。
让我们一起通过运动,增强免疫力,迎接健康的未来!。
运动生理学知识:运动对免疫系统的影响
运动生理学知识:运动对免疫系统的影响免疫系统是人体抵御外来入侵物质和维持内部稳态的重要系统之一,而身体运动对免疫系统的影响成为近年来学界普遍关注的话题。
本文将探究身体运动在机体免疫系统方面的作用,以帮助人们更好地理解运动对身体健康的重要性。
一、身体运动如何影响免疫系统首先,身体运动可以提高免疫系统的免疫力。
运动能促进血液循环、加强呼吸系统功能和提高心肺能力,这些变化将显著增强人体的免疫力。
研究表明,适量的运动能够刺激人体产生大量的T细胞和巨噬细胞,这些免疫细胞可以对外来入侵物质产生有效的免疫反应。
其次,身体运动还可以提高免疫系统的效能。
运动对人体免疫系统的提高主要在两个方面:一是直接影响免疫系统的免疫力;另一个是通过提高心血管、呼吸系统的效能以及增加红血细胞,运动可以加强机体对于病原菌或病毒的快速反应。
第三,运动可以增加免疫系统的细胞活性和数量。
运动的影响不仅可以增加免疫系统的免疫力和效能,也可以增加免疫系统的活力,从而更好地对抗外来入侵物质。
在人体运动时,机体会产生一种叫做脉动氧的物质,这种物质可以促进免疫细胞的产生,提高机体对于抗体的反应能力。
最后,身体运动可能减少免疫系统的炎症反应。
虽然炎症反应是免疫系统对外来入侵的自我保护反应,但是过度的炎症反应也可能导致机体陷入炎性状态。
研究表明,运动能够促进体内内源性荷尔蒙的分泌,如内啡肽和内皮素等,这些荷尔蒙可以抑制细胞因子的产生,从而减轻炎症反应。
二、如何通过身体运动提高免疫系统的效益运动对免疫系统的提高可以帮助我们更好地抵御外来入侵物质的侵袭,但是它同样也需要一定的策略和技巧。
以下是几个帮助你通过运动增强免疫系统的技巧。
1、适量运动过度运动可能会削弱免疫系统,因为过量的运动会使机体处于高度应激状态,从而导致免疫系统的活性下降。
因此,适量运动是提高免疫系统效能的关键。
通常,每周进行三到四次有氧运动,每次运动20-30分钟,就能产生良好的免疫反应,同时也避免了过度运动。
体育运动对身体机能的影响
体育运动对身体机能的影响体育运动作为一种身体活动形式,对人体的身体机能有着深远的影响。
不同类型的体育运动会对身体机能的不同方面产生有益的影响,包括心血管健康、肌肉力量、骨骼健康、代谢功能和免疫系统等。
下面将详细介绍体育运动对身体机能的影响。
首先,体育运动对心血管健康有着重要的影响。
适度的有氧运动,如慢跑、游泳等,能够增强心肺功能,改善心血管系统的工作效率。
运动可以促进心脏的正常收缩和舒张,增加心脏的收缩力,提高心脏的灵活性。
此外,运动还能够降低血压和血脂,减少动脉粥样硬化的发生,降低患心脏病和中风的风险。
其次,体育运动对肌肉力量的提升有着显著的影响。
力量训练是一种通过负重训练来增强肌肉力量和体能的运动方式。
合理的力量训练可以增加肌肉的外形和大小,提高肌肉的爆发力和耐力。
力量训练还能够增加肌肉对关节的稳定性,预防关节损伤的发生。
此外,力量训练还能够增加骨密度,减少骨质疏松的风险。
再次,体育运动对骨骼健康的影响也是非常重要的。
因为体育运动可以增加骨骼负荷,刺激骨骼组织的生长和重塑。
根据研究,有规律的体育运动可以增加骨量,减少骨质疏松的风险。
特别是在青春期,适当的体育运动有助于骨骼的正常发育,预防骨质疏松症的发生。
最后,体育运动对免疫系统有着重要的影响。
适度的体育运动可以增强免疫系统的功能,提高机体的抗病能力。
研究显示,体育运动可以提高机体的天然杀伤细胞活性,促进免疫细胞的产生和增殖。
适度的体育运动还能够提高大量氧对细胞的供应,增强机体的氧化还原能力,有效清除体内的自由基,减缓细胞老化。
综上所述,体育运动对身体机能的影响非常广泛。
适度的有氧运动能够促进心血管健康,力量训练和骨骼负荷能够提高肌肉力量和骨骼健康,体育运动对代谢功能的调节能够减少脂肪积累,体育运动对免疫系统的影响能够提高机体的抗病能力。
因此,我们应该适当地参与体育运动,享受到它对身体机能的积极影响。
运动对免疫系统功能的调节机制
运动对免疫系统功能的调节机制免疫系统是人体的重要组成部分,它具有保护机体免受疾病侵袭的功能。
然而,由于现代生活方式的改变,人们的免疫功能受到了一定程度的削弱。
一个积极主动参与运动的人往往有较强的免疫功能,这是因为运动对免疫系统的功能调节起着积极的作用。
本文将从不同角度探讨运动对免疫系统功能的调节机制。
首先,运动可通过提高机体抗病能力来调节免疫系统功能。
一项研究表明,参与长期体育锻炼的人,相比久坐不动的人,具有更强大的自然杀伤细胞活性。
自然杀伤细胞是免疫系统中的一类重要细胞,能够迅速识别并清除异常细胞,从而预防疾病发生。
运动可改善身体循环,促进血液流动,加强机体代谢,提高自然杀伤细胞的活性。
同时,运动还可以增强肌肉的收缩力,促进淋巴液的循环,有效清除毒素和废物,提高机体的抵抗能力。
其次,运动通过调节免疫系统荷尔蒙分泌来提高免疫功能。
一方面,运动可促进肾上腺素和皮质醇等荷尔蒙的分泌。
这些荷尔蒙具有增强机体应激抗性的作用,能够提高免疫细胞的数量和活性,从而有效应对外界挑战。
另一方面,运动还可以增加身体内的内啡肽等荷尔蒙的分泌。
内啡肽是一种内源性的镇痛物质,它具有抗炎和抗氧化的作用,能够帮助提升免疫系统的功能。
因此,通过调节荷尔蒙的分泌,运动能够增强免疫系统的防御能力。
进一步地,运动可以提高免疫细胞的活力,从而调节免疫系统功能。
研究表明,长期参与有氧运动的人,其免疫细胞数量和活性都较高。
有氧运动(如跑步、游泳等)可提高心肺功能,增加氧气供应,增强新陈代谢,为免疫细胞提供更多的能量和养分。
此外,运动还可通过促进淋巴细胞循环来增强免疫细胞的活力。
淋巴细胞是免疫系统中的重要细胞,它们能够识别并攻击病原体。
运动可促进淋巴细胞在体内的流动,增加它们与外界病原体的接触机会,从而提高免疫细胞的活力。
最后,运动对于缓解炎症反应也具有积极作用,从而进一步调节免疫系统功能。
炎症反应是免疫系统的一种防御机制,但过度的炎症反应会对机体造成损害。
运动对免疫系统调节机制的影响研究
运动对免疫系统调节机制的影响研究随着人们对健康的重视,越来越多的人开始注重运动的作用。
运动不仅可以使身体更健康,还可以对免疫系统产生积极的影响。
本文将探讨运动对免疫系统调节机制的影响,并对相关研究进行综述。
一、运动对免疫系统的影响研究表明,运动可以增强免疫系统的功能,提高人体抵御疾病的能力。
具体来说,运动可以促进免疫系统中的白细胞生成和分化,增加巨噬细胞的数量和活性,提高NK细胞的杀伤能力,增强T细胞和B细胞的反应性等,从而使免疫系统更加健康。
此外,运动还可以减轻炎症反应,降低自身免疫性疾病的发生风险。
运动可以促进正常细胞的生长和繁殖,抑制炎症反应和自身免疫反应,从而减少炎症因子和自身抗体的数量,降低发生自身免疫性疾病的可能性。
综上所述,运动对免疫系统产生积极的影响,可以提高人体的免疫力和抵抗力,减轻炎症反应和自身免疫性疾病的发生风险。
二、运动对淋巴细胞的影响淋巴细胞是免疫系统的重要组成部分,主要包括T细胞、B细胞和NK细胞。
运动可以增加这些淋巴细胞的数量和活性,从而提高免疫系统的功能。
T细胞是免疫系统中最重要的细胞类型之一,与抗病毒反应和免疫调节密切相关。
研究表明,运动可以增加T细胞的数量,提高其效应和记忆性,从而提高人体的抵抗力。
此外,运动还可以减少免疫系统中抑制T细胞活性的因子,增强T细胞的活性,更有效地清除病原体。
B细胞主要负责产生抗体,可以识别和中和病原体。
研究表明,运动可以增加B细胞数量和活性,促进免疫记忆的形成,提高人体对病原体的抵抗能力。
此外,运动还可以提高B细胞的反应性,更快速地产生抗体,较快地消灭病原体。
NK细胞是免疫系统中具有自然杀伤功能的细胞,可以消灭多种肿瘤和病原体。
研究表明,运动可以增加NK细胞的数量和活性,提高其对病原体和癌细胞的杀伤效果,从而促进免疫系统的功能。
三、运动对炎症因子的影响炎症反应是一种机体对病原体和创伤的自我保护反应,但长期的炎症反应会对身体造成损伤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Position StatementPart one: Immune function and exerciseNeil P.Walsh1, Michael Gleeson2, Roy J. Shephard3, Maree Gleeson4 JeffreyA.Woods5, Nicolette C. Bishop2, Monika Fleshner6, Charlotte Green7, BenteK. Pedersen7, Laurie Hoffman-Goetz8, Connie J. Rogers9, HinnakNorthoff10, Asghar Abbasi10, Perikles Simon111 School of Sport, Health and Exercise Sciences, Bangor University, UK.2 School of Sport, Exercise and Health Sciences, Loughborough University, UK.3 Faculty of Physical Education and Health, University of