玻璃钢成型工艺技术手册
玻璃钢手煳成型工艺培训资料

玻璃钢手煳成型工艺培训资料一、工艺流程玻璃钢手煳成型的工艺流程主要包括原材料准备、模具制作、分层糊片、真空吸气、固化和脱模等步骤。
在进行玻璃钢手煳成型工艺时,首先需要准备好玻璃纤维布、环氧树脂以及辅助材料,然后制作模具,将玻璃纤维布分层粘贴在模具上,并进行真空吸气,最后进行固化和脱模处理,完成产品成型。
二、原材料准备1. 玻璃纤维布:选择合适的玻璃纤维布,根据产品的要求进行尺寸和厚度的选择。
2. 环氧树脂:选择适用于玻璃钢手煳成型的环氧树脂,确保其具有良好的流动性和固化性。
3. 辅助材料:包括辅助剂、填料、色粉等,用于调整产品的性能和外观。
三、模具制作根据产品的要求,选择合适的模具材料,制作出符合产品尺寸和形状的模具。
四、分层糊片将玻璃纤维布按照产品的要求进行分层糊片,确保每一层之间紧密贴合,避免出现空鼓和气泡。
五、真空吸气在进行固化之前,需要将糊片好的玻璃纤维布进行真空吸气处理,以确保其表面光滑,同时避免气泡的产生。
六、固化固化是玻璃钢手煳成型工艺中最关键的步骤,通过控制固化的时间和温度,确保产品能够获得良好的物理性能和表面质量。
七、脱模固化完成后,将产品从模具中取出,进行脱模处理,使其表面光滑、整洁。
通过上述工艺流程的培训资料,相信大家对玻璃钢手煳成型工艺有了一定的了解。
在进行相应的操作时,务必严格按照操作规程和安全要求进行,以确保产品质量和安全生产。
八、质量控制在进行玻璃钢手煳成型工艺过程中,质量控制是至关重要的。
在每个环节都需要严格把控,以确保最终产品能够符合设计要求和客户需求。
在原材料采购时,需要严格按照要求选择合格的玻璃纤维布和环氧树脂,确保其质量符合标准。
在制作模具时,需要严格控制模具的尺寸和表面质量,以确保成型产品的准确度和表面平整度。
在进行分层糊片时,需要严格控制每层的厚度和均匀性,避免出现质量缺陷。
在真空吸气和固化过程中,需要严格控制吸气时间和温度,以确保产生的产品表面光滑,避免气泡的产生。
玻璃钢作业指导书

玻璃钢作业指导书一、引言玻璃钢(Glass Fiber Reinforced Plastic,简称GFRP)是一种由玻璃纤维和树脂组成的复合材料,具有优异的力学性能和耐腐蚀性能。
本作业指导书旨在提供玻璃钢作业的详细步骤和安全注意事项,以确保作业人员的安全和作业质量。
二、作业准备1. 确认作业区域:确保作业区域没有明火、易燃物品和有害气体,保持通风良好。
2. 准备工具和设备:准备所需的玻璃钢制作工具和设备,如刷子、滚筒、刮刀、喷枪等。
3. 检查材料和树脂:检查玻璃纤维布和树脂的质量和数量是否符合要求。
三、作业步骤1. 表面处理:清洁和打磨作业表面,确保表面平整、干净,去除油污和杂质。
2. 玻璃纤维布铺设:根据设计要求,将玻璃纤维布铺设在作业表面上,确保布料平整、贴合。
3. 树脂涂布:使用刷子、滚筒或喷枪将树脂均匀涂布在玻璃纤维布上,确保树脂覆盖均匀、无气泡。
4. 复合固化:根据树脂的固化时间和温度要求,等待树脂固化完全,确保作业表面坚固。
5. 表面处理:使用砂纸或砂轮对作业表面进行打磨,使其光滑均匀。
6. 检查和修复:检查作业表面是否存在缺陷、气泡或不平整,如有需要修复。
7. 涂层保护:根据需要,对玻璃钢作业表面进行涂层保护,增强其耐腐蚀性能和外观质量。
四、安全注意事项1. 个人防护:作业人员应佩戴防护眼镜、手套、防护服等个人防护装备,避免接触树脂和玻璃纤维布。
2. 通风设施:作业区域应保持良好的通风,避免树脂挥发物积聚,防止中毒和爆炸。
3. 灭火设备:在作业区域内应配备灭火器材,以应对突发火灾事故。
4. 树脂储存:树脂应储存在阴凉、干燥、通风良好的地方,远离火源和易燃物。
5. 废弃物处理:废弃的玻璃纤维布和树脂应按照环境保护要求进行分类和处理,避免对环境造成污染。
五、作业质量控制1. 规范要求:作业人员应按照设计要求和相关标准进行作业,确保作业质量符合要求。
2. 检验和测试:对玻璃钢作业表面进行检验和测试,如厚度测量、强度测试等,确保作业质量可靠。
玻璃钢作业指导书

玻璃钢作业指导书一、引言玻璃钢是一种由玻璃纤维和树脂组成的复合材料,具有优良的耐腐蚀性、强度和轻质化等特点,广泛应用于船舶、建筑、化工等领域。
为了确保玻璃钢作业的安全和质量,本指导书旨在提供详细的操作步骤和注意事项。
二、作业准备1. 工作区域清理:确保作业区域干净整洁,无杂物和障碍物。
2. 个人防护装备:佩戴适当的个人防护装备,包括安全帽、防护眼镜、防护手套、防护服等。
3. 工具和设备准备:准备所需的工具和设备,如玻璃钢切割工具、胶粘剂、刷子等。
三、玻璃钢制作1. 玻璃纤维准备:根据需要的尺寸和形状,将玻璃纤维切割成适当的大小。
2. 树脂配制:按照指定比例将树脂与固化剂混合,并搅拌均匀。
3. 玻璃纤维涂覆:将玻璃纤维放置在工作台上,使用刷子将树脂涂覆在玻璃纤维上,确保均匀覆盖。
4. 复合成型:将涂覆了树脂的玻璃纤维放置在模具中,并施加适当的压力,使其成型。
5. 固化:根据树脂的要求,将成型的玻璃钢放置在适当的环境中进行固化,通常需要一定的时间。
6. 后处理:根据需要,对固化后的玻璃钢进行修整、打磨和清洁等处理。
四、安全注意事项1. 个人防护:在操作过程中,严格佩戴个人防护装备,确保头部、眼睛、手部和身体的安全。
