EFFICIENT MULTIPLE OBSERVER SITING ON LARGE TERRAIN

合集下载

傅里叶望远术的实验室验证系统

傅里叶望远术的实验室验证系统

傅 里 叶 望远 术 的实验 室验 证 系统
董洪舟 ,吴 健 ,刘 艺 ,张 炎
(电子科技大学 光 电信息学院 ,成都 6 0 5 1 04)
摘要 :本文介绍 了傅里叶望远术成像 的基 本原 理,为验证傅里叶望远术成像原理 ,在 实验室 中 建 了四光束的傅 搭
里叶望远术验证成像 系统 ,对灰度透射 式 目标进行 成像验证 ,利用 L b I W 软件 完成 了实验 中相关控制软件 、 aV E 检测软件和信号处理软件程序设 计。通过形成不 同空间频率 的干 涉条 纹提取 目标 的频谱值 ,利用相位 闭合技 术,
sx =q ( ,) ( , (, ) oxY f x ) () 1
其中:oxY 是 目标强度反射率函数 ,f xY 是直线条纹强度函数 ,7是与 目 (,) (,) 7 标散射有关的系数。将式() 1
变换 x ) ( f ) , f F f, O x
作走在前列, 20 年 已经进行 了外场实验, 于 05 在几百米的水平路径上进行的原理验证 , 得到了较好的成像 结果 ,目标外形基本可以分辨l,另外国内长春光机所也完成 了实验室验证 ,正在进行外场实验 ,国防 o J
收 稿 日期 :2 1 6 1; 收到 修改 稿 日期 :2 1一 90 0 卜0— 1 0 i0— 5
0 引 言
随着航空航天技术的 日 益发展 , 间目 空 标的高分辨率成像技术成为一个重要研究方向¨ J 其中傅里叶 ,
望远 术是 一种具 有较 大 发展潜 力 的成像技 术 。它 的成像 原理是 利用 直线 干涉 条纹场 扫描 目标 来获 取携 带 目
标 频 谱信 息的 回波信 号 ,并通 过相 位 闭合技 术消除 光束 初始 相位和 大 气湍流 带来 的相位 畸变 ,最 终还原 出