Toronto, Canada.4 Hunter Medical Research Institute and Faculty of Health, University ofNewcastle, Australia.5 Department of Kinesiology and Community Health, University of Illinois atUrbana-Champaign, USA.6 Department of Integrative Physiology, University of Colorado, USA.7 The Centre of Inflammation and Metabolism at the Department of InfectiousDiseases, and Copenhagen Muscle Research Centre, Rigshospitalet, theFaculty of Health Sciences, University of Copenhagen, Denmark.8 Department of Health Studies and Gerontology, University ofWaterloo, Canada.9 Department of Nutritional Sciences, Pennsylvania State University, USA.10 Institute of Clinical and Experimental Transfusion Medicine, University ofTuebingen, Germany.11 Department of Sports Medicine, Disease Prevention and Rehabilitation,Johannes Gutenberg-University Mainz, Germany.CONSENSUS 共识STATEMENT陈述An ever-growing不断增长的volume量of peer-reviewed同行评审publications 出版物speaks to the recent and rapid growth in both scope规模、范围and understanding理解of exercise immunology. Indeed,more than 95% of all peer-reviewed publications in exercise immunology (currently>2, 200 publications using search terms “exercise” and “immune”) havebeen published since the formation of the International Society of Exercise国际运动免疫协会and Immunology (ISEI) in 1989 (ISI Web of Knowledge SM). We recognise承认the epidemiological流行病学distinction 区别between the generic term 通用术语“physical activity” 体力活动and the specific category类of “exercise”, which implie s activity for a specific purpose such as improvement of physical condition or competition. Extreme physical activity ofany type may have implications 影响for the immune system. However, because of its emotive component, exercise is likely to have a larger effect, and to date the greatmajority of our knowledge on this subject comes from exercise studies.In this position statement, a panel of world-leading experts provides a consensus ofcurrent knowledge, briefly covering the background, explaining what we think we6 • Immune function and exerciseEIR 17 2011 - position statement part 1Correspondence:NeilWalsh; email: n.walsh@; telephone: +44 1248 383480know with some degree of certainty, exploring continued controversies, and pointingto likely directions for future research. Part one of this position statement focuseson ‘immune function and exercise’ and part two on ‘maintaining immunehealth’. Part one provides a brief introduction and history (Roy Shephard) followedby sections on: respiratory infections and exercise (Maree Gleeson); cellular细胞的innate固有的immune function and exercise (Jeffrey Woods); acquired immunity and exercise (Nicolette Bishop); mucosal粘膜immunity and exercise (Michael Gleeson and Nicolette Bishop); immunological 免疫学的methods in exercise immunology (Monika Fleshner);anti-inflammatory effects of physical activity (Charlotte Green and Bente Pedersen); exercise and cancer (Laurie Hoffman-Goetz and Connie Rogers) and finally,“omics” in exercise (Hinnak Northoff, Asghar Abbasi and Perikles Simon).The focus on respiratory infections in exercise has been stimulated 刺激by the commonly held beliefs that the frequency of upper respiratory tract infections (URTI)is increased in elite endurance精英耐力athletes after single bouts较量of ultra-endurance exercise and during periods of intensive training. The evidence to support these conceptsis inconclusive尚无定论, but supports the idea that exercised-induced immune suppression抑制increases susceptibility易感性to symptoms of infection, particularly around thetime of competition, and that upper respiratory symptoms are associated with performance decrements递减. Conclusions from the debate on whether sore throats areactually caused by infections or are a reflection of other inflammatory stimuli刺激associated with exercise remains unclear.It is widely accepted that acute and chronic exercise alter the number and function of Circulating循环cells of the innate immune system (e.g. neutrophils嗜中性粒细胞, monocytes 单核细胞and natural killer (NK) cells). A