因式分解习题50道及答案
因式分解练习100题及答案

一、 提取公因式
( 1) (9a+5)(-4b+5)+(b+2)(9a+5) (2) (3m-2)(-2n+3)+(3m-2)(-9n-1)+(3m-2)(-6n+4) (3) (9a-4)(2b+3)+(9a-4)(2b-2) (4) I4a3x4 -35a4x3y3 (5) 18x千-I2x 3y 千 (6) 2ab4c2— 8bc2 (7) x 3y4+5ax3y4 (8) (9x— 4)(—8x+l)+(9x— 4)(9x+2)
(57) (3a2+2ab-2b2 )(3a2 -2ab-2b2 ) (58) (2x2 +5x+9)(2x 2 -5x + 9) (59) (8x+7y-3)(8x-7y-1 1) (60) (9m + 7n-7)(9m-7n-3)
五、 十字相乘法
(6 1) 2(3b+2)(1lb-4) (62) -(4m+I)(2m-9) (63) (b+3)(8b+l) (64) 6(9a+4)(a+2) (65) 2(4x-5y)(l lx+5y) (66) -6(a-b)(4a+5b) (67) (x+17)(x+2) (68) -(b+4)(l lb-2) (69) (2a+9)(13a— 4) (70) —(7n— 5)(2n— 5) (7 1) 2(8x-1)(5x-4) (72) (12b+19)(4b + 3) (73) 4(y+5)(5y+3) (74) 13(x-l)(4x+15) (75) —24(m— 2n)(m+2n) (76) -6(5y+l)(y+2)
因式分解练习题加答案-200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
超经典的因式分解练习题有答案

超经典的因式分解练习题有答案一、填空题:1、4a3+8a2+24a=4a(a2+2a+6)2.(a-3)(3-2a)=(3-a)(3-2a);3、a3b-ab3=ab(a-b)(a2+ab+b2)4、(1-a)mn+a-1=(mn-1)(1-a)5、0.0009x4=(0.03x2)26、(3a-1)2-8a+3=9a2-14a+17、x2-y2-z2+2yz=(x-y+z)(x+y-z)8、2ax-10at+5by-bx=2a(x-5t)-b(x-5y)=(2a-b)(x-5t)9、x2+3x-10=(x+5)(x-2)10.若m2-3m+2=(m+a)(m+b),则a=1,b=2;11、x3-1y3=(x-1y)(x2+xy+y2)12、a2-bc+ab-ac=(a+b)(a-c)13、当m=5时,x2+2(m-3)x+25是完全平方式.14、x2-1216x-1/4)(x+1/4)二、选择题:1.下列各式的因式分解结果中,正确的是C.-6xy=(4-3xy)2.多项式m(n-2)-m(2-n)分解因式等于D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是C.-4a+9b=(-2a+3b)(2a+3b)4.下列各式中,能用平方差公式分解因式的是D.-(-a)+b5.若9x+mxy+16y是一个完全平方式,那么m的值是C.126.把多项式a-a分解得A.a(a-a)7.若a+a=-1,则a+2a-3a-4a+3的值为2432(此题有误,无法解答)1.解:n4n-13n+12n+12 = n(n3-13n+12)+12 = n(n-3)(n-4)(n-1)+12答案:D2.解:x+y+2x-6y+10=0,化简得3x-5y+10=0,解得y=3-x/5,代入原式得x=1答案:A3.解:(m+3m)-8(m+3m)+16 = -4m+16 = -4(m-4)答案:B4.解:x-7x-60 = -6x-60 = -6(x+10)答案:A5.解:3x-2xy-8y = (3x-4y)(1-2x)答案:B6.解:a+8ab-33b = (a-3b)(8b+11)+11(a-3b) = (a-3b)(8b+11+a-3b)答案:C7.解:x-3x+2 = -2x+2 = -2(x-1)答案:A8.解:同第二题,答案为A9.解:(m+3m)-8(m+3m)+16 = -4m+16 = -4(m-4),答案为B10.解:同第四题,答案为A11.解:3x-2xy-8y = (3x-4y)(1-2x),答案为B12.解:a+8ab-33b = (a-3b)(8b+11)+11(a-3b) = (a-3b)(8b+11+a-3b),答案为C13.解:x-3x+2 = -2x+2 = -2(x-1),答案为A14.解:x-ax-bx+ab = (x-a)(b-x),答案为B15.解:设二次三项式为(x-p)(x-q),则pq=-12,p+q=1,解得p=-4,q=3或p=3,q=-4,答案为C16.解:x-x-x+1 = 1,x+y-xy-x = (1-y)(x-1),x-2x-y+1 = -(x+y-1),(x+3x)2-(2x+1) = 8x2-2x-1,不含有(x-1)因式的有3个,答案为C17.解:9-x+12xy-36y = (3-x)(3-4y),答案为A18.解:a-bc+ac-ab = a(c-b)-b(c-a) = (a-b)(c-a),答案为AC。
因式分解练习题加答案_200道

因式分解练习题加答案_200道(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
七年级因式分解50道题及答案和过程