基于多头注意力机制的多模态帕金森病安全检测系统

基于多头注意力机制的多模态帕金森病安全检测系统

!计算机测量与控制!"#"$!%"!%"!!"#$%&'()'*+%('#',&-!",&(".!#&%*!#收稿日期 "#"$#&""$!修回日期"#"$#"#$%基金项目 国家自然科学基金!,"##%")&"%作者简介 季培琛!&)*$"&男&硕士%引用格式 季培琛&李!晨!基于多头注意力机制的多模态帕金森病安全检测系统'+(!计算机测量与控制&"#"$&%"!%")&%*&$(!文章编号 &,'&$()* "#"$ #%#&%*#*!!-./ &#!&,(", 0!1234!&&5$'," 67!"#"$!#%!#"&!!中图分类号 89"$"!!文献标识码 :基于多头注意力机制的多模态帕金森病安全检测系统季培琛& " 李!晨&!&_徐州市中医院&江苏徐州!""&###$"_徐州医科大学&江苏徐州!""&###"摘要 在实际的帕金森病远程诊断过程中&应用单模态数据检测帕金森病存在误诊率较高的问题&且远程诊断的安全性问题突出$为提高帕金森病远程诊断准确率与安全性&设计一种具有隐私保护功能的帕金森病多模态安全远程辅助检测系统$使用帕金森病语音和步态双模态数据&在传统卷积神经网络后融合多头注意力机制与多层感知机&有效提高模型的特征提取*融合与识别能力$为了保证数据传输过程的安全性&使用基于余弦混沌的差分隐私加噪方式扰动随机拆分的数据编号&提高帕金森病数据传输安全性$通过两模态消融实验和对比实验结果表明&提出的基于多头注意力机制的帕金森病多模态远程检测模型实际测试准确率达到#_)&%&且模型的各项评估指标和收敛速度等均高于传统模型&具备良好的帕金森病智能辅助检测效果&能够满足帕金森病早期智能安全筛查与诊断需求%关键词 帕金森病$多头注意力机制$余弦混沌$差分隐私$多模态远程检测)%.&5#"8*./*1'&0F '&'<&5",/0+&'#1"(6*(T 5,+",\+F 5+'*+'P *+'8",)%.&54:'*89&&',&5",)'<:*,5+#+/9A 41@A 2&&"&</T @A 2&!&_K G U @J GT 46P F J L 746H I J M8T =&K G U @J G !""&###&T @42H $"_K G U @J G =A R 41H I>24S A N L 46P&K G U @J G !""&###&T @42H "9;+&(*<&)-G N 42B 6@A H 16G H I N A O J 6A R 4H B 2J L 4L 7N J 1A L L J M 9H N 342L J 2j L R 4L A H L A &46@H L H@4B @O 4L R 4H B 2J L 4L N H 6A 6@H 66@A L 42B I A 5O J R A R H 6H 4L H 77I 4A R 6J R A 6A 169H N 342L J 2j L R 4L A H L A &H 2R 6@A N A O J 6A R 4H B 2J L 4L @H L 7N J O 42A 26L A 1G N 46P !8J 4O 7N J S A 6@A H 11G N H 1P H 2R L A 1G N 46P J M N A O J 6AR 4H B 2J L 4L J M9H N 342L J 2j L R 4L A H L A &HO G I 64O J R H I L A 1G N A N A O J 6A H G Y 4I 4H N P R A 6A 164J 2L P L 6A O V 46@H 7N 4S H 1P7N J 6A 164J 2M G 2164J 2V H L R A L 4B 2A R !8@A R G H I 5O J R H I R H 6H J M 9H N 342L J 2j L R 4L A H L A L 7A A 1@H 2R B H 46V A N A G L A R 6J 426A B N H 6A 6@AO G I 645@A H R H 66A 264J 2O A 1@H 24L O V 46@O G I 645I H P A N 7A N 1A 76N J 2H M 6A N 6N H R 464J 2H I 1J 2S J I G 64J 2H I 2A G N H I 2A 6V J N 3L &V @41@A M M A 164S A I P 4O 7N J S A R 6@A M A H 6G N A A Y 6N H 164J 2&M G L 4J 2&H 2R N A 1J B 2464J 2H W 4I 46P J M 6@AO J R A I !8JA 2L G N A 6@AL A 1G N 46P J M 6@AR H 6H 6N H 2L O 4L L 4J 27N J 1A L L &6@AR 4M M A N A 264H I 7N 4S H 1P H 2R2J 4L AO A 6@J R W H L A RJ 21J L 42A 1@H J L 4L G L A R 6J R 4L 6G N W 6@A N H 2R J O I P L A 7H N H 6A R R H 6H 2G O W A N L 6J 4O 7N J S A 6@A R H 6H 6N H 2L O 4L L 4J 2L A 1G N 46P J M 9H N 342L J 2j L R 4L A H L A !8@A 6V J 5O J R AH W I H 64J 2A Y 7A N 4O A 26H 2R1J O 7H N 4L J 2A Y 7A N 4O A 26N A L G I 6LL @J V6@H 66@AH 16G H I 6A L 6H 11G N H 1P J M 6@A 7N J 7J L A R O G I 645O J R A N A O J 6A R A 6A 164J 2O J R A I J M 9H N 342L J 2j L R 4L A H L A W H L A R J 26@AO G I 645@A H R H 66A 264J 2O A 1@H 24L ON A H 1@A L W P #_)&%!8@A A S H I G H 564J 242R 41H 6J N L H 2R 1J 2S A N B A 21A L 7A A R J M 6@AO J R A I H N A @4B @A N 6@H 26@H 6J M 6@A 6N H R 464J 2H IO J R A I &V @41@@H L H B J J R A M M A 16J 2426A I I 4B A 265I P H L L 4L 6A RR A 6A 164J 2J M9H N 342L J 2j LR 4L A H L A !/61H 2O A A 66@A2A A R LJ M A H N I P 422J S H 64S AL H M A 6P L 1N A A 242B H 2RR 4H B 2J L 4LJ M9H N 342L J 2j L R 4L A H L A !='0>"(8+)7H N 342L J 2j L R 4L A H L A $O G I 645@A H R H 66A 264J 2O A 1@H 24L O $1J L 42A 1@H J L $R 4M M A N A 264H I 7N 4S H 1P $O G I 645O J R H I N A O J 6A R A 6A 164J 2!引言帕金森病!9-&7H N 342L J 2j LR 4L A H L A"是一种常见的神经系统退行性疾病&目前该病发病机制尚未明确&主要受到遗传*环境*年龄老化以及氧化应激等诸多因素影响'&"(%据统计&年龄在$(岁以上和,(岁以上人群中&9-的发病率分别为#_$i 和&_'i '%(&预计到"#%#年&我国9-患者将达(##万&在全球排名第一&约占世界(#i %通过众多病历的长期跟踪和数据统计结果显示&随着9-患者病情发展以及年龄的增长&患者各项身体机能将逐渐退化*行动也受到严重限制&导致其,年死亡率高达,,i &要明显高于慢性心力衰竭!(#_)i "*慢性阻塞性肺病!$$_'i "*残血性心脏病!%"_(i "*中风或短暂性脑缺血发作!("_(i "等疾病%而9-缺少明确的病理机制&早期!投稿网址 V V V!0L 01I P3U !1J O第%期季培琛&等)""""""""""""""""""""""""""""""""""""""""""""""""""""基于多头注意力机制的多模态帕金森病安全检测系统#&%)!#症状隐匿&并存在非运动症状和相似神经系统疾病症状的干扰&导致9-早期诊断极为困难%在大量的临床试验中'$,(&语音功能障碍和步态特征是9-患者临床表现中非常典型的症状%9-患者在语音特征上多表现为语速慢*停顿增多*音质颤抖及刺耳等症状&在步态特征上多表现为快速小碎步*拖把步*平衡性差等症状%众多学者利用9-患者与正常人的语音和步态特征差异&使用智能算法&开展了大量基于语音和步态数据的9-辅助诊断研究%例如&<466I A 等''(利用模式识别方法&对基于语音障碍的9-诊断进行分析&并建立了首个9-语音障碍数据集$C N J B A '*(等使用深度神经网络监督分类算法&结合语音数据&完成9-的智能诊断&峰值准确率为*(i $朱家英')(等提出了基于多尺度特征和动态注意力机制的多模态循环融合模型&实现了对9-患者的识别与检测%图&!基于多头注意力机制的多模态帕金森病安全检测系统框架而在实际研究中发现&用于9-辅助检测的语音数据中&包含共振峰频率*音调*重音等可唯一识别个体的声纹特征'&#&&(%同时&步态数据中也包含了步频*步长*步态周期*膝盖弯曲角度等可以唯一识别特定个体的运动学特征和姿势特征'&"&%(%而在已有的相关研究中&众多学者往往忽略了对9-患者隐私安全的保护&极易在数据传输过程中发生隐私泄露&且很难实现9-的多模态辅助诊断准确性与隐私安全的动态平衡%为此&本文设计了一种鲁棒性高*成本低且操作便捷的基于多头注意力机制'&$&((的帕金森病多模态安全远程诊疗模型&通过语音和步态两模态数据特征的提取和识别&使9-诊断结果更加精准&也更具临床参考价值%同时引入基于余弦混沌的差分隐私噪声扰动方法&实现了对9-数据传输过程的安全保护&为9-早期远程辅助诊断和9-诊断临床决策支持提供了支撑%本文主要创新和贡献如下)&"针对传统9-检测模型训练和测试数据存在的特征固定*模态单一问题&提出了基于多头注意力机制的两模态特征融合与识别模型&避免了单一模态数据噪声干扰*数据规模小导致的检测识别准确度低等问题&实现了基于两模态数据特征的9-智能检测%""针对现有9-智能检测识别研究多忽略数据主体隐私安全的问题&设计了一种基于余弦混沌的差分隐私噪声扰动方式&通过扰动随机拆分的数据编号&保证数据传输至系统智能检测识别模块的传输过程安全性&实现了9-检测准确率和隐私安全的动态平衡%%"设计了基于多头注意力机制的多模态特征融合方法&在特征融合阶段&通过挖掘9-语音特征与步态数据特征的内在相关性&提高了模型的疾病表征能力&并具有较好的多模态特征融合扩展性&可满足更高模态特征融合与识别需求%@!系统设计基于多头注意力机制的多模态帕金森病安全检测系统整体框架如图&所示%@B @!系统结构及原理系统主要由%部分组成&第一层为数据采集层&主要!投稿网址 V V V!0L 01I P3U !1J O!!计算机测量与控制!第%"""""""""""""""""""""""""""""""""""""""""""""""""""""卷#&$#!#借助语音录入设备!如智能手机*树莓派*录音设备等"和步态数据采集设备!如摄像机*运动相机*智能平板等"来完成受试者语音数据和步态数据的采集&其中语音数据应确保为一段连续不间断的语音数据&便于更好记录受试者音色*音调等声纹特征的微小变化$步态数据应为连续不间断的视频数据&记录受试者完整的行走周期信息&以便于分析受试者步长*步频*步态等步态特征%第二层为数据处理和传输层&该层主要将采集后的数据进行清洗和处理&并使用基于余弦混沌的数据随机拆分编号加噪方式&打乱数据顺序&保证两模态数据上传过程安全%第三层为9-智能诊断层&接收到上传的数据后&进行数据编号逆向降噪&得到完整的两模态语音和步态数据特征&并将降噪和特征提取后的语音声纹特征和步态特征作为输入数据&使用融合多头注意力机制的卷积神经网络完成帕金森病的安全检测%@B A !系统设计目标分析为确保基于多头注意力机制的帕金森病多模态安全远程检测系统能够高效*精准且安全的实现9-远程辅助检测&为医生诊断9-提供临床决策支持&该系统设计应实现以下几个目标%&"鲁棒性)指的是系统应能有效处理各种异常数据&如设备故障*信号干扰等&避免因个别异常数据导致系统崩溃或数据丢失$同时应保证网络*容错及恢复的鲁棒性&确保系统在网络故障*通信延迟等情况下&仍能保持多模态诊疗数据传输的稳定性和可靠性%在本研究中&要求系统提供更全面和准确地诊断信息&能够通过多模态数据融合降低单一数据源的误差&同时具有故障检测和恢复机制&当检测到异常或错误时&系统能够自动调整或切换到备用方案&确保服务的连续性和稳定性&从而提高系统鲁棒性%""安全性)指的是系统应采用严格的数据加密和访问控制机制&保证患者数据传输和存储过程的机密性和完整性$同时融合多因素身份验证和细粒度授权机制&保证只有经过授权的人员能够访问敏感数据或执行相关操作%在本系统中用于远程诊断9-的语音*步态等多模态数据中包含患者大量的隐私信息&在数据采集完成后&经过安全处理后上传智能辅助诊断模块$同时系统的应用需要建立明确的数据安全*网络保护与访问控制方案&保证9-多模态远程诊疗系统的硬件设备的物理安全&确保系统使用全流程可追溯和审计&避免出现隐私泄露&确保系统以及患者隐私安全性%%"准确性)指的是系统在识别和判断疾病时的准确程度&是评估系统性能的重要评估指标之一%在该系统中&利用多头注意力机制&能够自动提取识别测试人员上传的与帕金森病相关的多模态特征&减少人为因素和主观判断对诊断结果的影响%同时借助深度学习技术&在借助大量训练数据进行模型训练的基础上&迭代和优化9-远程辅助检测算法模型&并通过临床验证完成系统的多轮更新和优化%$"可扩展性)指的是系统在面对新型疾病和数据时&能够适应并快速进行自适应的扩展和改进&以适应新的需求%在本研究中&系统设计采用模块化方法&确保数据收集*处理*分析以及可视化板块的相互独立&保证各模块能够独立运行$同时系统应具备计算资源的动态分配和弹性配置能力&并满足持续开发*功能更新与迭代的扩展能力&满足多模态与跨模态检测9-的需求%("易用性)指的是产品*系统或服务对用户而言的易于理解*学习和操作程度%它包括界面设计的友好程度*操作的直观性以及用户完成任务的效率和满意度%在本文章&系统的设计应简单易用&方便测试人员*技术人员和医务人员的使用%同时界面设计简单大方&操作流程简单易懂&并提供丰富的交互反馈和引导功能&能够为医生临床诊断9-提供决策支持%A !