limited number of animal studies has helped us determine the extent to which these changes alter susceptibility to herpes simplex and influenza virus infection. Unfortunately, we have only ‘scratched the surface’ regarding关于whether exercise-induced changes in innate immune function alter infectious disease susceptibility or outcome and whether the purported声称anti-inflammatory effectof regular exercise is mediated 导through exercise-induced effects on innate immune cells.We need to know whether exercise alters migration of innate cells and whetherthis alters disease susceptibility. Although studies in humans have shed light onmonocytes单核细胞, these cells are relatively immature and may not reflect the effects of exercise on fully differentiated tissue macrophages巨噬细胞. Currently, there is very little information on the effects of exercise on dendritic 树突状cells, which is unfortunate given the powerful influence of these cells in the initiation of immune responses.It is agreed that a lymphocytosis淋巴细胞is observed during and immediately after exercise, Proportional比例to exercise intensity and duration, with numbers of cells (Tcells and to a lesser extent B cells) falling below pre-exercise levels during theearly stages of recovery, before returning to resting values normally within 24 h. Mobilization动员of T and B cell subsets in this way is largely influenced by theactions of catecholamines儿茶酚胺. Evidence indicates that acute exercise stimulates T cell subset activation 激活in vivo and in response to mitogen有丝分裂原- and antigen-stimulation 抗原刺激.Although numerous studies report decreased mitogen- and antigen-stimulated T cell proliferation following acute exercise, the interpretation of these findingsmay be confounded by alterations in the relative proportion of cells (e.g. T, B and Immune function and exercise • 7EIR 17 2011 - position statement part 1NK cells) in the circulation that can respond to stimulation. Longitudinal纵向training studies in previously sedentary people have failed to show marked changes in T andB cell functions provided that blood samples were taken at least 24 h after the last exercise bout. In contrast, T and B cell functions appear to be sensitive to increases in training load in well-trained athletes, with decreases in circulating numbers of Type 1T cells, reduced T cell proliferative responses and falls in stimulated B cell Ig synthesis. The cause of this apparent depression in acquired immunity appears to be relatedto elevated circulating stress hormones, and alterations in the pro/anti-inflammatory cytokine balance in response to exercise. The clinical significance of these changesin acquired immunity with acute exercise and training remains unknown.The production of secretory immunoglobulin A (SIgA) is the major effector functionof the mucosal immune system providing the ‘first line of defence’ againstpathogens. To date, the majority of exercise studies have assessed saliva SIgA as a marker of mucosal immunity, but more recently the importance of other antimicrobial proteins in saliva (e.g. -amylase, lactoferrin and lysozyme) has gainedgreater recognition. Acute bouts of moderate exercise have little impact onmucosal immunity but prolonged exercise and intensified training can evokedecreases in saliva secretion of SIgA. Mechanisms underlying the alterations in mucosal immunity with acute exercise are probably largely related to the activationof the sympathetic nervous system and its associated effects on salivary protein exocytosis and IgA transcytosis. Depressed secretion of SIgA into saliva duringperiods of intensified training and chronic stress are likely linked to alteredactivity of the hypothalamic-pituitary-adrenal axis, with inhibitory effects on IgA synthesis and/or transcytosis. Consensus exists that reduced levels of saliva SIgAare associated with increased risk of URTI during heavy training.An important question for exercise immunologists remains: how does one measure immune function in