七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n-(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a ab b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2x 2-8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b+(2)232x x -+(3)2214a b b -+-(4)2464a -参考答案1.(1)()()21313x x +-(2)()22m n +-【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -()2219x =-()()21313x x =+-(2)()()244m n m n +-++()22m n =+-2.(1)()343xy z x -(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y-()343xy z x =-(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2223x -()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)()()3422m n mn mn +-(2)()223x x y -【解析】(1)先提公因式34,m n 再利用平方差公式分解即可;(2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n-()32244m n m n =-()()3422m n mn mn =+-(2)解:32221218x x y xy -+()22269x x xy y =-+()223x x y =-9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解;(2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x-y)2(2)(x-1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式=()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a ab b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解;(2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a-+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案;(2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2)()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。
因式分解专项练习100题及答案

因式分解专项练习100题及答案一、提取公因式(1)(61)(53)(61)(23)(61)(62)-++---+---m n m n m n(2)4242-66x yz x y(3)(72)(81)(72)(74)(72)(41)--++--++--x x x x x x(4)4442a a x y-45(5)2333323++61515x y z x z x z(6)(53)(34)(53)(33)-----+a b a b(7)323a c bc+515(8)43-1216xyz xyz(9)431025c b c +(10)3333189ax y a x y +(11)324226a bc a b c-(12)23341435a x y x -(13)(61)(25)(91)(61)x x x x -+-+-(14)33434332816x y z y z y z++(15)(32)(41)(32)(75)(32)(21)x x x x x x -++-++-+(16)(52)(2)(25)(52)m n n m +-++-+(17)(65)(43)(65)(64)x x x x +--+-(18)(85)(91)(85)(94)(85)(42)+--+++++-+a b a b a b(19)(23)(35)(23)(71)(23)(93)--+--++---m n m n m n (20)(35)(32)(35)(4)(35)(1)x x x x x x---+-++-+二、公式法(21)22-+x xy y12122(22)22-a b481(23)22-x y784529(24)2-+x x12396324(25)22-x y289121(26)2290064a b -(27)2281450625m mn n -+(28)2249238289m mn n ++(29)225628881x x ++(30)257664x -三、分组分解法(31)281040xy x y --+(32)8122842ab a b --+(33)221635262124x y xy yz zx-++-(34)21187060ax ay bx by+--(35)2294221469a c ab bc ca++--(36)45352721mx my nx ny-+-(37)2212621728a b ab bc ca--++(38)863224xy x y -+-+(39)4102870ab a b +++(40)142070100ax ay bx by+--(41)222720452057x z xy yz zx++--(42)2273554426a b ab bc ca++++(43)302064xy x y ----(44)4101640ax ay bx by--+(45)2212354928x y xy yz zx-+--(46)363060mx my nx ny--+(47)424954xy x y -++-(48)18168172ab a b --+(49)2438010ab a b +++(50)819182ax ay bx by-+-四、拆添项(51)2281491268413a b a b -+++(52)229143024m n m n -+++(53)4224-+x x