2. 通风良好:确保作业区域有足够的通风,避免吸入有害气体和颗粒物。
3. 防火防爆:在操作过程中,远离明火和易燃物,避免引发火灾和爆炸事故。
4. 注意操作技巧:熟悉玻璃钢制作的操作技巧,避免不必要的事故和损失。
5. 废弃物处理:将废弃的玻璃纤维和树脂妥善处理,避免对环境造成污染。
五、质量控制1. 尺寸检查:对制作的玻璃钢进行尺寸检查,确保符合要求。
2. 外观检查:检查制作的玻璃钢外观是否平整、无气泡、无裂纹等缺陷。
3. 物理性能检测:根据需要,对制作的玻璃钢进行物理性能测试,如强度、硬度等。
4. 记录和报告:记录每个批次制作的玻璃钢的相关信息,并编制质量报告。
六、维护与保养1. 清洁:定期清洁制作工具和设备,保持其良好的工作状态。
玻璃钢成型工艺

玻璃钢成型工艺层压及卷管成型工艺1、层压成型工艺层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。
它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。
该工艺主要用于生产电绝缘板和印刷电路板材。
现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。
层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。
层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。
在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。
管材固化后,脱去芯模,即得复合材料卷管。
卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。
其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。
在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖贴在引头布的加热部分,与引头布相搭接。
引头布的长度约为800~1200mm,视管径而定,引头布与胶布的搭接长度,一般为150~250mm。
在卷制厚壁管材时,可在卷制正常运行后,将芯模的旋转速度适当加快,在接近设计壁厚时再减慢转速,至达到设计厚度时,切断胶布。
然后在保持压辊压力的情况下,继续使芯模旋转1~2圈。
最后提升压辊,测量管坯外径,合格后,从卷管机上取出,送入固化炉中固化成型。
钢化玻璃生产工艺手册

钢化工艺手册版本号: 2.0目录1. 玻璃及钢化玻璃的特性1.1. 玻璃的特性1.2. 钢化玻璃及特性2. 玻璃钢化的要素2.1. 有关玻璃钢化工艺所涉及的几个基本要求2.2. 加热2.2.1 影响玻璃均匀加热的有关因素2.2.2. 加热温度与加热时间的关系2.2.3. 玻璃出炉温度的确定2.2.4. 图表的使用2.3. 冷却3. 有关加热规程与操作说明4. 玻璃钢化常见缺陷、原因分析及解决办法5. 厚玻璃钢化的特殊方法6. 弯玻璃钢化6.1. 弯玻璃钢化时应注意的有关问题6.2 弯钢化产品的常见缺陷、产生原因及解决办法7. 玻璃钻孔、开槽和切口的标准8. 特殊形状和特殊原料玻璃的钢化说明9. 2 使用要求10. 加热平衡使用规则11. 强制对流钢化炉高温风机使用注意事项12. 几点说明12.1 关于(国标)中对碎片的要求12.2 二次钢化13. 附图表1.玻璃及钢化玻璃的特性:1.1 玻璃的特性:玻璃具有优良的物理及化学性能,是典型的脆性材料。
其特点是硬度较高,抗压强度高,抗张强度小,没有塑性变形等,是一种用途众多的非金属材料。
随着科学技术的发展,在广泛应用玻璃的各个领域对玻璃制品的轻质、高强、安全性等方面的要求越来越高,玻璃钢化技术便随之而产生并迅速发展。
1.2 钢化玻璃及特性:钢化玻璃即通过物理或化学方法使普通玻璃表面产生压力层而获得增强的玻璃。
物理钢化法是把玻璃放在电炉中加热到接近玻璃的软化温度,然后出炉,向玻璃两面吹风进行快速冷却。
玻璃外部因快速冷却而先固化,而内部冷却较慢,当内部继续冷却收缩时,使玻璃表面产生压应力,而内部为张应力,从而提高了玻璃的强度。
物理钢化法目前是及国内、外普遍广为采用的一种生产钢化玻璃的方法。
钢化玻璃的抗弯强度是一般玻璃的4-5 倍,抗冲击强度约是一般玻璃的 5 倍;并具有优良的热稳定性,可经受温度突变范围达250-320 C;钢化玻璃破碎后呈类似蜂窝状的纯角小颗粒,不易伤人,具有一定的安全性;但钢化玻璃不能再行切割;同时,钢化玻璃还具有“自爆”的特性。
玻璃钢制品生产技术工艺流程及质量检验标准实用手册