a meaningful way? One approach to assessing immune functionthat extends beyond blood or salivary measures involves challenging study participants with antigenic stimuli and assessing relevant antigen-driven responses including antigen specific cell-mediated delayed type hypersensitivity responses, or circulating antibody responses. Investigators can inject novel antigens such as keyholelimpet haemocyanin (KLH) to assess development of a primary antibody response (albeit only once) or previously seen antigens such as influenza, where the subsequent antibody response reflects a somewhat more variable mixture of primary, secondary and tertiary responses. Using a novel antigen has the advantage that the investigator can identify the effects of exercise stress on the unique cellular events required for a primary response that using a previously seen antigen (e.g. influenza) does not permit. The results of exercise studies using these approaches indicate that an acute boutof intense exercise suppresses antibody production (e.g. anti-KLH Ig) whereas moderate exercise training can restore optimal antibody responses in the face of stressorsand ageing. Because immune function is critical to host survival, the system hasevolved a large safety net and redundancy such that it is difficult to determine howmuch immune function must be lost or gained to reveal changes in host disease susceptibility. There are numerous examples where exercise alters measures of immunityby 15-25%.Whether changes of this magnitude are sufficient to alter host defence,disease susceptibility or severity remains debatable.8 • Immune function and exerciseEIR 17 2011 - position statement part 1Chronic inflammation is involved in the pathogenesis发病of insulin resistance, atherosclerosis,neurodegeneration, and tumour growth. Evidence suggests that the prophylactic effect of exercise may, to some extent, be ascribed to the anti-inflammatory effect of regular exercise mediated via a reduction in visceral fat mass and/or byinduction of an anti-inflammatory environment with each bout of exercise (e.g. viaincreases in circulating anti-inflammatory cytokines including interleukin (IL)-1receptor antagonist and IL-10). To understand the mechanism(s) of the protective,anti-inflammatory effect of exercise fully, we need to focus on the nature of exercisethat is most efficient at allieviating the effects of chronic inflammation in disease.The beneficial effects of endurance exercise are well known; however, the antiinflammatory role of strength training exercises are poorly defined. In addition, theindependent contribution of an exercise-induced reduction in visceral fat versusother exercise-induced anti-inflammatory mechanisms needs to be understood better.There is consensus that exercise training protects against some types of cancers.Training also enhances aspects of anti-tumour immunity and reduces inflammatory mediators. However, the evidence linking immunological and inflammatory mechanisms, physical activity, and cancer risk reduction remains tentative.In the very near future, genomics, proteomics, and metabolomics may help exercise immunologists to better understand mechanisms related to exercise-inducedmodulation of the immune system and prevention (or reduced risk) of diseases byexercise training. In addition, these technologies might be used as a tool for optimizing individual training programmes. However, more rigorous standardizationof procedures and further technological advances are required before practicalapplication of these technologies becomes possible.Key Words: exercise; sport; training; immune; pathogen; infection; innate;acquired; mucosal; saliva; leukocyte; monocyte; neutrophil; granulocyte; lymphocyte; immunoglobulin; method; cytokine; interleukin; inflammation; cancer;genomics; proteomics; metabolomicsINTRODUCTION AND HISTORYTwo recent papers have summarized the scientific history of exercise immunology(263) and its development as a specific