y y363316(54)4224m m n n++364716 (55)22m n m n---+8191621277 (56)22----449249813x y x y (57)4224-+m m n n93364(58)22-+--m n m n64251289017 (59)22----x y x y9643611213 (60)22-+--x y x y81610827五、十字相乘法(61)223579424942x xy y x y++--(62)2228114254545x y z xy yz---+(63)22458835434510x xy y x y -++-+(64)22145521455025x xy y x y -++-+(65)2221261539236x xy y x y -----(66)2216232876a ab b a b --+++(67)22225424450x y z yz xz-++-(68)2243014192912m mn n m n +++++(69)221526713152m mn n m n ++--+(70)222523x xy y x y +-+++(71)22228630463111x y z xy yz xz+-+-+(72)2222415821432x y z xy yz xz-+--+(73)2285921556742m mn n m n -+-++(74)22915412133x xy y x y ++--+(75)22232237a b c ab bc ac-+---(76)2159341515x xy x y ++++(77)226271510174x xy y x y +---+(78)22241128602624x xy y x y --+++(79)22812839228x xy y x y +--++(80)23036553025p pq p q --++六、双十字相乘法(81)2223520245342x y z xy yz xz+--+-(82)22273422113x y z xy yz xz+-+-+(83)22256356212910x y z xy yz xz-----(84)22228282065198a b c ab bc ac+-+-+(85)22264212946x y z xy yz xz-----(86)2214133592635x xy y x y -+-++(87)22227493042769x y z xy yz xz-+-++(88)2226184242711x y z xy yz xz+++--(89)22243110472921x xy y x y ++---(90)22228101827354a b c ab bc ac-++++七、因式定理(91)3222x x x +--(92)321845192a a a -+-(93)323744x x x +++(94)3228115x x x +++(95)32--+671510y y y (96)3212351710++-x x x (97)32x x x+++526356 (98)32+++x x x157911745 (99)32-+-522236x x x (100)32--+35159x x x因式分解专项练习100题答案一、提取公因式(1)(61)(32)m n---(2)426()x y z y-(3)(72)(114)x x--+ (4)442(45)a x y-(5)2333(255)x z y x++(6)(53)(67)a b--+ (7)235(3)c a bc+(8)34(34)xyz z-(9)425(25)c b c+(10)3229(2)ax y a y+(11)32(3)a bc c ab-(12)3237(25)x a y x-(13)(61)(74)x x---(14)33338(42)y z x z z++ (15)(32)(137)x x-+ (16)(52)(3)m n+-(17)(65)(21)x x-+-(18)(85)(45)a b+-+ (19)(23)(137)m n---(20)(35)(3)x x--+二、公式法(21)2(11)x y-(22)(29)(29)a b a b+-(23)(2823)(2823)x y x y+-(24)2(1118)x-(25)(17)(17)x y x y+-(26)(308)(308)a b a b+-(27)2(925)m n-(28)2(717)m n+(29)2(169)x+(30)(248)(248)x x+-三、分组分解法(31)2(5)(4)x y--(32)2(27)(23)a b--(33)(87)(253)x y x y z-+-(34)(310)(76)a b x y-+(35)(7)(926)a c ab c-+-(36)(53)(97)m n x y+-(37)(4)(367)a b a b c+-+ (38)2(4)(43)x y-+-(39)2(7)(25)a b++(40)2(5)(710)a b x y-+(41)(94)(355)x z x y z-+-(42)(7)(756)a b a b c+++(43)2(51)(32)x y-++(44)2(4)(25)a b x y--(45)(357)(47)x y z x y--+(46)3(10)(2)m n x y--(47)(49)(6)x y---(48)(29)(98)a b--(49)(310)(81)a b++(50)(92)(9)a b x y+-四、拆添项(51)(971)(9713)a b a b++-+(52)(32)(312)m n m n++-+(53)2222(694)(694)x xy y x xy y++-+ (54)2222(64)(64)m mn n m mn n++-+ (55)(937)(9311)m n m n+---(56)(271)(2713)x y x y++--(57)2222(398)(398)m