系统软件设计该系统设计主要通过识别早期9-患者在语音和步态特征上异于常人的表现或障碍&来实现早期9-的安全智能检测%为提高9-智能检测精确度&降低单一模态数据辅助检测存在的噪声干扰*数据稀疏问题影响&使用语音*步态两模态数据辅助检测早期9-%为保证数据传输过程安全性&将采集的数据进行随机分组和编号&并使用基于余弦混沌的差分噪声添加方式&扰动数据编号&防止数据攻击和重组导致的数据隐私披露%数据上传后&分别进行语音和步态数据特征提取&并使用多头注意力机制完成两模态数据特征融合&特征融合后作为输入数据输入9-智能检测模型中&最终完成9-的智能检测%系统关键技术及算法模型设计如下%A B @!相关技术简介"_&_&!多头注意力机制多头注意力机制!=F :&O G I 645@A H RH 66A 264J 2"是神经网络中的一种注意力机制%=F :能够使诊断算法模型在处理输入数据时从多个视角上关注不同模态数据的特征子集&帮助更加全面地理解和聚焦于疾病诊断的关键特征信息%通过=F :的应用&可以有效提升模型整合生理信号*文本*图像*视频等数据特征的能力&进一步提高复杂疾病的诊断准确性%目前=F :已广泛应用于肿瘤*神经系统疾病*心血管疾病等的辅助诊断和研究中&并取得了较好的研究效果%在多头注意力机制中&主要分为%个步骤&计算注意力权重&进行多个头的计算&以及进行输出层的计算并拼接%在=F :中主要包含查询向量\<18*键向量6<18和值向量5<18%其中&可学习的参数包括D \*&D 6*&D 5*&以及代表注意力汇聚的函数E N P !*X -L 8M G L 4J 2%其中E N P !*X -L 8M G 5L 4J 2可以是加性注意力和缩放点积注意力%多头注意力的输出需要经过另一个线性变换&它对应着X 个头连接后的结果&因此其可学习参数是D #%!投稿网址 V V V!0L 01I P3U !1J O第%期季培琛&等)""""""""""""""""""""""""""""""""""""""""""""""""""""基于多头注意力机制的多模态帕金森病安全检测系统#&$&!#图"!基于多头注意力机制的多模态9-安全检测系统技术框架"_&_"!差分隐私差分隐私保护通过对数据加噪掩盖原始数据的真实值&确保攻击人员无法结合背景知识等推断出相关数据&从而达到隐私保护的目的%研究人员可以根据研究场景和需求自适应的设计噪声添加方式&以达到最大化准确率和安全性的目标%差分隐私的数学定义如下)对于任意相邻的数据集A &A W <T &给定一个随机算法,)T N 1&和任意输出结果9O 1&则定义以下不等式)O H Y 9I 2;J ',!A "<9(#<;J ',!A W "<9'(()!&"!!若不等式!&"成立&则成算法M 满足差分隐私定义'&,(%其中)为隐私预算&表示可以提供的随机化算法的保护级别&当)越小时&表示隐私保护强度越强&即要求添加的噪声越大$反之)越大&表示隐私保护强度越小&即要求添加的噪声越小%<为一个非零实数&通常是一个很小的数值&表示不满足上述不等式的概率%A B A !基于多头注意力机制的多模态6F 检测模型设计由于早期9-患者在音调*音量*语速以及音质等语音特征异于正常人的表现'&'&*(&目前更多的是借助单一模态的语音信号开展9-智能辅助诊断研究%但由于语音信号易受到语音采集设备*外部环境噪音等干扰&导致基于单模态语音信号识别9-的辅助诊断结果存在不稳定和误差较大等局限%因此&为提升9-智能辅助诊断准确率&借助多模态数据开展9-智能辅助诊断是可行之路%在现有研究中&使用卷积神经网络!T D D &1J 2S J I G 564J 2H I 2A G N H I 2A 6V J N 3L"在全连接层进行双峰数据融合&来检测和识别早期9-是一种常见的方法'&)(%但这种融合方法不利于多模态数据特征间的相关性信息挖掘和使用%为解决此问题&提出了一种融合多头注意力机制的=F :5T D D &来获取语音*步态等多模态数据间的相关信息权重&以更好的提取和融合高维特征表示%在多头注意力机制中&引入多个注意力头&将输入的语音和步态数据分成多份&每个注意力头独立地学习并关注不同的语义信息&有效增强模型的表达能力与性能%基于多头注意力机制的多模态9-智能检测识别模型设计如下%假设输入"5R 4O A 2L 4J 2模态为模型的输入数据%在=F :5T D D 完成特征提取后&使用1(&&("2分别表示语音和步态数据&使用18&&8"2分别表示语音和步态数据嵌入&可得到)!投稿网址 V V V!0L 01I P3U !1J O!!计算机测量与控制!第%"""""""""""""""""""""""""""""""""""""""""""""""""""""卷#&$"!#(9"1(9&&(("&/&(9=2<1=$8!""(Q "1(Q &&(Q "&/&(Q =2<1=$8!%"!!在1J 21H 6层将语音和步态数据特征向量进行拼接)(1J 21H 6"1(9&$(Q &&(9"$(Q"&/&(9=$(Q =2<1=$!8$8"!$"!!在全连接层&将嵌入的语音和步态数据进行融合&定义81J 21H 6和.1J 21H 6)R R K >R L !a R ;g R E!("[R K >R L !a C R K >R L ![R K >R L !g W!,"!!其中).1J 21H 6<1=$8%在多头注意力机制中&每个注意力头独立地学习并关注不同的语义信息&通过计算查询向量和键向量的相似度来获得注意力权重值&进而根据权重对值向量进行加权求和&得到最终的输出表示%定义语音信号与步态数据间的相似度关系为J &不同9-患者语音和步态数据间的J 通过计算公式可表示为)J "\6%8槡6!'"!!使用LJ M 6O H Y 函数计算语音和步态数据两模态特征权重值为)0!!->!*K >!\&6&5""Y K ,!G L )!\6%8槡6"5!*"!!其中)\*6*5的可表示为)\"'\&&\"&/&\=(<1=$8!)"6"'6&&6"&/&6=(<1=$8!&#"5"'5&&5"&/&5=(<1=$8!&&"!!研究中使用多头注意力机制改进TD D 网络&增强=F :5T D D 模型关注语音和步态两模态的能力&使分区不同的头相互集中&同时通过将输入特性划分为单独的分区来为其添加子空间&便于从语音和步态两模态数据特征子空间学习到更多不同信息%其中基于两模态数据的头部注意力度计算公式为)X -L 8*"0!!->!*K >!\D \*&6D 6*&5D 5*"!&""!!经过独立计算头部注意力&将结果输出后连接&用来获取所有子空间的特征信息&并反馈到线性投影中获得最终的两模态特征融合模型维度&计算公式如下)E N P !*X -L 8M G L 4J 2"4K >R L !!X -L 8&&X -L 8"&/&X -L 8X "D #!&%"!!两模态数据特征提取融合后&进一步使用多层感知机=<9'"#(按照标记的9-患者语音和步态数据特征进行分类&并返回预测结果%整体过程如下)算法&)基于=F :的两模态数据融合模型输入)数据集A a 1!(9<1=$8&(Q <1=$8"&S 2&注意力头数为@&学习率为2输出)9-检测识别结果-N 初始化模型参数D &M M J N A H 1@N J G 2R !a &&"&/&>R J;6A 7&)两模态特征提取从(9和(Q 中分别提取特征,9和,Q 将提取后的特征连接.4a ,9g ,Q ;6A 7")多头注意力模块M J N @<'@(&D X H ?:由D X H &D X &D X:组成M J N @<'@()\a .4h D XH6a .4h D X ?5a .4h D X :计算每个头注意力输出值)I Xa LJ M 6O H Y \6%R 槡!"65A 2R M J N连接所有头部注意力输出值I a 'I &&I "&/&I @(;6A 7%)9-诊断识别A J a E O ;!I "N A 6G N 2A J A 2R M J NA B C !基于余弦混沌的6F 数据随机拆分和数据编号扰动机制!!考虑到用于智能辅助诊断9-的语音和步态数据特征包含识别数据主体的大量隐私信息&为保护数据主体隐私安全&系统设计过程中融合了一种基于余弦混沌的差分隐私噪声扰动机制%在语音和步态数据采集完成后&测试人员将数据上传至系统&系统接收数据上传指令后&首先进行两模态数据的处理和噪声扰动&保证相关数据传输至系统辅助诊断模块的过程安全性&具体过程如下%根据帕金森病智能检测所需的目标特征&对原始数据进行初步处理*标记和矩阵化&其中语音数据使用声谱矩阵的形式表示&行表示时间&列表示频率&矩阵中每个元素表示相应时间频率下的信号强度&通过此形式将语音信号转换为数值矩阵$对于步态数据&用类似的方式表示&将每一步的行走数据表示为一个矩阵&其中行表示不同的特征&如步长*步幅*频率等&列表示不同时间点的数据&通过此形式将步态数据转化为数值矩阵%语音和步态数据形式转换完成后&通过整合得到两模态特征矩阵*a 'L &M &/&?(&若将原始数据直接上传到系统中&则存在隐私披露风险%对此&首先将*处理成!?g""h >的矩阵形式&其中矩阵第一行的所有数字为数据拆分后每列数据的编号&最后一行为干扰行&假设干扰初始值为#&结果如公式!&("$其次引入差分隐私扰动机制&对第一行数据编号进行加噪处理&为避免添加随机噪声而导致初始数据无法还原的问题&使用基于余弦混沌的噪声添加形式&其中余弦函数值域为'b &&&(&为避免不同序号输入值)计算出相同的噪声值,2J 4L A &定义,2J 4L A 的计算公式为),2J 4L A "1&/&2>/1J L )!&$"!投稿网址 V V V!0L 01I P3U !1J O第%期季培琛&等)""""""""""""""""""""""""""""""""""""""""""""""""""""基于多头注意力机制的多模态帕金森病安全检测系统#&$%!#!!其中))<!>>=!>$&">(&1&/&2>/1J L )表示在噪声值I 前添加>个&&例如当序号值为&时&&<'#&>(&则,2J 4L A a1J L &a #_($#%%L M 33456-#&/>L #L &/L >M #M &/M >3333?#?&/?>3456####-#$)#&$)&/>$)>L #L &/L >M #M &/M >3333?#?&/?>#$)##$)&/#$)3456>-#$)#L #M #3##$)3456#&$)&L &M &3?&#$)3456&"$)"L "M "3?"#$)3456"/>#&$)>#&L >#&M >#&3?>#&#$)>#3456&>$)>L >M >3?>#$)3456>!&("!!在上述基础上&将随机拆分后的每列数据上传&系统根据上述加噪方法逆向去掉噪声干扰&得到恢复后的原始语音和步态数据后进行9-的检测和识别%其中随机拆分的数据编号的降噪恢复过程是基于余弦混沌的噪声扰动的逆过程&见公式!&,"%#$)#L #M #3##$)3456#&$)&L &M &3?&#$)3456&"$)"L "M "3?"#$)3456"/>#&$)>#&L >#&M >#&3?>#&#$)>#3456&>$)>L >M >3?>#$)3456>-#$)#&$)&/>$)>L #L &/L >M #M &/M >3333#?&/?>#$)##$)&/#$)3456>-#&/>L #L &/L >M #M &/M >3333?#?&/?>3456####-L M33456?!&,"!!整体过程如下所示)算法")基于余弦混沌的差分隐私保护算法阶段&)数据分解加噪过程输入)语音和步态特征矩阵7&待传输矩阵数8输出)8列%9两模态数据矩阵;6A 7&)数据拆分7/#&/>G&G "/G '(>;6A 7")序号加噪#&/>G&G "/G '(>/#$)&&$)"/>$)>$&G&G "/G '(>;6A 7%)矩阵分解#$)&&$)"/>$)>$&G &G "/G '(>/#$)&G '(&/>$)>$&G '(>阶段")数据合并减噪过程;6A 7&)数据矩阵合并#$)&G '(&/>$)>$&G '(>/#$)&&$)"/>$)>$&G &G "/G '(>;6A 7")序号降噪#$)&&$)"/>$)>$&G &G "/G '(>/#&/>G &G "/G '(>;6A 7%)数据恢复#&/>G &G "/G '(>/7C !实验结果与分析系统设计完成后&为了验证和优化基于多头注意力机制的9-智能辅助诊断模型性能&进一步进行了测试和验证%C B @!数据集实验中使用来自O 9J V A N 研究中的两模态语音和步态数据集%该数据集包括,(#""个独特的任务&包括(*",个个体受试者&其中每条数据中均包含&#秒的语音样本%步态数据集存储为+H S H ;1N 476对象表示法!+;.D "文件%在本实验中&9-智能检测模型的输入数据为处理和融合后的语音和步态特征数据%C B A !实验环境设置本实验在浪潮服务器中运行&使用的库和编程语言分别为9P 6J N 1@&_&#_&和9P 6@J 2%_'_#%实验的硬件环境为,$位/26A I !\"K A J 2!\";I 4S A N $"&#\T 9>/"_$#E F U 处理器和%"E Z \:=模拟环境来训练和测试=F :5T D D %在模型训练中&我们将实验数据按照*q &q &的比例分为训练集*验证集和测试集%C B C !)V 94!S S 性能评估指标在本节中&分别使用准确率*.&5L 1J N A*精确度和召回率'"&""(作为模型性能的评估指标%其中模型精度和召回率的计算公式为);J -R *Y *K >"%;%;$.;!&'"1-R L P P "%;%;$.=!&*"!!模型准确率的计算公式如下)0R R N J L R I "%;$%=%;$%=$.;$.=!&)"!!其中)%;表示9-被正确识别的样本数量&.;表示被误报的非9-样本数量&%=表示非9-被正确识别的样本数量&.=为被漏报的9-样本数量%.&#L 1J N A ""B ;J -R *Y *K >B 1-R L P P ;J -R *Y *K >$1-R L P P!"#"!!其中).&5L 1J N A 是精度和召回率的加权求和平均值&精确度表示所有9-阳性样本中被准确预测为阳性样本的百分!投稿网址 V V V!0L 01I P3U !1J O。