discipline (264) with its own internationalsociety and a dedicated journal. Exercise immunology has quite a short historyrelative to many branches of the exercise sciences, the modern era of careful epidemiological investigations and precise laboratory studies beginning in the mid1980s. However, an ever-growing volume of peer-reviewed publications speaks toa rapid growth in both scope and understanding of the topic since that date. Inaddition to enquiries into many areas of intrinsic scientific interest, exercise immunologistshave found diverse applications for their talents in augmenting populationhealth and maintaining high performance athletes in peak physical condition.From early during the 20th century, clinicians had pointed to what seemed adverse effects of prolonged heavy exercise upon both resistance to and the course of various viral and bacterial diseases (25, 261). These concerns were seemingly sub-Immune function and exercise • 9EIR 17 2011 - position statement part 1stantiated by a 2-6 fold increase in the reported symptoms of upper respiratoryinfection (URTI) for several weeks following participation in marathon or ultramarathon events (200, 224). The influence of exercise on the risks of URTI is discussedin the following section. A transient fall in the circulating natural killer(NK) cell count following a sustained bout of vigorous exercise (270) seemed tooffer a mechanism explaining the increase in risk; the temporary lack of NK cellsand killer cell activity offered an “open window,” a period when a reduced resistanceto viral infections allowed easier access to infecting micro-organisms. Innate immunityis discussed in detail later in this part of the position statement. In one report,the reduction in NK cell count persisted for seven days following exercise (259), butin most studies, circulating NK cell numbers and activity have been described asbeing depressed for only a few hours, raising doubts as to whether the “window”was open long enough to account for the increased vulnerability to infection. Moreover, technical advances (particularly in automated cell counting and identification)(85) have underlined that exercise does not destroy NK cells; rather, they are temporarily relocated to reservoir sites such as the walls of peripheral veins in responseto the exercise-induced secretion of catecholamines and activation of adhesion molecules (266). A more plausible explanation for the reported increase in URTI duringheavy training and following participation in long-distance events appeared as attention shifted to immunoglobulins in general, and in particular to a depression offront-line defences through a decrease in the mucosal secretory functions of the nose and salivary glands (152, 298). The influence of exercise on mucosal immunity is discussed in more detail later in this part of the position statement.The hypothesis of a U-shaped relationship between physical activity and resistanceto disease, although based on a relatively limited amount of laboratory and epidemiological data (202, 267), has made intuitive sense, jibing with the moregeneral belief that although regular moderate doses of physical activity have beneficial effects on health, excessive amounts or intensities of physical activity havenegative consequences. In the case of the immune system, one suggestion hasbeen that an excess of physical activity provokes something analogous to clinical sepsis, with tissue destruction from an excessive inflammatory reaction (260).Although initially conceived simply in the context of URTI (201), the concept ofa U-shaped response has now been extended to cover the effects of physical activity upon a variety of clinical disturbances of immune function. In terms of cancerprevention and therapy (268), regular moderate physical activity has been shownto reduce the risk of developing certain forms of the disease (265); it also limitsthe risk of metastasis, at least in experimental animals (156). Exercise