mn n m mn n++-+ (58)(8517)(851)m n m n++--(59)(381)(3813)x y x y++--(60)(99)(93)x y x y++--五、十字相乘法(61)(577)(76)x y x y+-+ (62)(925)(975)x y z x y z+--+ (63)(955)(572)x y x y-+-+ (64)(275)(735)x y x y-+-+ (65)(731)(356)x y x y++--(66)(832)(23)a b a b++-+ (67)(524)(526)x y z x y z--+-(68)(423)(74)m n m n++++ (69)(32)(571)m n m n+-+-(70)(23)(1)x y x y-+++ (71)(465)(76)x y z x y z+++-(72)(434)(652)x y z x y z++-+ (73)(76)(837)m n m n----(74)(33)(341)x y x y+-+-(75)(2)(32)a b c a b c--+-(76)(533)(35)x y x+++ (77)(634)(51)x y x y--+-(78)(346)(874)x y x y-+++(79)(847)(24)x y x y--+-(80)(65)(565)p p q---六、双十字相乘法(81)(544)(756)x y z x y z-+--(82)(3)(74)x y z x y z+++-(83)(852)(773)x y z x y z++--(84)(745)(474)a b c a b c+-++ (85)(273)(364)x y z x y z--++ (86)(27)(735)x y x y----(87)(975)(376)x y z x y z++-+ (88)(334)(26)x y z x y z+-+-(89)(853)(327)x y x y+++-(90)(456)(723)a b c a b c++-+七、因式定理(91)(1)(1)(2)x x x+-+(92)(2)(61)(31)a a a---(93)2(2)(32)x x x+++ (94)2(1)(265)x x x+++ (95)2(2)(655)y y y-+-(96)(2)(31)(45)x x x+-+ (97)(3)(51)(2)x x x+++ (98)(3)(35)(53)x x x+++ (99)(1)(52)(3)x x x---(100)2(3)(343)x x x-+-。
因式分解50题(答案版)

因式分解50题1.43269a b a b a b -+分解因式的正确结果是()A .()2269a b a a -+B .()()233a b a a +-C .()223b a -D .()223a b a -【答案】D2.下列各式从左到右的变形中,是因式分解的是()A .()()24416x x x -+=-B .()()2222x y x y x y -+=+-+C .()222ab ac a b c +=+D .()()()()1221x x x x --=--【答案】C3.下列等式的变形是因式分解的是()A .21234a b a ab=-B .()()2224x x x +-=-C .()2481421x x x x --=--D .()111222ax ay a x y -=-【答案】D4.下面的多项式中,能因式分解的是()A .2m n +B .21m m -+C .2m n-D .221m m -+【答案】D5.观察下列各式:①2a b +和a b +;②()5m a b -和a b -+;③()3a b +和a b --;④22x y -和22x y +,其中有公因式的是()A .①②B .②③C .③④D .①④【答案】B6.因式分解:224x x -=__________.【答案】()212x x -7.因式分解()()3a x y x y ---【答案】()()31x y a --8.分解因式:22226482x y x y xy xy -++【答案】()23241xy xy x y -++9.分解因式()()()222m x y n y x x y ---=-(______).【答案】m n+10.在分解因式()()22353223x a b b a --+-时,提出公因式()232a b --后,另一个因式是()A .35x B .351x +C .351x -D .35x -【答案】C11.⑴23423232545224()20()8()x y z a b x y z a b x y z a b ---+-⑵346()12()m n n m -+-【答案】⑴原式22323224()(652)x y z a b yz x x y z =--+⑵原式[]34336()12()6()12()6()(122)m n m n m n m n m n m n =-+-=-+-=-+-12.分解因式:⑴2316()56()m m n n m -+-⑵(23)(2)(32)(2)a b a b a b b a +--+-【答案】⑴原式[]232216()56()8()27()8()(75)m n m n m n m m n m n m n m =-+-=-+-=--⑵原式(23)(2)(32)(2)(2)(55)5(2)()a b a b a b a b a b a b a b a b =+-++-=-+=-+13.分解因式:⑴()()2121510n na ab ab b a +---(n 为正整数)⑵212146n m n m a b a b ++--(m 、n 为大于1的自然数)【答案】(1)原式=()()()()()()212221510532535n nn na ab ab a b a a b a b b a a b a b +---=---=--⎡⎤⎣⎦⑵(21)(2)10n n n +-+=->,(21)(2)n n +>+,2121211462(23)n m n m n m n a b a b a b a b ++-+---=-14.