【名称】玻璃钢制品生产技术工艺流程及质量检验标准实用手册【编号】A-22023【日期】2008年9月【册数】全四册【原价】998【现价】499目录上卷第一编玻璃钢与玻璃钢制品生产工艺总论第一章玻璃钢与玻璃钢制品第一节玻璃钢的含义第二节玻璃钢与复合材料之间的关系一、玻璃钢的两大组成材料二、玻璃钢复合材料的三大要素三、三大要素的作用和相互关系第二章玻璃钢的基本性能第一节玻璃钢的力学性能第二节物理性能一、密度二、电性能三、热性能四、耐老化性能五、长期耐温性及耐燃性第三节玻璃钢的化学性能第四节玻璃钢制品形成的特殊性第五节玻璃钢可设计性第六节玻璃钢与钢材、木材的比较)第三章玻璃钢的应用第一节石油化工方面第二节交通运输方面第三节电气工业方面第四节建筑工业方面第五节机械工业方面第六节军械与装备方面第二编玻璃钢生产材料第一章玻璃纤维增强材料· ·目录第一节纤维增强材料概述第二节纤维增强材料在复合材料中的地位第三节纤维增强材料的种类第二章玻璃纤维的生产第一节玻璃纤维生产原料一、玻璃球的制造过程二、玻璃球的质量第二节拉丝设备一、坩埚二、池窑三、拉丝机四、供电和液面、温度控制装置第三节拉丝工艺)一、坩埚拉丝工艺过程)二、坩埚、浸润轮和绕丝筒的相对位置三、拉丝工艺参数四、主要参数的相互关系五、有关工艺计算式第四节玻璃纤维及其制品术语)一、纤维、单丝、原丝)二、初捻纱、复捻纱、缆线)三、公制号数、公制支数)四、捻度)五、捻向)六、织物、织物组织)第五节土坩埚拉丝及其制品)第三章玻璃纤维生产过程的自动控制))第一节配合料控制系统))一、配料控制系统的构成)二、控制系统的特点)第二节,-在熔制与拉丝过程中的应用)一、池窑拉丝生产过程控制的要求)二、窑炉温度的控制)三、玻璃液面的控制四、窑压的控制)五、通路温度的控制六、漏板温度的控制第三节拉丝机的自动控制一、控制系统的构成· ·二、速度控制器第四节球法坩埚拉丝生产过程的自动控制一、 ( 智能型温度控制仪二、) ( 智能型玻璃液位控制仪第五节计算机系统优化生产过程控制与管理, 一、生产过程控制优化,二、生产过程管理优化-第四章玻璃纤维产品的组成及其性能第一节玻璃纤维的分类方法一、以玻璃原料成分分类二、以单丝直径分类三、以纤维外观分类四、以纤维特性分类第二节玻璃纤维的化学组成成分一、玻璃的定义二、玻璃的结构/三、玻璃纤维的结构四、玻璃纤维的化学组成五、几种典型的玻璃纤维成分第三节玻璃纤维的基本性能,一、玻璃纤维的物理性能,二、玻璃纤维的化学性能/三、玻璃纤维的吸湿性0第五章玻璃纤维生产浸润剂第一节浸润剂简述一、浸润剂的作用二、浸润剂的分类三、浸润剂的组成成分,四、浸润剂的机理五、浸润剂的发展简史第二节乳液理论和分子设计0第三节浸润剂的高分子物理化学原理0一、成膜剂的种类及分子结构设计0二、偶联剂的作用及原理三、润滑剂、抗静电剂、消泡剂的作用原理- 第四节增强型浸润剂概述一、增强型浸润剂的基本作用二、增强型浸润剂的分类原则三、增强型浸润剂的主要原料特性及其应用· , ·目录四、增强型浸润剂的配制工艺、设备及注意事项五、原丝烘干工艺与浸润剂成膜质量的关系六、增强型浸润剂的质量评价七、增强型浸润剂配方实例及应用范围第五节纺织型浸润剂一、纺织型浸润剂简介二、纺织型浸润剂的种类第六章新型增强材料第一节碳纤维一、碳纤维的种类二、碳纤维的性能三、碳纤维的制造)四、碳纤维的应用)第二节硼、碳化硅纤维和晶须(一、硼纤维(二、碳化硅纤维(三、晶须(第三节有机纤维(第四节其它纤维(一、剑麻(二、钢纤维三、石棉纤维第七章不饱和聚酯树脂()第一节不饱和聚酯树脂的特性)第二节不饱和聚酯树脂的合成)一、合成不饱和聚酯树脂的原、辅材料)二、不饱和聚酯树脂的合成第三节不饱和聚酯树脂的固化原理一、固化原理二、固化特征及其表征第四节常用的不饱和聚酯树脂牌号及性能第八章环氧树脂第一节环氧树脂概述一、环氧树脂的发展概况二、环氧树脂的类型及合成方法三、环氧树脂的命名第二节双酚型环氧树脂)一、双酚型环氧树脂的合成)二、双酚型环氧树脂的结构与性能特点· ·三、双酚型环氧树脂的质量分析和质量标准第三节其他双酚型环氧树脂一、双酚型环氧树脂二、双酚型环氧树脂三、双酚(型环氧树脂四、间苯二酚型环氧树脂)五、羟甲基双酚型环氧树脂)六、氢化双酚型环氧树脂七、有机硅改性双酚型环氧树脂八、有机钛改性双酚型环氧树脂)九、尼龙改性环氧树脂)十、氟化环氧树脂),第四节多酚型环氧树脂)一、线型苯酚甲醛环氧树脂)-二、邻甲酚甲醛环氧树脂))三、间苯二酚甲醛环氧树脂)四、其他多酚型环氧树脂第五节脂肪族缩水甘油醚环氧树脂, 第六节缩水甘油酯型环氧树脂第七节缩水甘油胺型环氧树脂第八节环氧化烯烃化合物一、脂环族环氧树脂二、脂肪族环氧化烯烃化合物-第九节杂环型和混合型环氧树脂)一、杂环型环氧树脂)二、混合型环氧树脂第九章酚醛树脂-第一节酚醛树脂概述-第二节热塑性酚醛树脂-第三节热固性酚醛树脂--一、合成原理--二、热固性酚醛树脂的性能-第四节改性酚醛树脂-)一、聚乙烯醇缩醛改性的酚醛树脂-)二、硼改性的酚醛树脂-)三、环氧树脂改性的酚醛树脂-)四、二甲苯改性的酚醛树脂-)第五节酚醛树脂的固化-一、固化方法-· ·目录二、固化过程三、固化剂第十章其它几种类型热固性树脂第一节呋喃树脂一、几种主要呋喃树脂二、性能与应用第二节脲醛树脂一、脲醛树脂的原料二、脲醛树脂形成的基本原理三、影响脲醛树脂质量的因素四、脲醛树脂的性能与用途)第三节三聚氰胺—甲醛树脂)一、三聚氰胺—甲醛树脂的合成原理二、影响三聚氰胺树脂质量的因素三、三聚氰胺甲醛树脂的不同用途第四节有机硅树脂一、有机硅树脂的合成与固化二、有机硅树脂的性能与结构第十一章热塑性树脂第一节聚酰胺一、聚酰胺的概念二、聚酰胺的发展史三、聚酰胺的用途四、聚酰胺种类及合成五、聚酰胺的结构和性能第二节聚对苯二甲酸乙二醇酯———涤纶,一、涤纶树脂的合成二、涤纶树脂的结构与性能-三、涤纶树脂的主要用途)第三节聚氯乙烯一、氯乙烯的性质及聚氯乙烯对其要求二、氯乙烯聚合反应特点三、聚氯乙烯/四、聚氯乙烯的性能和用途五、聚氯乙烯家族中的其它成员第四节聚乙烯和聚丙