SCI论文摘要中常用的表达方法

SCI论文摘要中常用的表达方法

SCI论文摘要中常用的表达方法要写好摘要,需要建立一个适合自己需要的句型库(选择的词汇来源于SCI高被引用论文)引言部分(1)回顾研究背景,常用词汇有review, summarize, present, outline, describe等(2)说明写作目的,常用词汇有purpose, attempt, aim等,另外还可以用动词不定式充当目的壮语老表达(3)介绍论文的重点内容或研究范围,常用词汇有study, present, include, focus, emphasize, emphasis, attention等方法部分(1)介绍研究或试验过程,常用词汇有test study, investigate, examine,experiment, discuss, consider, analyze, analysis等(2)说明研究或试验方法,常用词汇有measure, estimate, calculate等(3)介绍应用、用途,常用词汇有use, apply, application等结果部分(1)展示研究结果,常用词汇有show, result, present等(2)介绍结论,常用词汇有summary, introduce,conclude等讨论部分(1)陈述论文的论点和作者的观点,常用词汇有suggest, repot, present, expect, describe 等(2)说明论证,常用词汇有support, provide, indicate, identify, find, demonstrate, confirm, clarify等(3)推荐和建议,常用词汇有suggest,suggestion, recommend, recommendation, propose,necessity,necessary,expect等。