and canceris discussed in more detail in this part of the position statement. On the otherhand, excessive exercise has been shown to cause DNA damage and apoptosis (176, 186).Ageing is increasingly considered in part as an expression of disturbed immune function; high concentrations of pro-inflammatory cytokines are seen inthe elderly, and seemingly contribute to such problems of ageing as sarcopenia,neural dege neration and Alzheimer’s Disease. Moreover, appropriate amounts of physical activity can control levels of pro-inflammatory cytokines, and appear tohave a beneficial effect on these manifestations of ageing (188). Certain autoimmune conditions also respond to carefully regulated physical activity programmes,although it has yet to be established clearly whether benefit occurs10 • Immune function and exerciseEIR 17 2011 - position statement part 1through some direct modulation of cell counts and cytokines, or through changesin the activity of transcription factors for pro-inflammatory cytokines (9).Developments in fluorescent antibodies have allowed exercise immunologists toidentify an ever-growing number of cell sub-types and receptors. At the sametime, new cytokine identification kits and methods in molecular technology (173)have allowed the examination of humoral factors that are present in the body forvery short periods and in extremely low concentrations; an increasingly complexrange of pro- and anti-inflammatory cytokines has been revealed. The exercise immunologist seems drawn into the main streams of sports medicine, physiologyand even psychology. A fascinating cascade of cytokines is now thought to havean important role not only in controlling exercise-induced inflammation, but alsoin regulating the release and necessary flow of metabolites (221). Development ofthe sub-discipline of psycho-neuroimmunology (141) has emphasized that vigorous exercise should be considered as but one e xample of the body’s reaction to avariety of stressors (221), with an important two-way communication between peripheral immunocytes and hypophyseal centres, involving a wide variety ofhormones and autonomic pathways (157). A section in the second part of theposition statement deals with stress and immune function.On the sports field, exercise immunologists are increasingly asked to develop procedures to detect such abuses as blood doping (185) and gene transfer (11) (see“Omics” section in this part of the position statement). However, attempts to pinpoint immunological markers of over-training have as yet proved inferior to traditionalindices such as mood state and physical performance (as discussed in thesecond part of this position statement). A variety of nutritional supplements todate seem to have had only limited success in blunting the immune impairment associated with heavy exercise (as discussed in the second part of this position statement).These are a few of the important topics on which a panel of world experts providea succinct consensus of current knowledge, briefly covering the relevant background, exploring continued controversies, and pointing to likely directions offuture research.RESPIRATORY INFECTIONS AND EXERCISEBackgroundThere are more uncertainties than evidence based facts on the nature of upper respiratory tract infections (URTI) associated with exercise, particularly in high performance athletes.Although URTI or ‘sore throats’ are the most common reason forpresentation of elite athletes to a sports medicine clinic (62, 77, 80), the debate on whether sore throats are actually caused by infections, or are a reflection of other inflammatory stimuli associated with exercise remains unclear (48, 106, 242).The costs associated with identification of the underlying causes of upper respiratory symptoms (URS) and the delay in obtaining results of investigative testsImmune function and exercise • 11EIR 17 2011 - position statement part 1means that infections are not usually verified by pathology