烯一、聚乙烯-二、聚丙烯第十二章偶联剂第一节偶联剂的应用一、偶联剂的作用二、水对玻璃树脂界面的作用第二节偶联剂的作用效果第三节偶联剂的品种及其选用一、铬络合物二、硅烷偶联剂)三、钛酸酯偶联剂四、常用偶联剂的配制方法五、偶联剂的选用六、偶联剂化学处理的方法第十三章其它辅助材料第一节泡沫塑料一、泡沫塑料的构造及其分类二、泡沫塑料的制造方法三、玻璃钢常用泡沫塑料的特性及几种典型泡沫塑料第二节脱模剂一、薄膜状脱模剂二、溶液型脱模剂三、石蜡、油膏类脱模剂四、复合型脱模剂第三节填料、色料及其它一、填料二、色料三、触变剂四、光稳定剂第三编玻璃钢产品生产设计要点第一章玻璃钢结构整体设计第一节概述第二节弹性常数的预报公式一、单向连续纤维增强制品的弹性常数)二、连续短切毡增强塑料的弹性常数)三、双向交织纤维增强塑料的弹性常数第三节强度的预报公式一、轴向拉伸强度二、横向拉伸强度三、轴向压缩强度· ·目录四、横向压强强度五、复合增强材料拉挤制品的拉伸强度第四节强度设计一、许用应力二、拉伸强度设计三、弯曲强度设计第五节刚度设计一、许用变形二、拉伸刚度设计三、弯曲刚度设计第六节稳定设计第七节连接设计一、胶接设计二、机械连接设计第二章玻璃钢构件设计)第一节层合梁的设计)一、层合梁的弯曲破坏)二、层合梁的折算截面三、玻璃钢层合梁的挠度计算第二节玻璃钢薄壁梁的设计一、玻璃钢工字梁二、玻璃钢板架梁))第三节玻璃钢跳板设计实例)一、结构形式与成型工艺)二、跳板横截面尺寸的初步估算)三、跳板的强度与刚度校)第四节玻璃钢受弯圆管的设计)第五节玻璃钢承压杆件的设计第六节玻璃钢冷却塔塔体强度计算实例一、塔体材料性能估算二、上塔体所承受的荷载三、上塔体的强度计算第三章玻璃钢层合板的设计第一节广义胡克定律第二节工程常数与刚度矩阵元及柔度矩阵元的关系第三节任意坐标系中简单层板的应力应变关系一、应力转换二、应变转换(三、任意坐标中简单层板的应力—应变关系(· ·第四节用工程常数表示的任意坐标系中简单层板的应力应变关系第五节正交异性简单层板在平面应力作用下的强度准则一、强度准则的概念二、最大应力准则三、最大应变准则四、最大能量准则第六节层合板外载与各层应力应变的关系第七节层合板的铺层序列第八节层合板的强度计算一、层合板中各简单层板的应力和应变二、层合板的强度计算)第九节层合板的设计第四章玻璃钢拉挤制品的设计及应用)第一节玻璃钢拉挤制品的性能)第二节拉挤制品的设计一、截面形状设计二、材料结构设计三、型材第三节拉挤制品的公差标准)一、横截面尺寸公差标准)二、偏心圆方管的壁厚公差标准()三、正直度公差标准()四、平度公差标准(五、扭曲公差标准(六、角度公差标准(七、长度公差标准(八、制品末端矩形断面的内角公差标准( 第四节拉挤制品的应用(第五章耐腐蚀玻璃钢的设计第一节纤维与基体的基本力学性能一、树脂浇铸体的力学性能二、纤维的力学性能第二节玻璃钢的基本特性一、静态特性二、玻璃钢的其他力学性能第三节玻璃钢耐腐蚀设备设计基础一、复合材料的强度理论二、耐腐蚀化工设备设计准则三、耐腐蚀层结构· ·目录四、回转壳内压薄壁容器应力分析第四节玻璃钢耐腐蚀贮罐的设计一、承受液体压力的立式圆筒形壳休二、卧式贮罐三、耐腐蚀玻璃钢贮罐的结构处理四、玻璃钢的连接中卷第四编玻璃钢加工成型工艺与模具制造应用第一章玻璃钢手糊装配、修补和增强工艺第一节连接工艺一、连接形式二、机械连接三、胶接第二节玻璃钢修补和增强工艺(一、修补(二、腻子(三、对木材的修补(四、对金属的修补五、增强)第二章夹层结构成型工艺)第一节概述)一、玻璃钢夹层结构的特点)二、玻璃钢夹层结构的种类)三、玻璃钢蜂窝夹层结构制造第三节泡沫塑料夹层结构一、泡沫塑料的种类二、泡沫塑料的基本性能三、泡沫塑料制造四、玻璃钢泡沫塑料夹层结构的制造五、聚氨酯泡沫塑料生产中的安全防护第四节玻璃钢夹层结构制造举例一、材料选择二、制造工艺)第三章层压成型工艺第一节概述· ·第二节增强材料的表面处理一、增强材料表面处理的意义二、玻璃布表面浸润剂的去除方法三、偶联剂的品种及在玻璃布表面处理上的应用四、影响处理剂处理效果的因素第三节玻璃胶布的制备一、环氧酚醛胶液的配制二、玻璃布的浸胶工艺三、玻璃胶布的烘干四、胶布的质量指标五、胶布的存放第四节层压工艺一、干法生产的层压工艺二、层压板常见的缺陷及解决办法三、玻璃钢层压板的性能四、覆铜箔层压板的生产五、覆铜箔层压板的性能六、玻璃钢管及其卷管成型工艺)七、玻璃钢管易出现的质量问题及解决办法八、湿法层压工艺第四章卷管成型工艺第一节玻璃胶布及模具一、玻璃胶布二、对玻璃胶布的质量要求三、模具)第二节卷管工艺过程及条件)一、卷管成型基本原理及特点)二、卷管成型工艺过程及工艺条件第三节各种因素对管材性能的影响一、胶布质量对管材性能的影响二、卷管工艺条件对管材性能的影响三、烘焙对管材性能的影响四、表面加工对管材性能的影响第四节卷制管材易产生的问题及原因一、管材分层二、内壁起泡三、烘焙后管材起泡或起棱四、表面局部起翘五、筒体变形· ·目录六、耐电压不合格七、比重大、吸水性大第五章模压工艺第一节模压成型工艺的分类一、纤维料模压法二、层压模压法三、缠绕模压法四、织物模压法五、毡料模压法六、碎布料模压法第二节模压料的制备一、模压料的组成二、模压料的制备三、模压料的质量指标及存放第三节模压料的工艺性一、模压料的流动性二、模压料的收缩率三、固化性能四、比容五、压缩率第四节片状模塑料和团状模塑料的制备一