摘要引言部分案例词汇review•Author(s): ROBINSON, TE; BERRIDGE, KC•Title:THE NEURAL BASIS OF DRUG CRA VING - AN INCENTIVE-SENSITIZATION THEORY OF ADDICTION•Source: BRAIN RESEARCH REVIEWS, 18 (3): 247-291 SEP-DEC 1993 《脑研究评论》荷兰SCI被引用1774We review evidence for this view of addiction and discuss its implications for understanding the psychology and neurobiology of addiction.回顾研究背景SCI高被引摘要引言部分案例词汇summarizeAuthor(s): Barnett, RM; Carone, CD; 被引用1571Title: Particles and field .1. Review of particle physicsSource: PHYSICAL REVIEW D, 54 (1): 1-+ Part 1 JUL 1 1996:《物理学评论,D辑》美国引言部分回顾研究背景常用词汇summarizeAbstract: This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 1900 new measurements from 700 papers, we list, evaluate, and average measuredproperties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review.SCI摘要引言部分案例attentionSCI摘要方法部分案例considerSCI高被引摘要引言部分案例词汇outline•Author(s): TIERNEY, L SCI引用728次•Title:MARKOV-CHAINS FOR EXPLORING POSTERIOR DISTRIBUTIONS 引言部分回顾研究背景,常用词汇outline•Source: ANNALS OF STATISTICS, 22 (4): 1701-1728 DEC 1994•《统计学纪事》美国•Abstract: Several Markov chain methods are available for sampling from a posterior distribution. Two important examples are the Gibbs sampler and the Metropolis algorithm.In addition, several strategies are available for constructing hybrid algorithms. This paper outlines some of the basic methods and strategies and discusses some related theoretical and practical issues. On the theoretical side, results from the theory of general state space Markov chains can be used to obtain convergence rates, laws of large numbers and central limit theorems for estimates obtained from Markov chain methods. These theoretical results can be used to guide the construction of more efficient algorithms. For the practical use of Markov chain methods, standard simulation methodology provides several Variance reduction techniques and also gives guidance on the choice of sample size and allocation.SCI高被引摘要引言部分案例回顾研究背景presentAuthor(s): L YNCH, M; MILLIGAN, BG SC I被引用661Title: ANAL YSIS OF POPULATION GENETIC-STRUCTURE WITH RAPD MARKERS Source: MOLECULAR ECOLOGY, 3 (2): 91-99 APR 1994《分子生态学》英国Abstract: Recent advances in the application of the polymerase chain reaction make it possible to score individuals at a large number of loci. The RAPD (random amplified polymorphic DNA) method is one such technique that has attracted widespread interest.The analysis of population structure with RAPD data is hampered by the lack of complete genotypic information resulting from dominance, since this enhances the sampling variance associated with single loci as well as induces bias in parameter estimation. We present estimators for several population-genetic parameters (gene and genotype frequencies, within- and between-population heterozygosities, degree of inbreeding and population subdivision, and degree of individual relatedness) along with expressions for their sampling variances. Although completely unbiased estimators do not appear to be possible with RAPDs, several steps are suggested that will insure that the bias in parameter estimates is negligible. To achieve the same degree of statistical power, on the order of 2 to 10 times more individuals need to be sampled per locus when dominant markers are relied upon, as compared to codominant (RFLP, isozyme) markers. Moreover, to avoid bias in parameter estimation, the marker alleles for most of these loci should be in relatively low frequency. Due to the need for pruning loci with low-frequency null alleles, more loci also need to be sampled with RAPDs than with more conventional markers, and sole problems of bias cannot be completely eliminated.SCI高被引摘要引言部分案例词汇describe•Author(s): CLONINGER, CR; SVRAKIC, DM; PRZYBECK, TR•Title: A PSYCHOBIOLOGICAL MODEL OF TEMPERAMENT AND CHARACTER•Source: ARCHIVES OF GENERAL PSYCHIATRY, 50 (12): 975-990 DEC 1993《普通精神病学纪要》美国•引言部分回顾研究背景,常用词汇describe 被引用926•Abstract: In this study, we describe a psychobiological model of the structure and development of personality that accounts for dimensions of both temperament and character. Previous research has confirmed four dimensions of temperament: novelty seeking, harm avoidance, reward dependence, and persistence, which are independently heritable, manifest early in life, and involve preconceptual biases in perceptual memory and habit formation. For the first time, we describe three dimensions of character that mature in adulthood and influence personal and social effectiveness by insight learning about self-concepts.Self-concepts vary according to the extent to which a person identifies the self as (1) an autonomous individual, (2) an integral part of humanity, and (3) an integral part of the universe as a whole. Each aspect of self-concept corresponds to one of three character dimensions called self-directedness, cooperativeness, and self-transcendence, respectively. We also describe the conceptual background and development of a self-report measure of these dimensions, the Temperament and Character Inventory. Data on 300 individuals from the general population support the reliability and structure of these seven personality dimensions. We discuss the implications for studies of information processing, inheritance, development, diagnosis, and treatment.摘要引言部分案例•(2)说明写作目的,常用词汇有purpose, attempt, aimSCI高被引摘要引言部分案例attempt说明写作目的•Author(s): Donoho, DL; Johnstone, IM•Title: Adapting to unknown smoothness via wavelet shrinkage•Source: JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 90 (432): 1200-1224 DEC 1995 《美国统计学会志》被引用429次•Abstract: We attempt to recover a function of unknown smoothness from noisy sampled data. We introduce a procedure, SureShrink, that suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: A threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein unbiased estimate of risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N.log(N) as a function of the sample size N. SureShrink is smoothness adaptive: If the unknown function contains jumps, then the reconstruction (essentially) does also; if the unknown function has a smooth piece, then the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothness adaptive: It is near minimax simultaneously over a whole interval of the Besov scale; the size of this interval depends on the choice of mother wavelet. We know from a previous paper by the authors that traditional smoothing methods-kernels, splines, and orthogonal series estimates-even with optimal choices of the smoothing parameter, would be unable to perform in a near-minimax way over many spaces in the Besov scale.Examples of SureShrink are given. The advantages of the method are particularly evident when the underlying function has jump discontinuities on a smooth backgroundSCI高被引摘要引言部分案例To investigate说明写作目的•Author(s): OLTV AI, ZN; MILLIMAN, CL; KORSMEYER, SJ•Title: BCL-2 HETERODIMERIZES IN-VIVO WITH A CONSERVED HOMOLOG, BAX, THAT ACCELERATES PROGRAMMED CELL-DEATH•Source: CELL, 74 (4): 609-619 AUG 27 1993 被引用3233•Abstract: Bcl-2 protein is able to repress a number of apoptotic death programs. To investigate the mechanism of Bcl-2's effect, we examined whether Bcl-2 interacted with other proteins. We identified an associated 21 kd protein partner, Bax, that has extensive amino acid homology with Bcl-2, focused within highly conserved domains I and II. Bax is encoded by six exons and demonstrates a complex pattern of alternative RNA splicing that predicts a 21 kd membrane (alpha) and two forms of cytosolic protein (beta and gamma). Bax homodimerizes and forms heterodimers with Bcl-2 in vivo. Overexpressed Bax accelerates apoptotic death induced by cytokine deprivation in an IL-3-dependent cell line. Overexpressed Bax also counters the death repressor activity of Bcl-2. These data suggest a model in which the ratio of Bcl-2 to Bax determines survival or death following an apoptotic stimulus.SCI高被引摘要引言部分案例purposes说明写作目的•Author(s): ROGERS, FJ; IGLESIAS, CA•Title: RADIATIVE ATOMIC ROSSELAND MEAN OPACITY TABLES•Source: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 79 (2): 507-568 APR 1992 《天体物理学杂志增刊》美国SCI被引用512•Abstract: For more than two decades the astrophysics community has depended on opacity tables produced at Los Alamos. In the present work we offer new radiative Rosseland mean opacity tables calculated with the OPAL code developed independently at LLNL. We give extensive results for the recent Anders-Grevesse mixture which allow accurate interpolation in temperature, density, hydrogen mass fraction, as well as metal mass fraction. The tables are organized differently from previous work. Instead of rows and columns of constant temperature and density, we use temperature and follow tracks of constant R, where R = density/(temperature)3. The range of R and temperature are such as to cover typical stellar conditions from the interior through the envelope and the hotter atmospheres. Cool atmospheres are not considered since photoabsorption by molecules is neglected. Only radiative processes are taken into account so that electron conduction is not included. For comparison purposes we present some opacity tables for the Ross-Aller and Cox-Tabor metal abundances. Although in many regions the OPAL opacities are similar to previous work, large differences are reported.For example, factors of 2-3 opacity enhancements are found in stellar envelop conditions.SCI高被引摘要引言部分案例aim说明写作目的•Author(s):EDV ARDSSON, B; ANDERSEN, J; GUSTAFSSON, B; LAMBERT, DL;NISSEN, PE; TOMKIN, J•Title:THE CHEMICAL EVOLUTION OF THE GALACTIC DISK .1. ANALYSISAND RESULTS•Source: ASTRONOMY AND ASTROPHYSICS, 275 (1): 101-152 AUG 1993 《天文学与天体物理学》被引用934•Abstract:With the aim to provide observational constraints on the evolution of the galactic disk, we have derived abundances of 0, Na, Mg, Al, Si, Ca, Ti, Fe, Ni, Y, Zr, Ba and Nd, as well as individual photometric ages, for 189 nearby field F and G disk dwarfs.The galactic orbital properties of all stars have been derived from accurate kinematic data, enabling estimates to be made of the distances from the galactic center of the stars‘ birthplaces. 结构式摘要•Our extensive high resolution, high S/N, spectroscopic observations of carefully selected northern and southern stars provide accurate equivalent widths of up to 86 unblended absorption lines per star between 5000 and 9000 angstrom. The abundance analysis was made with greatly improved theoretical LTE model atmospheres. Through the inclusion of a great number of iron-peak element absorption lines the model fluxes reproduce the observed UV and visual fluxes with good accuracy. A new theoretical calibration of T(eff) as a function of Stromgren b - y for solar-type dwarfs has been established. The new models and T(eff) scale are shown to yield good agreement between photometric and spectroscopic measurements of effective temperatures and surface gravities, but the photometrically derived very high overall metallicities for the most metal rich stars are not supported by the spectroscopic analysis of weak spectral lines.•Author(s): PAYNE, MC; TETER, MP; ALLAN, DC; ARIAS, TA; JOANNOPOULOS, JD•Title:ITERA TIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS - MOLECULAR-DYNAMICS AND CONJUGA TE GRADIENTS•Source: REVIEWS OF MODERN PHYSICS, 64 (4): 1045-1097 OCT 1992 《现代物理学评论》美国American Physical Society SCI被引用2654 •Abstract: This article describes recent technical developments that have made the total-energy pseudopotential the most powerful ab initio quantum-mechanical modeling method presently available. In addition to presenting technical details of the pseudopotential method, the article aims to heighten awareness of the capabilities of the method in order to stimulate its application to as wide a range of problems in as many scientific disciplines as possible.SCI高被引摘要引言部分案例includes介绍论文的重点内容或研究范围•Author(s):MARCHESINI, G; WEBBER, BR; ABBIENDI, G; KNOWLES, IG;SEYMOUR, MH; STANCO, L•Title: HERWIG 5.1 - A MONTE-CARLO EVENT GENERA TOR FOR SIMULATING HADRON EMISSION REACTIONS WITH INTERFERING GLUONS SCI被引用955次•Source: COMPUTER PHYSICS COMMUNICATIONS, 67 (3): 465-508 JAN 1992:《计算机物理学通讯》荷兰Elsevier•Abstract: HERWIG is a general-purpose particle-physics event generator, which includes the simulation of hard lepton-lepton, lepton-hadron and hadron-hadron scattering and soft hadron-hadron collisions in one package. It uses the parton-shower approach for initial-state and final-state QCD radiation, including colour coherence effects and azimuthal correlations both within and between jets. This article includes a brief review of the physics underlying HERWIG, followed by a description of the program itself. This includes details of the input and control parameters used by the program, and the output data provided by it. Sample output from a typical simulation is given and annotated.SCI高被引摘要引言部分案例presents介绍论文的重点内容或研究范围•Author(s): IDSO, KE; IDSO, SB•Title: PLANT-RESPONSES TO ATMOSPHERIC CO2 ENRICHMENT IN THE FACE OF ENVIRONMENTAL CONSTRAINTS - A REVIEW OF THE PAST 10 YEARS RESEARCH•Source: AGRICULTURAL AND FOREST METEOROLOGY, 69 (3-4): 153-203 JUL 1994 《农业和林业气象学》荷兰Elsevier 被引用225•Abstract:This paper presents a detailed analysis of several hundred plant carbon exchange rate (CER) and dry weight (DW) responses to atmospheric CO2 enrichment determined over the past 10 years. It demonstrates that the percentage increase in plant growth produced by raising the air's CO2 content is generally not reduced by less than optimal levels of light, water or soil nutrients, nor by high temperatures, salinity or gaseous air pollution. More often than not, in fact, the data show the relative growth-enhancing effects of atmospheric CO2 enrichment to be greatest when resource limitations and environmental stresses are most severe.SCI高被引摘要引言部分案例介绍论文的重点内容或研究范围emphasizing •Author(s): BESAG, J; GREEN, P; HIGDON, D; MENGERSEN, K•Title: BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS•Source: STATISTICAL SCIENCE, 10 (1): 3-41 FEB 1995《统计科学》美国•SCI被引用296次•Abstract: Markov chain Monte Carlo (MCMC) methods have been used extensively in statistical physics over the last 40 years, in spatial statistics for the past 20 and in Bayesian image analysis over the last decade. In the last five years, MCMC has been introduced into significance testing, general Bayesian inference and maximum likelihood estimation. This paper presents basic methodology of MCMC, emphasizing the Bayesian paradigm, conditional probability and the intimate relationship with Markov random fields in spatial statistics.Hastings algorithms are discussed, including Gibbs, Metropolis and some other variations. Pairwise difference priors are described and are used subsequently in three Bayesian applications, in each of which there is a pronounced spatial or temporal aspect to the modeling. The examples involve logistic regression in the presence of unobserved covariates and ordinal factors; the analysis of agricultural field experiments, with adjustment for fertility gradients; and processing oflow-resolution medical images obtained by a gamma camera. Additional methodological issues arise in each of these applications and in the Appendices. The paper lays particular emphasis on the calculation of posterior probabilities and concurs with others in its view that MCMC facilitates a fundamental breakthrough in applied Bayesian modeling.SCI高被引摘要引言部分案例介绍论文的重点内容或研究范围focuses •Author(s): HUNT, KJ; SBARBARO, D; ZBIKOWSKI, R; GAWTHROP, PJ•Title: NEURAL NETWORKS FOR CONTROL-SYSTEMS - A SURVEY•Source: AUTOMA TICA, 28 (6): 1083-1112 NOV 1992《自动学》荷兰Elsevier•SCI被引用427次•Abstract:This paper focuses on the promise of artificial neural networks in the realm of modelling, identification and control of nonlinear systems. The basic ideas and techniques of artificial neural networks are presented in language and notation familiar to control engineers. Applications of a variety of neural network architectures in control are surveyed. We explore the links between the fields of control science and neural networks in a unified presentation and identify key areas for future research.SCI高被引摘要引言部分案例介绍论文的重点内容或研究范围focus•Author(s): Stuiver, M; Reimer, PJ; Bard, E; Beck, JW;•Title: INTCAL98 radiocarbon age calibration, 24,000-0 cal BP•Source: RADIOCARBON, 40 (3): 1041-1083 1998《放射性碳》美国SCI被引用2131次•Abstract: The focus of this paper is the conversion of radiocarbon ages to calibrated (cal) ages for the interval 24,000-0 cal BP (Before Present, 0 cal BP = AD 1950), based upon a sample set of dendrochronologically dated tree rings, uranium-thorium dated corals, and varve-counted marine sediment. The C-14 age-cal age information, produced by many laboratories, is converted to Delta(14)C profiles and calibration curves, for the atmosphere as well as the oceans. We discuss offsets in measured C-14 ages and the errors therein, regional C-14 age differences, tree-coral C-14 age comparisons and the time dependence of marine reservoir ages, and evaluate decadal vs. single-year C-14 results. Changes in oceanic deepwater circulation, especially for the 16,000-11,000 cal sp interval, are reflected in the Delta(14)C values of INTCAL98.SCI高被引摘要引言部分案例介绍论文的重点内容或研究范围emphasis •Author(s): LEBRETON, JD; BURNHAM, KP; CLOBERT, J; ANDERSON, DR•Title: MODELING SURVIV AL AND TESTING BIOLOGICAL HYPOTHESES USING MARKED ANIMALS - A UNIFIED APPROACH WITH CASE-STUDIES •Source: ECOLOGICAL MONOGRAPHS, 62 (1): 67-118 MAR 1992•《生态学论丛》美国•Abstract: The understanding of the dynamics of animal populations and of related ecological and evolutionary issues frequently depends on a direct analysis of life history parameters. For instance, examination of trade-offs between reproduction and survival usually rely on individually marked animals, for which the exact time of death is most often unknown, because marked individuals cannot be followed closely through time.Thus, the quantitative analysis of survival studies and experiments must be based oncapture-recapture (or resighting) models which consider, besides the parameters of primary interest, recapture or resighting rates that are nuisance parameters. 结构式摘要•T his paper synthesizes, using a common framework, these recent developments together with new ones, with an emphasis on flexibility in modeling, model selection, and the analysis of multiple data sets. The effects on survival and capture rates of time, age, and categorical variables characterizing the individuals (e.g., sex) can be considered, as well as interactions between such effects. This "analysis of variance" philosophy emphasizes the structure of the survival and capture process rather than the technical characteristics of any particular model. The flexible array of models encompassed in this synthesis uses a common notation. As a result of the great level of flexibility and relevance achieved, the focus is changed from fitting a particular model to model building and model selection.SCI摘要方法部分案例•方法部分•(1)介绍研究或试验过程,常用词汇有test,study, investigate, examine,experiment, discuss, consider, analyze, analysis等•(2)说明研究或试验方法,常用词汇有measure, estimate, calculate等•(3)介绍应用、用途,常用词汇有use, apply, application等SCI高被引摘要方法部分案例discusses介绍研究或试验过程•Author(s): LIANG, KY; ZEGER, SL; QAQISH, B•Title: MULTIV ARIATE REGRESSION-ANAL YSES FOR CATEGORICAL-DATA •Source:JOURNAL OF THE ROY AL STA TISTICAL SOCIETY SERIES B-METHODOLOGICAL, 54 (1): 3-40 1992《皇家统计学会志,B辑:统计方法论》•SCI被引用298•Abstract: It is common to observe a vector of discrete and/or continuous responses in scientific problems where the objective is to characterize the dependence of each response on explanatory variables and to account for the association between the outcomes. The response vector can comprise repeated observations on one variable, as in longitudinal studies or genetic studies of families, or can include observations for different variables.This paper discusses a class of models for the marginal expectations of each response and for pairwise associations. The marginal models are contrasted with log-linear models.Two generalized estimating equation approaches are compared for parameter estimation.The first focuses on the regression parameters; the second simultaneously estimates the regression and association parameters. The robustness and efficiency of each is discussed.The methods are illustrated with analyses of two data sets from public health research SCI高被引摘要方法部分案例介绍研究或试验过程examines•Author(s): Huo, QS; Margolese, DI; Stucky, GD•Title: Surfactant control of phases in the synthesis of mesoporous silica-based materials •Source: CHEMISTRY OF MATERIALS, 8 (5): 1147-1160 MAY 1996•SCI被引用643次《材料的化学性质》美国•Abstract: The low-temperature formation of liquid-crystal-like arrays made up of molecular complexes formed between molecular inorganic species and amphiphilic organic molecules is a convenient approach for the synthesis of mesostructure materials.This paper examines how the molecular shapes of covalent organosilanes, quaternary ammonium surfactants, and mixed surfactants in various reaction conditions can be used to synthesize silica-based mesophase configurations, MCM-41 (2d hexagonal, p6m), MCM-48 (cubic Ia3d), MCM-50 (lamellar), SBA-1 (cubic Pm3n), SBA-2 (3d hexagonal P6(3)/mmc), and SBA-3(hexagonal p6m from acidic synthesis media). The structural function of surfactants in mesophase formation can to a first approximation be related to that of classical surfactants in water or other solvents with parallel roles for organic additives. The effective surfactant ion pair packing parameter, g = V/alpha(0)l, remains a useful molecular structure-directing index to characterize the geometry of the mesophase products, and phase transitions may be viewed as a variation of g in the liquid-crystal-Like solid phase. Solvent and cosolvent structure direction can be effectively used by varying polarity, hydrophobic/hydrophilic properties and functionalizing the surfactant molecule, for example with hydroxy group or variable charge. Surfactants and synthesis conditions can be chosen and controlled to obtain predicted silica-based mesophase products. A room-temperature synthesis of the bicontinuous cubic phase, MCM-48, is presented. A low-temperature (100 degrees C) and low-pH (7-10) treatment approach that can be used to give MCM-41 with high-quality, large pores (up to 60 Angstrom), and pore volumes as large as 1.6 cm(3)/g is described.Estimates 介绍研究或试验过程SCI高被引摘要方法部分案例•Author(s): KESSLER, RC; MCGONAGLE, KA; ZHAO, SY; NELSON, CB; HUGHES, M; ESHLEMAN, S; WITTCHEN, HU; KENDLER, KS•Title:LIFETIME AND 12-MONTH PREV ALENCE OF DSM-III-R PSYCHIATRIC-DISORDERS IN THE UNITED-STA TES - RESULTS FROM THE NATIONAL-COMORBIDITY-SURVEY•Source: ARCHIVES OF GENERAL PSYCHIATRY, 51 (1): 8-19 JAN 1994•《普通精神病学纪要》美国SCI被引用4350次•Abstract: Background: This study presents estimates of lifetime and 12-month prevalence of 14 DSM-III-R psychiatric disorders from the National Comorbidity Survey, the first survey to administer a structured psychiatric interview to a national probability sample in the United States.Methods: The DSM-III-R psychiatric disorders among persons aged 15 to 54 years in the noninstitutionalized civilian population of the United States were assessed with data collected by lay interviewers using a revised version of the Composite International Diagnostic Interview. Results: Nearly 50% of respondents reported at least one lifetime disorder, and close to 30% reported at least one 12-month disorder. The most common disorders were major depressive episode, alcohol dependence, social phobia, and simple phobia. More than half of all lifetime disorders occurred in the 14% of the population who had a history of three or more comorbid disorders. These highly comorbid people also included the vast majority of people with severe disorders.Less than 40% of those with a lifetime disorder had ever received professional treatment,and less than 20% of those with a recent disorder had been in treatment during the past 12 months. Consistent with previous risk factor research, it was found that women had elevated rates of affective disorders and anxiety disorders, that men had elevated rates of substance use disorders and antisocial personality disorder, and that most disorders declined with age and with higher socioeconomic status. Conclusions: The prevalence of psychiatric disorders is greater than previously thought to be the case. Furthermore, this morbidity is more highly concentrated than previously recognized in roughly one sixth of the population who have a history of three or more comorbid disorders. This suggests that the causes and consequences of high comorbidity should be the focus of research attention. The majority of people with psychiatric disorders fail to obtain professional treatment. Even among people with a lifetime history of three or more comorbid disorders, the proportion who ever obtain specialty sector mental health treatment is less than 50%.These results argue for the importance of more outreach and more research on barriers to professional help-seekingSCI高被引摘要方法部分案例说明研究或试验方法measure•Author(s): Schlegel, DJ; Finkbeiner, DP; Davis, M•Title:Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds•Source: ASTROPHYSICAL JOURNAL, 500 (2): 525-553 Part 1 JUN 20 1998 SCI 被引用2972 次《天体物理学杂志》美国•The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 mu m emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg, index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.SCI高被引摘要结果部分案例application介绍应用、用途•Author(s): MALLAT, S; ZHONG, S•Title: CHARACTERIZATION OF SIGNALS FROM MULTISCALE EDGES•Source: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 14 (7): 710-732 JUL 1992•SCI被引用508次《IEEE模式分析与机器智能汇刊》美国•Abstract: A multiscale Canny edge detection is equivalent to finding the local maxima ofa wavelet transform. We study the properties of multiscale edges through the wavelet。