examinations. Physician confirmation of an infective cause of the symptoms, based on clinical signsand symptoms, has until recently been considered the ‘gold standard’ for exercise studies, but the involvement of physicians in assessments and diagnosis is notcommon in research settings. Recently, the ‘gold standard’ of physician verifieddiagnosis of URTI has also come under scrutiny, and been found less than ideal (48).Very few studies have examined the underlying causes of URS and extensive clinical investigations of athletes are rare (48, 242).The focus on respiratory infections in exercise has been stimulated by the commonlyheld beliefs that the frequency of URTI is increased in elite endurance athletesand that their incidence is associated with more intensive training (201). Theevidence to support these concepts is inconclusive, but does, support the idea that exercised-induced immune suppression increases susceptibility to symptoms ofinfection and that URS are associated with performance decrements.Evidence based consensus and uncertaintiesOver the past thirty years, there have been numerous investigations examining the association between changes in immune parameters and the risk of URTI in athleticand non-exercising populations. The only immune measures to date to showconsistent relationships with URS in exercising populations have been changes in salivary IgA concentrations and secretion rates (19, 89, 263). A section focusingon exercise and mucosal immunity appears later in this part of the position statement. Altered mucosal immunity and risk of symptoms of URTIThe inverse relationship between salivary IgA concentrations and risk of URTI in exercising and non-exercising populations has demonstrated differences betweenthese two populations (76, 89, 98, 232). The different population risk profiles are predominantly due to differences in the levels of intensity and quantum of exercise undertaken by very fit elite athletes and non-elite exercising or sedentary populations. The impact of exercise intensity on salivary IgA concentrations and secretionrates has demonstrated greater decreases in salivary IgA associated with prolongedhigh intensity exercise, whereas moderate increases in salivary IgA occur in responseto short duration moderate intensity exercise (6, 19, 23, 98, 129, 148, 163, 232). Although study populations vary, the association of an increased risk of URSand/or URTI with lower concentrations of salivary IgA and secretion rates hasbeen consistent for high-performance endurance athletes undertaking intensive training (64, 91, 92, 95, 97, 148, 187, 195-198, 201, 320). Similarly, the increasesin salivary IgA observed after moderate exercise training may contribute to the reduced susceptibility to URTI associated with regular moderate exercise (3, 129). Symptoms and frequencyAlthough there are many anecdotal reports that URTIs are more common in elite athletes, there is very little reported evidence to support this commonly held belief. This uncertainty is compounded by the current uncertainty around whether the URS are due to infections or other inflammatory stimuli mimicking URTI (48, 242).12 • Immune function and exerciseEIR 17 2011 - position statement part 1Retrospective and prospective longitudinal studies have identified that the majorityof elite athletes experience symptoms of URTI at a rate similar to the general population (48, 78, 234). However, the episodes of URS in elite athletes do notfollow the usual seasonal patterns of URTI observed in the general population, but rather occur during or around competitions (97, 160, 198, 224). Symptoms occur more frequently during the high intensity training and taper period prior to competitions in some sports, such as swimming (79, 89, 91), but in other endurancesports, such as long distance running, URS appear more frequently after a competition (49, 198, 224). Illness-prone athletes may also be susceptible to URS duringregular training periods or following