、聚酯型模压料的组成二、聚酯模压料制备工艺过程三、片状模压料的技术指标第五节聚酯模压料制品的特性及其影响因素一、聚酯模压料制品的特性二、影响模压料制品性能的主要因素第六节模压成型工艺一、概述二、压制成型的基本过程三、模压成型的工艺条件四、模压玻璃钢制品的基本性能第七节模压中易出现问题及解决方法一、制品表面起泡或内部鼓起二、制品变形、翘曲三、裂缝四、制品欠压,局部缺胶五、制品粘模六、制品废边过厚· ( ·七、制品尺寸不合格第六章纤维缠绕工艺第一节玻璃钢内压容器的选型、强度设计及缠绕规律一、内压容器的结构选型二、强度设计三、常用缠绕规律简介第二节玻璃钢内压容器的内衬一、铝内衬二、橡胶内衬三、其它内衬材料第三节玻璃钢内压容器的制造工艺一、原材料的选择二、工艺参数选择三、成型工艺(四、有关容器质量的几个问题(第四节玻璃钢内压容器的性能一、常温爆破二、高低温爆破)四、疲劳试验)五、荷载振动试验六、荷载坠落七、湿强度试验八、长期充气贮存试验九、枪击试验第五节玻璃钢内压容器缠绕机简介一、,)缠绕机二、型公升容器缠绕机三、无级调速式缠绕机)第七章挤出成型工艺)第一节概述)一、聚合物在单螺杆中的挤出过程)二、挤出理论的主要内容、研究方法和意义)三、普通螺杆的结构参数及几何形状)第二节固体输送理论)一、固体摩擦输送的基本假设)二、固体输送率的计算)三、对固体输送理论方程中有关因素的讨论四、对固体摩擦理论的修正五、固体输送段的功率计算· () ·目录第三节熔融过程一、熔融模型二、熔融过程的数学分析三、影响熔融过程因素的讨论第四节熔体输送一、螺槽中熔体流动的速度分布二、均化段的生产率三、对生产率公式的讨论四、生产率公式的修正五、均化段流动理论对功率消耗的分析)第五节排气挤出机工作原理一、排气挤出机的基本结构及工作原理二、排气挤出机的稳定工作条件及其稳定化调节三、排气螺杆的主要参数第六节双螺杆、多螺杆及无螺杆挤出机挤出原理一、双螺杆挤出机的结构和类型)二、双螺杆挤出机的工作原理三、双螺杆挤出机中的功能元件四、多螺杆挤出机(五、无螺杆挤出机(第八章玻璃钢其它成型工艺(第一节拉挤成型工艺(一、概述(二、原材料选用(三、拉挤工艺过程及工艺参数介绍(四、拉挤模具特点及固化方式(第二节连续波板生产工艺一、概述二、纵向波板成型设备及工艺过程三、波板连续成型所用原材料及工艺参数第三节其它新型成型方法)一、增强反应注射模塑法)二、树脂注射法三、离心成型法四、冷压成型法第九章模具机械加工基础第一节工艺规程设计一、基本概念二、设计、制造和使用的关系· ·三、工艺规程制定的原则和步骤四、产品图纸的工艺分析五、毛坯的设计六、定位基准的选择七、零件工艺路线的分析与拟定八、加工余量与工序尺寸的确定九、工艺装备的选择第二节模具的制造精度一、概述二、影响零件制造精度的因素三、提高加工精度的途径第三节机械加工的表面质量一、表面质量二、影响表面质量的因素及改善表面质量的途径第十章数控机床及数控加工技术第一节数控机床的特点及应用范围一、数控机床的概念二、数控机床的特点三、数控机床的应用范围第二节数控机床的组成与分类一、数控机床的组成二、数控机床的分类三、插补原理四、数控机床的几个名词概念第三节典型机床介绍一、) , 型立式加工中心二、- , 型卧式加工中心/三、012345 67 , / 8- 数控万能镗铣床第四节数控机床的合理利用9一、模具加工的基本特点(二、数控机床工艺特点分析(三、建议采取的技术措施(四、刀具的选择和调整(五、夹具的选择和调整(第十一章模具的装配工艺(第一节概述(第二节装配精度与保证装配精度的方法(一、装配精度概述(二、冲模的装配精度(· ·目录三、塑料注射模装配精度的要求第三节装配尺寸链一、模具尺寸链二、尺寸链的建立三、尺寸链的分析计算第四节模具装配的工艺过程第五节模具间隙及位置的控制一、凸、凹模间隙的控制二、凸、凹模位置的控制第六节模具连接件的固定及连接第七节模具的装配精度及检查第八节模具连接件的调试与修整第九节模具装配示例)一、冲模装配示例)二、塑料模装配示例第十二章新型模具材料第一节新型模具材料的种类和特性一、冷作模具钢二、热作模具钢三、塑料模具钢)四、粉末烧结模具材料第二节冷作模具钢一、高碳低合金模具钢二、基体钢三、高碳中铬耐磨钢四、改良型高速钢第三节热作模具钢)一、高韧性低合金热作模具钢)二、高强韧性热作模具钢)三、高耐热性热作模具钢四、析出硬化型热作模具钢(第五编玻璃钢与玻璃钢制品的加工手法第一章玻璃钢材料的车削加工法)第一节玻璃钢车削刀具)一、车刀的组成)二、车刀刀头材料)三、车刀的几何角度)· ·四、常用的几种车刀五、切断刀和切槽刀第二节玻璃钢车削用量一、车削深度二、走刀量第三节切削用量选择的合理性第四节玻璃钢的车削加工特点一、车削加工外圆时的特点二、车内孔的特点)三、玻璃钢车削试验与粗糙度值)四、玻璃钢车削实例第二章玻璃钢磨削加工法第一节玻璃钢锯磨削时存在的问题第二节砂轮的选择法)一、磨料的选择法)二、粒度的选择法)三、砂轮结合剂的选择法四、砂轮硬度的选择法五、砂轮组织的选择法六、砂轮形状的选择法第三节锯磨削过程和方法的选择法第四节锯磨削加工切削用量的选择法第五节锯磨削热及其冷却方法一、锯磨削热二、冷却液的选择及方法第六节影响锯磨削加工表面质量的因素第七节锯磨削加工实例第八节玻璃钢锯磨削加工装卡应注意的问题) 