基于角点检测和自适应阈值的新闻字幕检测

基于角点检测和自适应阈值的新闻字幕检测

基于角点检测和自适应阈值的新闻字幕检测
张洋;朱明
【期刊名称】《计算机工程》
【年(卷),期】2009(035)013
【摘要】目前用于提取新闻视频帧中字幕的方法准确率和检测速度普遍较低,尤其对于分辨率和对比度较小的标题文字,检测效果很差.针对上述问题,提出一种基于角点检测和自适应阈值的字幕检测方法.该方法利用角点检测确定标题帧中的文字区域并进行灰度变换,利用自适应阈值的方法对其进行二值化,得到OCR可识别的文字图片.实验表明,该方法可以快速有效地提取出分辨率和对比度较小的新闻视频标题字幕.
【总页数】3页(P186-187,210)
【作者】张洋;朱明
【作者单位】中国科学技术大学网络传播系统与控制联合实验室,合肥,230027;中国科学技术大学网络传播系统与控制联合实验室,合肥,230027
【正文语种】中文
【中图分类】TP391
【相关文献】
1.一种自适应阈值的预筛选Harris角点检测方法 [J], 沈士喆;张小龙;衡伟
2.一种局部最佳阈值预测的自适应角点检测方法 [J], 吴腾;张志利;赵军阳;张海峰
3.基于FPGA的自适应阈值Harris角点检测硬件实现 [J], 潘聪;黄鲁
4.一种自适应阈值的遥感影像角点检测算法 [J], 邓小炼
5.像素自相关矩阵的阈值自适应角点检测算法 [J], 邓小炼;杜玉琪;王长耀;王晓花因版权原因,仅展示原文概要,查看原文内容请购买。

八年级科技前沿英语阅读理解25题

八年级科技前沿英语阅读理解25题

八年级科技前沿英语阅读理解25题1<背景文章>Artificial intelligence (AI) has been making remarkable strides in the medical field in recent years. AI - powered systems are being increasingly utilized in various aspects of healthcare, bringing about significant improvements and new possibilities.One of the most prominent applications of AI in medicine is in disease diagnosis. AI algorithms can analyze vast amounts of medical data, such as patient symptoms, medical histories, and test results. For example, deep - learning algorithms can scan X - rays, CT scans, and MRIs to detect early signs of diseases like cancer, pneumonia, or heart diseases. These algorithms can often spot minute details that might be overlooked by human doctors, thus enabling earlier and more accurate diagnoses.In the realm of drug development, AI also plays a crucial role. It can accelerate the process by predicting how different molecules will interact with the human body. AI - based models can sift through thousands of potential drug candidates in a short time, identifying those with the highest probability of success. This not only saves time but also reduces the cost associated with traditional trial - and - error methods in drug research.Medical robots are another area where AI is making an impact.Surgical robots, for instance, can be guided by AI systems to perform complex surgeries with greater precision. These robots can filter out the natural tremors of a surgeon's hand, allowing for more delicate and accurate incisions. Additionally, there are robots designed to assist in patient care, such as those that can help patients with limited mobility to move around or perform simple tasks.However, the application of AI in medicine also faces some challenges. Issues like data privacy, algorithmic bias, and the need for regulatory approval are important considerations. But overall, the potential of AI to transform the medical field is vast and holds great promise for the future of healthcare.1. What is one of the main applications of AI in the medical field according to the article?A. Designing hospital buildings.B. Disease diagnosis.C. Training medical students.D. Managing hospital finances.答案:B。

清华大学科技成果——一种高灵敏磁场探测系统

清华大学科技成果——一种高灵敏磁场探测系统

清华大学科技成果——一种高灵敏磁场探测系统
成果简介
磁传感器是用来检测磁场的存在,测量磁场的强度,确定磁场的方向,或确定磁场的强度方向是否有变化的器件,测磁仪器中的“探头”或者“取样装置”就是磁传感器。

磁传感器在信息工业、交通运输、医疗仪器等领域具有越来越广泛的应用,这些应用也对磁传感器微型化、灵敏度、使用范围、成本和制备工艺等提出了更高的要求。

目前所采用的磁传感器主要有霍尔元件、磁通门、巨磁阻材料(GMR)、超导量子干涉元件(SQUID)等,这些器件各有其优缺点。

霍尔元件使用简单、价格便宜,但是一般只能用于测试10-8T以上的直流磁场或低频交流磁场;磁通门一般用来测试10-10T到10-3T的直流磁场,因其成本低主要用于交通运输领域;巨磁阻材料是近些年发展起来的,利用巨磁阻效应实现对小磁场的敏感响应,这种材料的制备主要采用薄膜技术,对尺寸和厚度的要求十分严格。

超导量子干涉元件是目前灵敏度最高的低磁场测试系统,可以探测到10-15T的磁场,但是它只能工作在液氦温度,设备体积大且价格非常昂贵,主要应用于医疗和科学研究领域。

应用说明
本发明提供的一种基于磁电复合材料的磁场传感系统,具有较高的磁场探测灵敏度(可探测10-12T的弱磁场),可以探测交流、直流磁场。

制作工艺简单、价格低廉、应用范围广(除上述应用领域外,也可用于军事上)。

高光谱图像处理与信息提取前沿

高光谱图像处理与信息提取前沿

3
3.1 3.1.1
高光谱图像处理与信息提取方法
噪声评估与数据降维方法 噪声评估 典型地物具有的诊断性光谱特征是高光谱遥
感目标探测和精细分类的前提,但是由于成像光 谱仪波段通道较密而造成光成像能量不足,相对 于全色图像,高光谱图像的信噪比提高比较困 难。在图像数据获取过程中,地物光谱特征在噪 声的影响下容易产生“失真”,如对某一吸收特征进 行探测,则要求噪声水平比吸收深度要低至少一 个数量级。因此,噪声的精确估计无论对于遥感 器性能评价,还是对于后续信息提取算法的支 撑,都具有重要意义。
张兵:高光谱图像处理与信息提取前沿
1063
得新的突破。高光谱图像处理与信息提取技术的 研究主要包括数据降维、图像分类、混合像元分 解和目标探测等方向(张兵和高连如,2011)。本文 首先从上述4个方向梳理高光谱图像处理与信息提 取中的关键问题,然后分别针对每个方向,在回 顾相关经典理论和模型方法的基础上,介绍近年 来取得的新的代表性成果、发展趋势和未来的研 究热点。此外,高性能计算技术的发展显著提升 了数据处理与分析的效率,在高光谱图像信息提 取中也得到了广泛而成功的应用,因此本文还将 介绍高光谱图像高性能处理技术的发展状况。
题制图的基础数据,在土地覆盖和资源调查以及 环境监测等领域均有着巨大的应用价值。高光谱 图像分类中主要面临Hughes现象(Hughes,1968)和 维数灾难 (Bellman , 2015) 、特征空间中数据非线 性分布等问题。同时,传统算法多是以像元作为 基本单元进行分类,并未考虑遥感图像的空间域 特征,从而使得算法无法有效处理同物异谱问 题,分类结果中地物内部易出现许多噪点。 (4) 高光谱图像提供的精细光谱特征可以用于 区分存在细微差异的目标,包括那些与自然背景 存在较高相似度的目标。因此,高光谱图像目标 探测技术在公共安全和国防领域中有着巨大的应 用潜力和价值。高光谱图像目标探测要求目标具 有诊断性的光谱特征,在实际应用中受目标光谱 的变异性、背景信息分布与模型假设存在差异、 目标地物尺寸处于亚像元级别等问题影响,有时 存在虚警率过高的问题,需要发展稳定可靠的新 方法。 此外,高光谱遥感观测的目的是获取有用的 目标信息,而不是体量巨大的高维原始数据,传 统图像处理平台和信息提取方式难以满足目标信 息快速获取的需求。尽管高性能处理器件的迅猛 发展,为亟待解决的高光谱图像并行快速处理和 在轨实时信息提取提供了实现途径,但也面临着 一系列的关键技术问题。并行处理和在轨实时处 理都需要对算法架构进行优化,同时要依据处理 硬件的特点考虑编程方面的问题,此外,在轨实时 处理还对硬件在功耗等方面提出了特殊的要求。