increases in training load (80). The commonly reported short-term duration of URS (1-3 days) in most studies suggeststhat in most instances a primary infection is unlikely and the symptoms may bedue to viral reactivation (97, 242) or other causes of exercise-induced inflamma- Immu ne function and exercise • 13EIR 17 2011 - position statement part 1Pathogen identified by Triathletes (n=63) Elite athletes (n=70) Elite athletes (n=41)microbial and viral investigation undertaking routine presenting to a sports with persistent fatiguetraining and clinic and poor performancecompetitionsSpence et al. (282) Cox et al. (48) Reid et al. (242)Rhinovirus 7 6 -Influenzae (A & B) 7 1 -Parainfluenzae (1, 2 & 3) 4 3 -Adenovirus 0 2 -Coronavirus 2 0 -Metapneumovirus 1 0 -Epstein Barr virus(primary infection) 1 1 3EBV reactivation - 1 8Cytomegalovirus 0 0 5Herpes simplex virus (types 1 & 2)0 - -Ross River virus - - 1Toxoplasmosis - - 1Mycoplasma pneumoniae 0 1 1Streptococcus pneumonia 2 1 -Staphylococcus pyogenes 0 1 -Haemophilus influenzae 0 0 -Moraxella catarrhalis 0 0 -Enterococcus spp 0 0 -Table 1. Pathogens identified and the number of cases in comprehensive prospective studiesof athletes presenting with symptoms of upper respiratory infections in 1) a cohort ofhigh performance triathletes during training and competitions (282); 2) a study of elite athletesfrom a variety of sports undertaking routine training presenting to a sports clinic withURS (48); and 3) a cohort of elite athletes experiencing recurrent episodes of URS associatedwith fatigue and performance decrements (242). Where investigations were not performedthis is recorded as (-).tion. The evidence that URS are associated with poor performance is also limited.In the month prior to an international competition URS have been associated with decrements in performance in elite swimmers (235), suggesting that regardless of whether the URS are due to infections or other inflammatory stimuli, they canimpact on performance at an elite level. However, a small proportion of high-performance endurance athletes experience recurrent episodes of URS at significantlyhigher rates than the incidence in the general population (92, 234), and in these athletes the URS are associated with significant persisting fatigue and poor performance (79, 91, 93, 242).Infections versus inflammationThe few studies that have undertaken pathology testing to identify infectious fromnon-infectious causes of the episodes of URS in high-performance athletes have revealed that bacterial infections account for about 5% of the episodes (48, 94,242, 282). Most episodes of URS with an identified infectious cause are of viralorigin, but these account for only about 30-40% of the episodes in each study (48, 282). The bacterial and viral pathogens identified in these comprehensive studies indicate that the infections are caused by the usual respiratory pathogens associated with URTI (246) in the general population (Table 1).However, the profile of infections in a study of elite athletes experiencing recurrentURS associated with long-term fatigue and poor performance identified ahigh percentage as having herpes group viruses (e.g. cytomegalovirus) or evidenceof Epstein Barr Virus (EBV) reactivation (242) (Table 1). Epstein Barr viralreactivation has also been demonstrated in association with URS in someendurance sports (97, 242), which may account for the short duration of thesymptoms reported in most studies, resulting from viral reactivation rather thanprimary infection. However, in a study examining the prophylactic use of anantiviral treatment in elite runners, it was shown that not all episodes of URSwere associated with EBV expression (50) and that the frequency of EBV expression differed between sports (50, 97).Although an anti-herpes virus treatment waseffective in reducing EBV expression in elite long-distance runners, it was noteffective in reducing the frequency of episodes of URS, once again suggesting。