第三章玻璃钢螺纹加工法第一节玻璃钢螺纹车削加工法一、玻璃钢螺纹车削存在的问题二、实例第二节玻璃钢螺纹的攻制法一、玻璃钢螺纹丝锥二、攻制螺纹出现的主要问题三、操作注意事项四、圆板牙套扣第三节玻璃钢螺纹模压成型第四章玻璃钢铣削加工法· ·目录第一节玻璃钢的铣削加工特点第二节铣刀及其铣削一、铣刀切削部分的材料二、铣刀切削部分的几何形状选择三、顺铣和逆铣四、不对称铣削方法五、玻璃钢铣削时的均匀性六、铣削磨损量与铣削速度的关系七、切削用量八、铣削方向和工件安装位置九、高速铣削的可能性和危害性十、铣削加工注意事项)第三节玻璃钢铣削加工实例)第四节铣刀的磨损)第六编玻璃钢生产加工机械设备使用与维护第一章设备基本知识)第一节化工生产对化工设备的基本要求)一、化工生产的特点)二、化工生产对化工设备的基本要求)第二节化工容器结构与分类)一、化工容器的基本结构)二、化工容器与设备的分类第三节化工容器与设备有关标准规范简介一、常用材料标准二、压力容器规范简介第四节化工设备常用材料一、材料常用性能二、钢的热处理三、金属材料四、非金属材料五、选材的基本原则第五节金属材料的腐蚀与防护一、腐蚀基本概念二、腐蚀类型及机理三、防腐措施第二章玻璃钢成型机械第一节玻璃钢成型机械发展概况· ·第二节成型机械在玻璃钢工业中的地位和作用第三节玻璃钢成型机械分类及选择原则一、机械设备分类二、选择原则第三章粉碎机械第一节粉碎过程第二节粉碎方法第三节粉碎系统第四节物料的易碎性)第五节粉碎产品的粒度特性一、粒径表示方法二、粉碎产品的粒度组成第六节粉碎理论第七节粉碎机械分类第四章喷射成型设备)第一节喷射成型机的分类、构造和工作原理)一、喷射成型机的分类及特点)二、压力罐供胶式喷射成型机的构造和工作原理)三、柱塞泵供胶式喷射成型机的构造和工作原理四、泵罐组合供胶式喷射成型机的结构和工作原理。
玻璃钢成型工艺技术手册

玻璃钢成型工艺技术手册什么是玻璃钢玻璃钢,又称为玻璃纤维增强塑料(Glass Fiber Reinforced Plastic,缩写为GFRP),是由环氧树脂、玻璃纤维等材料制成,具有优良的力学性能、耐化学性、防腐性和耐候性等特点。
玻璃钢广泛应用于建筑、船舶、汽车、电子、运动器材、化工设备、食品设备等众多领域。
玻璃钢成型工艺玻璃钢制品的制造过程包括树脂配比、模具制备、铺贴玻璃纤维、热固化、脱模、修整等工艺。
其中,玻璃纤维的使用起到了增强材料的作用,可以将玻璃钢制品的强度和硬度提高到最大值。
1.树脂配比在制造玻璃钢制品前,需要将树脂、固化剂以及其他配料按照一定比例混合均匀。
对于不同的制品,配比也会有所不同。
2.模具制备模具是制造玻璃钢制品必不可少的工具,可以制作玻璃钢制品的外形。
制作模具应采用高强度、耐腐蚀的材料,如有机玻璃、镍点钢板、硅橡胶等。
3.铺贴玻璃纤维铺贴玻璃纤维是制造玻璃钢制品的核心步骤之一。
可采用手工铺贴或喷涂方式进行。
需要注意的是,玻璃纤维应均匀铺贴,不得有空隙和气泡。
4.热固化热固化是将混合好的树脂、固化剂和玻璃纤维放入模具中,在一定的温度和时间条件下进行加热固化,使制品固化成型。
固化的温度一般为80℃-120℃,时间一般在2-4小时左右。
5.脱模制品固化后,需要进行脱模操作。
脱模可以采用冷水浸泡或轻敲模具等方式进行。
不得使用锤子等硬物强行松动,否则容易导致制品损坏。
6.修整制品脱模后可以进行修整,主要是针对制品表面进行打磨和表面修补,制品的细节处理将直接影响到制品的美观和使用寿命。
玻璃钢制品的优缺点玻璃钢制品作为一种优异的材料,有着广泛的应用前景。
其主要优点如下:1.高强度、高硬度:玻璃钢制品的抗拉强度比钢材还高,同时硬度也非常高。
2.耐化学性:玻璃钢制品的具有良好的抗化学腐蚀性能,可以在各种酸碱环境中长期使用。
3.耐候性:经过特殊处理,玻璃钢材料具有优秀的耐候性能,能够在极端环境下长期使用。
玻璃钢成型技术、工艺及质量控制要素

玻璃钢成型技术.工艺及质量控制要素一、玻璃钢制品的设计玻璃钢(Fiberglass Reinforced Plastics,简称FRP )即玻璃纤维增强塑料,是最主 要的聚合物基复合材料。
玻璃钢制品的开发设计,应遵守如下程序:玻璃钢的造型(构造)设讣玻璃钢的成型工艺设讣 玻璃钢的质量检验造型设计要满足制品的使用功能要求、又要构造简单,造型优美;物化性能设计要根据 产品的使用条件(物理性能、耐腐蚀性能及力学性能)进行原材料及工艺进行确左;结构设 计是在物化性能设计的基础上确定制品各个部位的厚度和材料用量;工艺设计就是根据产品 的外形构造和增强材料的铺设方向选择成型方法。
二. 玻璃钢的组成结合CIM 项目以及玻璃钢常见制品的组成原料,按下图所示进行介绍。
玻璃钢组成材料1. 无碱玻璃纤维通常称为E 玻璃,含碱量在0.8%以下,是以钙铝硼硅酸盐组成的玻璃纤维,拥有较髙 的强度和耐热性、,能抗大气侵蚀,化学稳定性也很(但不耐酸),最大的特点是电气性能好, 因此也把它称为电气玻璃。
国内外大多数使用这种E 玻璃纤维作为复合材料的原材料。
2. 中碱玻璃纤维碱金属含量在11.5%〜12. 5%,国外没有这种玻纤,它的特点是耐酸性好,但强度不如E玻玻璃钢的物化性能设讣玻璃钢的结构设汁玻璃纤维(增强体) 热固性树脂(基体)辅助剂 无碱玻纤 中碱玻纤不饱和聚酯环氧树脂酚醛树脂交联剂 稀释剂 促进剂 阻聚剂璃。
主要应用于耐腐蚀性领域,价格较便宜。
3.玻璃纤维织物A无捻粗砂布大部分为无捻方格布,它浸胶容易、铺覆性好、较厚实、强度高、气泡易排除、施工方便、价格较便宜。