成像偏振探测的若干关键技术研究

成像偏振探测的若干关键技术研究

成像偏振探测的若干关键技术研究成像偏振探测的若干关键技术研究1. 引言成像偏振探测是一种利用偏振特性获取目标物体信息的技术。

随着现代科技的不断发展,人们对于物体的细节、形态和特性的要求也越来越高。

传统的成像技术往往难以满足这些需求,而成像偏振探测技术因其独特的优势而受到广泛关注。

本文将从若干关键技术方面进行探讨,以期对成像偏振探测技术的发展做出贡献。

2. 偏振成像原理光是一种波动现象,它具有电场分量和磁场分量。

偏振现象指的是光的电场分量振动方向在空间中的固定方向变化。

偏振成像利用了光的这一特性,通过改变光的偏振状态,可以对物体进行成像和表征。

3. 偏振成像的关键技术3.1 偏振传感器偏振传感器是关键技术之一。

它的作用是接收和分析光的偏振状态。

目前,常见的偏振传感器包括偏振分束器、偏振检测器和偏振滤波器等。

利用这些传感器可以实现对目标物体的偏振信息的采集和处理。

3.2 偏振光源偏振光源也是成像偏振探测的关键技术之一。

目前,常见的偏振光源有线偏振光源和自然光源。

线偏振光源通过一系列的光学元件来产生特定方向的偏振光,而自然光源则是直接使用光线本身的自然偏振状态。

选择合适的偏振光源对于获取准确的偏振信息至关重要。

3.3 偏振滤波器偏振滤波器的作用是通过选择不同方向的偏振光成分来实现对目标物体的偏振成像。

在成像过程中,利用偏振滤波器可以选择性地传递或屏蔽特定方向的偏振光,从而提取出目标物体的特征信息。

3.4 偏振成像算法偏振成像算法的研究是成像偏振探测的另一个关键技术。

这些算法主要通过对采集到的偏振图像进行分析和处理,提取目标物体的有用特征信息。

目前常用的偏振成像算法包括偏振差异成像、偏振分解和偏振参数提取等。

4. 实际应用和挑战成像偏振探测技术已经在多个领域得到了广泛应用。

例如,在生物医学领域,偏振成像可以用于癌症早期诊断和研究;在材料科学领域,偏振成像可以用于分析材料的力学性质和光学性质。

然而,成像偏振探测技术还面临一些挑战,例如目标物体的复杂性、光的衍射和干涉等问题,这些都需要进一步的研究和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EFFICIENT MULTIPLE OBSERVER SITING ON LARGE TERRAIN CELLSWm Randolph Franklin&Christian V ogtRensselaer Polytechnic Institute,Troy,New York12180–3590wrf@&vogtc@,5/Homepages/wrfApril13,2004AbstractThis paper refines our testbed implementation of a suite of programs,for fast viewshed,and for fast10approximate visibility index determination,and for siting multiple observers jointly to cover terrain.We process DEMs up to2402×2402,while executing so quickly that multiple experiments are easilypossible.Both the observer and target may be at a givenfixed height above the terrain.We conclude thatestimating visibility index using20-30random targets per observer is a good compromise between speedand quality.When forcing the selection of top observers to be well spaced out,subdividing the cell into15such small blocks that only2-5observers are selected per block is best.Applications of multiple observersiting include radio towers,terrain observation,and mitigation of environmental visual nuisances.KEYWORDS:terrain visibility,viewshed,line of sight,multiple observersContents1Introduction3 202Siting Toolkit5 3Vix and Findmax Experiments63.1Testing vix (8)3.2Testing F INDMAX (8)3.2.1Test procedure (11)253.2.2Evaluation (11)4Conclusions154.1V IX Experiment (15)4.2F INDMAX Experiment (15)5The Future15 6Acknowledgements16 List of Figures1The Test Cells (7)52Effect of Varying the Number of Tests per Observer on the Number of Observers Needed to Cover80%of the Cell,for R=300,=10 (9)3Effect of Varying the Number of Tests per Observer on the Number of Observers Needed to Cover80%of the Baker East Cell,for Various R and H (10)4Effect of Block Size on the Area Covered by100Observers,for Various1201×1201Cells.12 105Effect of Block Size on the Area Covered by100Observers,for the Large Cell (13)6Effect of Varying Number of Top Observers Returned by F INDMAX on the Number of Ob-servers Needed to Cover80%of the Cell,for Various1201×1201Cells (14)List of Tables1Statistical Values for the Level-1DEM Maps (7)152Statistics of the Large NED Map (7)3Parameter Values for the Different Test Runs of the Experiment(Italicized Case Only for the California Dataset) (8)4Parameter Values for the Different Test Cases of the Experiment (8)5The parameters for block size and top observers are given for the different test cases.The20values in the"Blocks"column represent the actual number of blocks used byfindmax giventhe size of the map and the parameters for block size and top observers.The values inthe"obs/block"column represent the number of top observers that F INDMAX calculates foreach block (11)1IntroductionThe results reported here are part of a long project that may be called Geospatial Mathematics.Our aim is to understand and to represent the earth’s terrain elevation.Previous results have included•a Triangulated Irregular Network(TIN)program that can completely tin a1201×1201level-1USGS DEM,(Franklin, 1973,2001;Pedrini,2000),•Lossy and lossless compression of gridded elevation databases,(Franklin and 5Said,1996),•interpolation from contours to an elevation grid,(Gousie and Franklin,1998,2003;Gousie, 1998),and•a siting toolkit for Viewshed and visibility index determination,(Franklin,2002;Ray,1994).This paper extends this siting toolkit.Consider a terrain elevation database,and an observer,O.Define the viewshed as the terrain visible fromO within some radius of interest,R,of O.The observer might be situated at a certain height,H,above 10ground level,and might also be looking for targets also at height H above the local ground.Also,define the visibility index of O as the fraction of the points within R of O that are visible from O.This paper combines an earlier fast viewshed algorithm with an earlier approximate visibility index algorithm,to site multiple observer so as to jointly cover as much terrain as possible.This paper extends the earlier visibility work in Franklin(2000)and Franklin and Ray(1994),which also 15survey the terrain visibility literature.Notable pioneer work on visibility includes De Floriani and Mag-illo(1994);Fisher(1993);Lee(1992);Shannon and Ignizio(1971).Shapira(1990)studied visibility,and provided the Lake Champlain W data used in this paper.Ray(1994)presented new algorithms and imple-mentations of the visibility index,and devised the efficient viewshed algorithm that we use.One applicationof visibility is a more sophisticated evaluation of lossy compression methods,(Ben-Moshe et al.,2002). 20Fisher(1991,1992);Nackaerts et al.(1999)analyze the effect of terrain errors on the computed viewshed.Fisher(1996)proposes modified definitions of visibility for certain Army Topographic Engineering Center(2004)discusses many line-of-sight issues.This multiple observers case is particularly interesting and complex,and has many applications.A cellphone provider wishes to install multiple towers so that at least one tower is visible(in a radio sense)from 25every place a customer’s cellphone might be.Here,the identities of the observers of highest visibility index are of more interest than their exact visibility indices,or than the visibility indices of all observers.One novel future application of siting radio transmitters will occur when the moon is settled.The moon has no ionosphere to reflect signals,and no stable satellite orbits.The choices for long-range communicationwould seem to include either a lot offiber optic cable or many relay towers.That solution is the multiple 30observer visibility problem.As another example,a military planner needs to put observers so that there is nowhere to hide that is not visible from at least one.This leads to a corollary application,where the other side’s planner may want to analyze thefirst side’s observers tofind places to hide.In this case,the problem is to optimize the targets’locations,instead of the observers’.35Again,a planner for a scenic area may consider each place where a tourist might be to be an observer,and then want to locate ugly infrastructure,such as work yards,at relatively hidden sites.We may wish sitea forest clearcut to be invisible to observers driving on a highway sited to give a good view.Finally,anarchitect may be trying to site a new house while following the planning board’s instruction that,“You canhave a view,but you can’t be the view.”While our programs may optionally produce a set of observers with intervisibility ,i.e.,their views of each other form a connected graph,we do not impose that constraint in the experiments reported here.Speed of execution on large datasets is of more importance than may be apparent.Many prototype imple-mentations,demonstrated on small datasets,do not scale up well.That may happen either because of the size 5and complexity of the data structures used,or because of the asymptotic time behavior.For instance,even an execution time proportional to N log(N ),where N is the size of the input,is problematic for N =106.In that case,the log(N )increases the time by a factor of 20.Some preliminary published algoriths may even be exponential if performing a naive search.Therefore,we strive for the best time possible.In addition,large datasets may contain cases,which did not occur in the small test sets,that require tedious 10special programming by the designer.In a perfect software development process,all such cases would have been theoretically analyzed a priori ,and treated.However,in the real world,testing on the largest available datasets increases some confidence in the program’s correctness.Next,a large enough quantitative increase in execution speed leads to a qualitative increase in what we can do.Only if visibility can be computed efficiently,can it be used in a subroutine that is called many times,15perhaps as as part of a search,to optimize the number of observers.This becomes more important when a more realistic function is being optimized,such as the total cost.E.g.,for radio towers,there may be a tradeoff between a few tall and expensive towers,and many short and cheap ones.Alternatively,certain tower locations may be more expensive because of the need to build a road.We may even wish to add redundancy so that every possible target is visible from at least two observers.In all these cases,where a 20massive search of the solution space is required,success depends on each query being as fast as possible.Finally,altho the size of available data is growing quickly,it is not necessarily true that available computing power is keeping pace.There is a military need to offload computations to small portable devices,such as a Personal Digital Assistant (PDA).A PDA’s computation power is limited by its battery,since,approximately,for a given silicon technology,each elemental computation consumes a fixed amount of energy.Batteries 25are not getting better very quickly;increasing the processor’s cycle speed just runs down the battery faster.There is also a compounding effect between efficient time and efficient space.Smaller data structures fit into cache better,and so page less,which reduces time.The point of all this is that efficient software is at least as important now as ever.The terrain data structure used here is usually a 1201by 1201matrix of elevations,such as from a USGS30level-1Digital Elevation Model cell.The relative advantages and disadvantages of this data structure versus a triangulation are well known,and still debated;the competition improves both alternatives.This current paper utilizes the simplicity of the elevation matrix,which leads to greater speed and small size,which allows larger data sets to be processed.For distances much smaller than the earth’s radius,the terrain elevation array can be corrected for the earth’s 35curvature,as follows.For each target at a distance D from the observer,subtract D 22E from its elevation,where E is the earth’s radius.(The relative error of this approximation is D 2E 2.)It is sufficient to processany cell once,with an observer in the center.The correction need not changed for different observers in the cell,unless a neighboring cell is being adjoined.Therefore,since it can be easily corrected for in a preprocessing step,our visibility determination programs ignores the earth’s curvature.The radius of interest,R,out to which we calculate visibility,has no relation to the distance to the horizon, but is determined by the technology used by the observer.E.g.,if the observer is a radio communications 5transmitter,doubling R causes the required transmitter power to quadruple.If the observer is a searchlight, then its required power is proportional to R4.In order to simplify the problem under study enough to make some progress,this work also ignores factors such as vegetation that need to be handled in the real world.The assumption is that it’s possible,and a betterstrategy,to incorporate them only later.102Siting ToolkitThis toolkit,whose purpose if to select a set of observers to cover a terrain cell,consists of four core C++ programs,supplemented with zsh shell scripts,Makefiles,and assorted auxiliary programs,all running in linux.1.V IX calculates approximate visibility indices of every point in a cell.V IX takes several user param-15eters:R,the radius of interest,H,the observer and target height,and T,a sample size.V IX reads an elevation cell.For each point in the cell in turn,V IX considers that point as an observer,picks T random targets uniformly and independently distributed within R of the point,and computes what fraction are visible.That is this point’s estimated visibility index.2.F INDMAX selects a manageable subset of the most visible tentative observers from V IX’s output, 20called the top observers.This is somewhat subtle since there may be a small region containing all points of very high visibility.A lake surrounded by mountains would be such a case.Since multiple close observers are redundant,we force the tentative observers to be spread out as follows.(a)Divide the cell into smaller blocks of points.If necessary,first perturb the given block size sothat all the blocks are the same size,±1.25(b)In each block,find the K points of highest approximate visibility index,for some reasonable K.If there were more than K points with equally high visibility index,then select K at random,toprevent a bias towards selecting points all on one side of the block.3.V IEWSHEDfinds the viewshed of a given observer at height H out to radius,R.The procedure,whichis an improvement over Franklin and Ray(1994),goes as follows.30(a)Define a square of side2R centered on the observer.(b)Consider each point around the perimeter of the square to be a target in turn.(c)Run a sight line out from the observer to each target calculating which points adjacent to the line,along its length,are visible,while remembering that both the observer and target are probablyabove ground level.(d)If the target is outside the cell,because R is large or the observer is close to the edge,then stopprocessing the sight line at the edge of the cell.5Various nastily subtle implementation details are omitted.The above procedure,due to Ray(1994), is an approximation,but so is representing the data as an elevation grid,and this method probably extracts most of the information inherent in the data.There are combinatorial concepts,such as Davenport-Schintzel sequences,i.a.,which present asymptotic worst-case theoretical methods.4.S ITE takes a list of viewsheds andfinds a quasi-minimal set that covers the terrain cell as thoroughly 10as possible.The method is a simple greedy algorithm.At each step,the new tentative observer whose viewshed will increase the cumulative viewshed by the largest area is included,as follows.