因式分解()219x --的结果是()A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+【答案】A15.马小虎同学做了一道因式分解的习题,做完之后,不小心让墨水把等式:()()()4242a a a a -++-■=▲中的两个数字盖住了,那么式子中的■、▲处对应的两个数字分别是()A .64,8B .24,3C .16,2D .8,1【答案】C16.因式分解:()222224x y x y +-.【答案】()()()22222224x y x y x y x y +-=+-17.分解因式()2222224c a b a b ---【答案】()()()()c a b c a b c a b c a b +--+++--18.求证:无论m 为何整数时,多项式()2459m +-能被8整除【答案】原式=()()8221m m ++19.已知x 是有理数,则多项式2114x x --的值是()A.一定为负数B.不可能为正数C.一定为正数D.可能是正数、负数、0【答案】B20.因式分解222(6)25x x +-【答案】原式22(65)(65)x x x x =+++-(2)(3)(2)(3)x x x x =++--21.()222416xx +-【答案】22(2)(2)x x +-22.分解因式:2()6()9x y x y ++++=【答案】2(3)x y ++23.分解因式()()2269x y z x y z +-++【答案】2(3)x y z +-24.(1)316x x-(2)3244y y y-+【答案】(1)()()3164141x x x x x -=+-(2)()232442y y y y y -+=-25.因式分解:22363x xy y -+-=.【答案】()23x y --26.分解因式:322x y x y xy -+-=.【答案】2(1)xy x --27.因式分解:2221a b b ---=【答案】(1)(1)a b a b ++--28.分解因式:()22323m x y mn --【答案】()()322m x y n x y n -+--29.分解因式:222328712x y y xy xy+++【答案】()()437y x x y ++30.因式分解:2m mn mx nx -+-=【答案】()()m n m x -+31.分解因式:22x x y y +--=【答案】()()1x y x y -++32.分解因式:222694a ab b x -+-【答案】()()3232a b x a b x -+--33.分解因式22x y ax ay -++=【答案】()()x y x y a +-+34.若248123x x +-可因式分解成()()13x a bx c ++,其中a 、b 、c 均为整数,则下列叙述正确的是()A .1a =B .468b =C .3c =D .29a b c ++=【答案】C35.已知2y x -=,31x y -=,则2243x xy y -+的值为()A .1-B .2-C .3-D .4-【答案】B36.如果多项式212x kx ++能够分解成两个系数为整数的一次因式的积,那么整数k 可取的值有()A .2个B .4个C .6个D 8个【答案】C37.分解因式:231212b b -+=.【答案】23(2)b -38.分解因式:2412x x --=__________________【答案】(6)(2)x x -+39.若多项式26x mx +-有一个因式是()3x +,则m =.【答案】1m =40.分解因式:257(1)6(1)a a ++-+【答案】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+41.分解因式:222()14()24x x x x +-++【答案】(2)(1)(3)(4)x x x x +--+42.分解因式:222332x xy y x y +-+++43.分解因式:22344883x xy y x y +-+--22344883(32)(2)8()3x xy y x y x y x y x y +-+--=-++--(321)(23)x y x y =--++44.分解因式:2265622320x xy y x y --++-【答案】2265622320(234)(325)x xy y x y x y x y --++-=-++-45.分解因式:22276212x xy y x y -++--【答案】22276212(23)(234)x xy y x y x y x y -++---+--=46.分解因式:22121021152x xy y x y -++-+【答案】22121021152(32)(421)x xy y x y x y x y -++-+-+-+=47.分解因式:222695156x xy y xz yz z-+-++【答案】222695156(32)(33)x xy y xz yz z x y z x y z -+-++=----48.已知:a 、b 、c 为三角形的三条边,且满足232433720a ac c ab bc b ++--+=,求证2b =a +c23243372(3)(2)a ac c ab bc b a b c a b c ++--+=-+-+(3)(2)0a b c a b c -+-+=;两边之和大于第三边30a b c -+>,所以20a b c -+=,即2b a c=+49.设a 、b 、c 是三角形的三边长,且满足322322a ab bc b a b ac ++=++,三角形的形状为______由322322a ab bc b a b ac ++=++得3223220a ab bc b a b ac ++---=322322()()()0a a b ab b bc ac -+-+-=222()()()0a a b b a b c a b -+---=222()()0a b a b c -+-=∴22200a b a b c -=+-=或∴形状为等腰或直角50.设a 、b 、c 是三角形的三边长,且满足2222b ab c ac +=+,三角形的形状为_____【答案】由2222b ab c ac +=+得222222b ab a c ac a ++=++22()()a b a c +=+则有a b a c+=+所以b =c ∴是等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解习题50道及答案