它是手糊工艺中最常用的一种布。
B斜纹布这种布经向和纬向的交织点连续而形成斜向的纹路。
该布致密、柔性好、强度较大,适用于制作有曲面的和各方向都需要强度髙的制品。
C缎纹布质地柔软、铺覆性好、强度较大、与模具接触性好,适用于形面复杂的手糊玻璃钢制品。
D短切纤维毡铺覆性好、各向异性、价格便宜、强度较低、树脂用量大,适用于手糊和喷射成型玻璃钢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章玻璃钢制作工艺1-1玻璃钢基础知识玻璃钢是什么玻璃钢FRP(Fiberglass Reinforced Plastics)亦称作GRP(Glass Reinforced Plastics)或GFRP (Glass fibre reinforced plastics)学名玻璃纤维增强塑料。
它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料,通过一定的成型工艺而制成的一种复合材料。
复合材料的概念是指一种材料不能满足使用要求,需要由两种或两种以上的材料复合在一起,组成另一种能满足人们要求的材料,即复合材料。
玻璃钢的发展历史1940年,美国一家实验室的技术人员不小心将加有催化剂的不饱和聚酯树脂倾倒在玻璃布上,第二天发现固化后的这种复合材料强度很高,玻璃钢遂应运而生。
1942年第一艘玻璃钢渔船问世;玻璃钢管试制成功并投入使用。
二战其间,美国以手工接触成型与抽真空固化工艺,制造了收音机雷达罩与副油箱;利用胶接技术制作了玻璃钢夹芯结构的收音机机翼;1946年发明了以纤维缠绕法生产压力容器的方法。
1949年预混料DMC(BMC)模压玻璃钢面试。
1950年真空袋与压力袋成型工艺研究成功;手糊环氧玻璃钢直升收音机旋翼面市。
20世纪50年代末,前苏联成功将玻璃钢用于炮弹引信体等军品及化工器材的生产。
1961年德国率先开发片状模塑料(SMC)及其模压技术。
1963年玻璃钢波形瓦开始机械化生产,美、法、日先后有高生产率的边疆生产线投生。
1972年美国研究成功干法生产的热塑性片状模塑料。
20世纪80年代,开发了湿法生产的热塑性片大辩论模塑料。
瑞士、奥地利离心法成型玻璃钢管得到发展;意大利工业化纤维缠绕玻璃钢管生产线技术成熟,产品大量使用于石化、轻工、轮船等领域。
1956年,时任重工业部副部长、后任建材工业部长的赖际发同志赴前苏联考察玻璃钢。
俄文称玻璃钢为“玻璃塑料”(CTEKJIOIIJIACTHHK),当时中文里没有相应的词。
想到材料内有玻璃,强度又高,就叫“玻璃钢”。
这就是“玻璃钢”一词的由来。
玻璃钢的理化性能1玻璃钢的特性1.1轻质高强相对密度在1.5-2.0之间,只有碳钢的1/4-1/5,可是拉伸强度却接近,甚至超过碳素钢,而比强度可以与高级合金钢相比。
因此,在航空、火箭、宇宙飞行器、高压容器以及在其他需要减轻自重的制品应用中,都具有卓越成效。
某些环氧FRP的拉伸、弯曲和压缩强度均能达到400Mpa以上。
1.2耐腐蚀性能好FRP是良好的耐腐材料,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。
已应用到化工防腐的各个方面,正在取代碳钢、不锈钢、木材、有色金属等。
1.3电性能好是优良的绝缘材料体。
高频下仍能保护良好介电性。
微波透过性良好,已广泛用于雷达天线罩。
1.4热性能良好FRP热导率低,室温下为1.25-1.67kJ/(m·h·K),只有金属的1/100-1/1000,是优良的绝热材料。
在瞬时超高温情况下,是理想的热防护和耐烧蚀材料,能保护宇宙飞行器在2000℃以上承受高速气流的冲刷。
1.5可设计性好可以根据需要,灵活地设计出各种结构产品,来满足使用要求,可以使产品有很好的整体性;可以充分选择材料来满足产品的性能,如:可以设计出耐腐的、耐瞬时高温的、产品某方向上有特别高强度的、介电性好的等产品。
1.6工艺性优良可以根据产品的形状、技术要求、用途及数量来灵活地选择成型工艺;工艺简单,可以一次成型,经济效果突出,尤其对形状复杂、不易成型的数量少的产品,更突出它的工艺优越性。
2玻璃钢的不足2.1弹性模量低FRP的弹性模量比木材大两倍,但比钢(E=2.1×106)小10倍,因此在产品结构中常感到刚性不足,容易变形。
可以做成薄壳结构、夹层结构,也可通过高模量纤维或者做加强筋等形式来弥补。
2.2长期耐温性差一般FRP不能在高温下长期使用,通用聚酯FRP在50℃以上强度就明显下降,一般只在100℃以下使用;通用型环氧FRP在60℃以上,强度有明显下降。
2.3老化现象老化现象是塑料的共同缺陷,FRP也不例外,在紫外线、风沙雨雪、化学介质、机械应力等作用下容易导致性能下降。
2.4层间剪切强度低层间剪切强度是靠树脂来承担的,所以很低。
可以通过选择工艺、使用偶联剂等方法来提高层间粘结力,最主要的是在产品设计时,尽量避免使层间受剪切力。
玻璃钢有哪些生产方法玻璃钢的生产方法主要分为以下几种:手糊成型-手工作业把玻璃纤维织物和树脂交替铺在模具上,然后固化成型。
模压成型(SMC)-把模压料放在金属模具中,然后闭模加热加压,使其固化成型。
注射成型(RTM树脂传递模塑成型)-把玻璃纤维增强材料铺放到闭模的模腔内,用压力将树脂胶液注入模腔,浸透玻纤增强材料,然后固化成型。