(a)Let C be the cumulative viewshed,or set of points visible by at least one selected observer.Initially,C is empty.(b)Calculate the viewshed,V i,of each tentative observer O i.15(c)Repeat the following until it’s not possible to increase area(C),either because all the tentativeobservers have been included,or(more likely)because none of the unused tentative observerswould increase area(C).i.For each O i,calculate area(C∪V i).ii.Select the tentative observer that increases the cumulative area the most,and update C. 20Not all the tentative observers need be tested every time,since a tentative observer cannotadd more area this time than it would have added last time,had it been selected.Indeed,suppose that the best new observer found so far in this step would add new area A.Howeverwe haven’t checked all the tentative new observers yet in this loop,so we continue.For eachfurther tentative observer in this execution of the loop,if it would have added less than A 25last time,then do not even try it this time.In all the experiments described in the following sections,all the programs listed above are run in sequence.In each experiment,the parameters affecting one program are varied,and the results observed.3Vix and Findmax ExperimentsOur goal here was to optimize V IX and F INDMAX,and to achieve a good balance between speed and quality. 30We used six test maps.Five of those maps were level-1DEM maps,with1201×1201postings a vertical resolution of1meter.The maps were chosen to represent different types of terrain,fromflat planes to rough mountainous areas.Table1on the following page describes them,and Figure1on the next page shows them.The sixth map is a National Elevation Data Set(NED)downloaded from the USGS 35"Seamless Data Distribution System".From the original7.5-minute map with boundsname mean min height max height height range St DevAberdeen east420.537968330436.5Gadsden east257.611854943173.7Lake Champlain west272.51515911576247.8Baker east1260.954625211975376.9Hailey east1974.195436002646516.3Table1.Statistical Values for the Level-1DEM Maps(41.2822,42.4899),(−123.8700,−122.6882),thefirst2402rows and columns were extracted.This map is from a rough mountainous region,and was chosen to test our programs on a larger higher resolution map,since some siting programs have difficulties here.Table2gives its statistics.name mean min height max height height range STDCalifornia706.9205.92211.32005.42946.8Table2.Statistics of the Large NED MapFig.1.The Test Cells3.1Testing vixThese experiments tested the effect of varying T,the number of random targets used by V IX to estimate the visibility index of each observer.A higher T produces more accurate estimates but takes longer.Note that precise estimates of visibility indexes are unnecessary since these are used only to produce an initial set of potential observers.Actual observers are selected from this set according by how much they increase the 5cumulative viewshed.We performed these tests with various values of R and H,on various datasets,The experiment consisted of5 different test runs for all maps and an additional sixth test run for the larger map,as shown in Table3.Each test run contained of10different test cases,listed in Table4.T=0gives a random selection of observerssince all observers have an equal visibility index of zero.10parameter test runsradius of interest R100100100803001000observer and target height H51050101010 Table3.Parameter Values for the Different Test Runs of the Experiment(Italicized Case Only for the California Dataset)paramer test casessample size T02581215203050200Table4.Parameter Values for the Different Test Cases of the Experiment Each test case was executed20times for the1201×1201maps and5times for the2402×2402map.Each time enough observers were selected to cover80%of the terrain.(F INDMAX used a block size of100and 1008top observers.)The mean number of observers over the20runs was reported.Figure2on the next page shows results for R=300and H=10.The results were normalized to make theoutput from the experiments with0random tests to be1.Therefore1can be considered as the result that 15can be achieved by randomly choosing top observers for S ITE.Every value higher than one is worse than random every value lower then one is better.Figure3shows the Baker test case in more detail.3.2Testing F INDMAXThe purpose of thefindmax experiment was to evaluate the influence of F INDMAX on thefinal result of thesiting observers problem.The two parameters evaluated were the number of top observers and the block 20size.The number of top observers specifies how many observers should be returned by F INDMAX.A larger number slows S ITE because there are more observers to choose from,but may lead to S ITEfinally needing fewer observers.Therefore we want to keep this number as low as possible.It is computationally cheaper to increase the sample set in V IX than to increase the number of top observers.The block size specifieshow much the top observers returned by F INDMAX are forced to spread out.A smaller number increases 25the amount of blocks on a map and therefore reduces the amount of top observers from a given block.This parameter has no influence on the computational speed.80%of the Cell,for R=300,=1080%of the Baker East Cell,for Various R and H3.2.1Test procedureThe experiment for the number of top observers consisted of9different test cases.It was only conducted on the level-1DEM maps.During the experiment the values for the number of top observers ranged from 576to10080.In all the test runs a block size of100was chosen,resulting in144blocks.576top observers produced4observers per block;10080top observers produced70observers per block.All different values 5for the number of top observers are given in the table5.together with their resulting number of observers per block.The experiment for the block size was different for level-1DEM maps than for the larger map.In the case of the level-1DEM maps there were9different test cases with values for block size ranging from36to300.This resulted in having between1to1089blocks per map.The number of top observers was chosen to be 101000.The actual number depends on the number of blocks since each block needs the same number of top ob-servers.In case of the larger maps there are8different test cases with values for block size ranging from80 to2402.This results in having between1to900blocks per map.The number of top observers was chosento be2000.The actual number depends on the number of blocks since each block needs the same number 15of top observers.All the different settings are given in the table5.Experiment Parameters&Test CasesNumbersTop Observers Block Size100100100100100100100100100Top Observers57686410081296158420163024504010080Blocks144144144144144144144144144Obs/Block46791114213570 Block Size Block Size3650637580100150200300Top Observers108911521083102411251008102410081008Blocks1089576361256225144643616Obs/Block123457162863 Block Size Block Size8010015020030050012012402Top Observers27002304204820162048200020002000Blocks900576256144642541Obs/Block3481432805002000 Table5.The parameters for block size and top observers are given for the different test cases.The values in the"Blocks"column represent the actual number of blocks used byfindmax given the size of the map and the parameters for block size and top observers.The values in the"obs/block"column represent the number of top observers that F INDMAX calculates for each block.3.2.2EvaluationIn the sample size experiment,each test case was executed20times,with the entire application run each time until the site program was able to cover80%of the terrain.V IX used R=100,H=10,and T=20.The resulting number of observers needed to cover the80%was noted,and the arithmetic mean from the 20results of the same test case calculated.In the block size experiment,each test case was executed20times for the level-1DEM maps and5times for the larger test.The evaluation of the results is slightly different.The site program ran until100(400for the larger map)observers were sited.The parameters used for V IX were R=100,H=10,and T=20.The amount of terrain visible by thefinal observers was then noted.The reason for changing the evaluation 5method was due to the problem that in some test cases we were not able to cover80%of the cell.Figure4shows for different maps how much terrain can be seen by100observers.For all data sets the parameters used were R=100and H=10.The results are normalized by1.For each map the best result achieved by any value for the block size was considered to be1.The results of the experiments usingdifferent values for the block size were scaled accordingly.Therefore the highest value that can be achieved 10is1.Everything below one is worse.Fig.4.Effect of Block Size on the Area Covered by100Observers,for Various1201×1201Cells Figure5on the following page shows for the larger map how much terrain can be seen by100observers.For the data sets the parameters used were R=100and H=10.The results are normalized by1.The best result achieved by any value for the block size was considered to be1.The results of the experiments using different values for the block size were scaled accordingly.Therefore the highest value that can be achieved is1.Everything below1is worse.Fig.5.Effect of Block Size on the Area Covered by100Observers,for the Large CellFigure6on the next page shows for different maps how many observers are needed to cover80%of the data. 5For all data sets the parameters used were100for the radius of interest and10for the observer and target height.The results are normalized by1.The results of the experiments that were achieved by computing576 top observers was considered to be1.Lower values are worse.Needed to Cover80%of the Cell,for Various1201×1201Cells4Conclusions4.1V IX Experiment•A sample size of20to30random tests for V IX is a good balance between the quality of the result and the computational speed.Surprisingly this value is good for a wide range of parameters and terrain types.5•V IX improved the result on the level-1DEM maps in the best case by reducing the amount of ob-servers needed to39%compared to randomly selecting top observers.The largest improvements were achieved for large or rough terrain for large R or low H.The smallest improvement was achieved on flat terrain.•On the larger map the improvement of V IX was even bigger.Possible explanations are that this terrain 10is the roughest,and that there were fewer top observers per data point than in the smaller maps.4.2F INDMAX Experiment•The block size should be chosen to be small,i.e.,2to5observers per block.When covering a larger fraction of the terrain,a smaller number of observers per block is important.•Increasing the number of top observers in F INDMAX increases the quality of the result,but requires 15much more time.It is cheaper to increase the number of random tests in V IX,but there is a limitation for what can be achieved by increasing the number of random tests.The best results in the entire experiment were achieved with10000top observers.This might not be obvious when comparing the graph of the results from the V IX experiments with the results from the F INDMAX experiments.However,during the F INDMAX experiments a relatively large number of random tests was chosen. 20Therefore the visibility index for F INDMAX was of a high resolution.5The FutureThe various tradeoffs mentioned above and the above experiments illuminate a great opportunity.They tell us that shortcuts are possible in siting observers,which will produce just as good results in much less time.Another area for investigation is the connectivity of either the viewshed,or its complement.Indeed,it may 25be sufficient for us to divide the cell into many separated small hidden regions,which could be identified using the fast connected component program described in Nagy et al.(2001).There is also the perennial question of how much information content there is in the output,since the input dataset is imprecise,and is sampled only at certain points.A most useful,but quite difficult,problem is todetermine what,if anything,we know with certainty about the viewsheds and observers for some cell.For 30example,given a set of observers,are there some regions in the cell that we know are definitely visible,or definitely hidden?This problem of inadequate data is also told by soldiers undergoing training in thefield.Someone workingwith only maps of the training site will lose to someone with actual experience on the ground there.Finally,the proper theoretical approach to this problem would start with a formal model of random terrain.Then we could at least start to ask questions about the number of observers theoretically needed,as a function of the parameters.Until that happens,continued experiments will be needed.56AcknowledgementsThis paper was supported by the National Science Foundation grant CCR03-06502.6ReferencesBen-Moshe B,Mitchell JSB,Katz MJ and Nir Y(2002)Visibility preserving terrain simplification:anexperimental study.in Symposium on Computational Geometry.ACM pp.303–31110De Floriani L and Magillo P(1994)Visibility algorithms on DTMs.Int.J.Geographic Information Systems 8(1),13–41Fisher PF(1991)1st experiments in viewshed uncertainty—the accuracy of the viewshed area.Photogram-metric Engineering and Remote Sensing57(10),1321–1327Fisher PF(1992)1st experiments in viewshed uncertainty—simulating fuzzy viewsheds.Photogrammetric 15Engineering and Remote Sensing58(3),345–352Fisher PF(1993)Algorithm and implementation uncertainty in viewshed analysis.Int.J.Geographical Information Systems7,331–347Fisher PF(1996)Extending the applicability of viewsheds in landscape planning.Photogrammetric Engi-neering and Remote Sensing62(11),1297—130220Franklin WR(1973)Triangulated irregular network program.ftp:///pub/ franklin/tin73.tar.gzFranklin WR(2000)Applications of analytical cartography.Cartography and Geographic Information Systems27(3),225–237Franklin WR(2001)Triangulated irregular network computation./ 25Homepages/wrf/sw.html#tinFranklin WR(2002)Siting observers on terrain.in D Richardson and P van Oosterom,eds,Advances in Spatial Data Handling:10th International Symposium on Spatial Data Handling.Springer-Verlag pp.109–120Franklin WR and Ray C(1994)Higher isn’t necessarily better:Visibility algorithms and experiments.in 30T.C Waugh and R.G Healey,eds,Advances in GIS Research:Sixth International Symposium on Spatial Data Handling.Taylor&Francis Edinburgh pp.751–770Franklin WR and Said A(1996)Lossy compression of elevation data.in Seventh International Symposium on Spatial Data Handling.Delft。

相关文档
最新文档