因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。
通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。
下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。
1. 将x^2 + 4x + 4因式分解。
答案:(x + 2)^2
2. 将2x^2 + 8x + 6因式分解。
答案:2(x + 1)(x + 3)
3. 将x^2 - 9因式分解。
答案:(x - 3)(x + 3)
4. 将x^2 - 4因式分解。
答案:(x - 2)(x + 2)
5. 将x^2 + 5x + 6因式分解。
答案:(x + 2)(x + 3)
6. 将x^2 - 7x + 12因式分解。
答案:(x - 3)(x - 4)
7. 将x^2 + 3x - 4因式分解。
答案:(x + 4)(x - 1)
8. 将x^2 + 2x - 3因式分解。
答案:(x + 3)(x - 1)
9. 将x^2 - 5x + 6因式分解。
10. 将x^2 + 6x + 9因式分解。
答案:(x + 3)^2
11. 将x^2 - 8x + 16因式分解。
答案:(x - 4)^2
12. 将x^2 - 10x + 25因式分解。
答案:(x - 5)^2
13. 将x^2 + 4x - 5因式分解。
答案:(x + 5)(x - 1)
14. 将x^2 - 6x - 7因式分解。
答案:(x - 7)(x + 1)
15. 将x^2 + 7x - 8因式分解。
答案:(x - 1)(x + 8)
16. 将x^2 - 3x - 10因式分解。
答案:(x - 5)(x + 2)
17. 将x^2 - 11x + 28因式分解。
答案:(x - 4)(x - 7)
18. 将x^2 + 8x + 15因式分解。
答案:(x + 3)(x + 5)
19. 将x^2 - 13x + 40因式分解。
答案:(x - 5)(x - 8)
20. 将x^2 + 9x + 20因式分解。
21. 将x^2 - 14x + 48因式分解。
答案:(x - 6)(x - 8)
22. 将x^2 + 10x + 24因式分解。
答案:(x + 4)(x + 6)
23. 将x^2 - 15x + 56因式分解。
答案:(x - 7)(x - 8)
24. 将x^2 + 11x + 24因式分解。
答案:(x + 3)(x + 8)
25. 将x^2 - 16x + 63因式分解。
答案:(x - 7)(x - 9)
26. 将x^2 + 12x + 27因式分解。
答案:(x + 3)^2
27. 将x^2 - 17x + 72因式分解。
答案:(x - 8)(x - 9)
28. 将x^2 + 13x + 36因式分解。
答案:(x + 4)(x + 9)
29. 将x^2 - 18x + 81因式分解。
答案:(x - 9)^2
30. 将x^2 + 14x + 49因式分解。
答案:(x + 7)^2
31. 将x^2 - 19x + 90因式分解。
32. 将x^2 + 15x + 56因式分解。
答案:(x + 7)(x + 8)
33. 将x^2 - 20x + 99因式分解。
答案:(x - 9)(x - 11)
34. 将x^2 + 16x + 63因式分解。
答案:(x + 7)(x + 9)
35. 将x^2 - 21x + 110因式分解。
答案:(x - 10)(x - 11)
36. 将x^2 + 17x + 72因式分解。
答案:(x + 8)(x + 9)
37. 将x^2 - 22x + 121因式分解。
答案:(x - 11)^2
38. 将x^2 + 18x + 81因式分解。
答案:(x + 9)^2
39. 将x^2 - 23x + 132因式分解。
答案:(x - 11)(x - 12)
40. 将x^2 + 19x + 90因式分解。
答案:(x + 9)(x + 10)
41. 将x^2 - 24x + 143因式分解。
答案:(x - 11)(x - 13)
42. 将x^2 + 20x + 99因式分解。
43. 将x^2 - 25x + 156因式分解。
答案:(x - 12)(x - 13)
44. 将x^2 + 21x + 110因式分解。
答案:(x + 10)(x + 11)
45. 将x^2 - 26x + 169因式分解。
答案:(x - 13)^2
46. 将x^2 + 22x + 121因式分解。
答案:(x + 11)^2
47. 将x^2 - 27x + 182因式分解。
答案:(x - 13)(x - 14)
48. 将x^2 + 23x + 132因式分解。
答案:(x + 11)(x + 12)
49. 将x^2 - 28x + 195因式分解。
答案:(x - 13)(x - 15)
50. 将x^2 + 24x + 143因式分解。
答案:(x + 11)(x + 13)
通过以上50道因式分解习题,我们可以加深对因式分解的理解和掌握。
因式分解不仅在数学中有重要的应用,还在其他学科中有广泛的运用。
希望大家能够通过不断练习和思考,提高自己的数学能力。