玻璃钢有哪些市场应用玻璃钢材料因其独特的性能优势,已在航空航天、铁道铁路、装饰建筑、家居家具、广告展示、工艺礼品、建材卫浴、游艇泊船、体育用材、环卫工程等相关十多个行业中广泛应用并深受赞誉。
玻璃钢制品不同于传统材料制品,在性能、用途、寿命属性上大大优于传统制品。
其易造型、可定制、色彩随意调配的特点,深受商家和销售者的青睐,占有越来越大的市场比分,前景广阔!1-2玻璃钢手糊成型工艺工艺流程工作环境1作业区环境要求相对湿度:25%-75%,湿度若高于75%时则应立即采取加温干燥或停止生产,因为水蒸汽对聚酯、环氧树脂均有延缓并阻碍固化的作用,甚至能造成玻璃钢产品表面永久性发粘。
温度控制在15-35℃之间,温度低于15℃时,应采取供暖加温。
温度高于35℃时,应采取通风、风扇、降温和降低固化剂、促进剂比例。
2树脂、胶衣、纤维等原料必须提前24小时进入车间,以使原材料温度与现场一致,操作现场的物料要分类划分区域存放,并在区域内加上标识信息,如胶衣、树脂、促进剂、固化剂分别放到各自的区域,便于工人识别,防止误用。
化工材料(树脂、胶衣、漆、颜料糊)存放时应避免阳光直射。
纤维材料必须整齐的摆放在产品托架上,不能直接接触地面,避免潮湿。
3工作场地、工装工具要求干净整洁,沾有溶剂或树脂等易燃原料的棉纱等物用后应放入专用容器,严禁乱抛乱放。
存放现场必须设置足够的消防器材,避免发生火灾。
主要材料1树脂:玻璃钢所使用的树脂主要分为热塑性树脂和热固性树脂两大类。
通常玻璃钢以热固性树脂为主,根据结构成分的不同,热固性树脂分为环氧树脂、酚醛树脂、不饱和聚酯树脂、环氧改性乙烯基树脂。
环氧树脂主要用于耐腐蚀、高强的领域,像航空航天领域一般就是用的这类树脂。
酚醛树脂主要用于防腐领域。
现在用的最多的则是不饱和聚酯树脂和乙烯基树脂,这类树脂在常温下即可成型,操作比较方便。
同时性价比较高,所以被广泛应用。
2胶衣:胶衣是在不饱和聚酯树脂中加入颜料和触变剂等分散而成的。
主要作用是对玻璃钢制品表面的装饰和对结构层的保护。
3阻燃剂(填料):阻燃剂是通过若干机理发挥其阻燃作用的,如吸热作用、抑制链反应、不燃气体的窒息作用等。
多数阻燃剂是通过若干机理共同作用达到阻燃目的。
阻燃剂分为添加型和反应型。
添加型阻燃剂主要是通过在树脂中添加阻燃剂发挥阻燃剂的作用。
反应型阻燃剂则是通过化学反应在高分子材料中引入阻燃基团,从而提高材料的抗燃性。
在阻燃剂类型中,添加型阻燃剂占主导地位,使用的范围比较广。
常用阻燃剂类型有氢氧化铝、玻璃微珠等。
4促进剂:可以提高树脂反应速率的一种用量较少的物质。
5固化剂:树脂的固化是经过缩合、闭环等化学反应使热固性树脂发生不可逆的变化过程。
固化剂能使树脂(胶衣)发聚合或交联作用而转变成硬化材料。
6玻璃纤维:玻璃纤维是一种性能优异的无机非金属材料。
成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺。
最后形成各类产品,玻璃纤维单丝的直径从几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。
玻璃纤维制品的品种与用途—无捻纱是由平行原丝或平行单丝集束而成的。
主要用于缠绕、模具各边角的填充。
表面毡这类毡由于采用中碱玻璃(C)制成,故赋予玻璃钢耐化学性特别是耐酸性,同时因为毡薄、玻纤直径较细之故,还可吸收较多树脂形成富树脂层,遮住了玻璃纤维增强材料(如方格布)的纹路,起到表面修饰作用。
短切毡将玻璃原丝切割成50mm长,将其随机但均匀地铺陈在网带上,随后施以乳液粘结剂或撒布上粉末结剂经加热固化后粘结成短切毡。
对短切毡的质量要求如下:①沿宽度方向面积质量均匀;②短切原丝在毡面中分布均匀,无大孔眼形成,粘结剂分布均匀;③具有适中的强度;④优良的树脂浸透性。
连续毡将拉丝过程中形成的玻璃原丝或从原丝筒中退解出来的连续原丝呈8字形铺敷在连续移动网带上,经粉末粘结剂粘合而成。
连续毡中纤维是连续的,故其对复合材料的增强效果较短切毡好。
主要用在拉挤法、RTM法、压力袋法及玻璃毡增强热塑料(GMT)等工艺中。
方格布是无捻粗纱平纹织物,是手糊玻璃钢重要基材。
方格布的强度主要在织物的经纬方向上,对于要求经向或纬向强度高的场合,也可以织成单向方格布。
对方格布的质量要求如下:①织物均匀,布边平直,布面平整呈席状,无污渍、起毛、折痕、皱纹等;②经、纬密,面积重量,布幅及卷长均符合标准;③卷绕在牢固的纸芯上,卷绕整齐;④迅速、良好的树脂透性;⑤织物制成的复合材料的干、湿态机械强度均应达到要求。
用方格布铺敷成型的复合材料其缺点是层间剪切强度低,耐压和疲劳强度差。
调配树脂1使用工具电动搅拌机、调胶棒、量杯、电子称、塑料勺、调胶桶2操作过程预促型树脂配料添加顺序阻燃剂->苯乙烯->固化剂(添加比例详见表1)预阻型树脂配料添加顺序促进剂->固化剂(添加比例详见表2)2.1添加阻燃剂,混合型树脂要先加入填料搅拌均匀后方可加入促进剂,加入填料后的树脂要进行长时间搅拌直至树脂中无大的填料颗粒,调制后好要静置排净气体,使用时根据用量及现场温度加入促进剂表1表2第8页共41页和苯乙稀并再次进行搅拌,防止长时间放置使促进剂和苯乙稀挥发影响树脂性能。
2.2添加促进剂,已预促的树脂可以在开桶搅拌均匀后发放车间使用,未预促的则要根据生产现场的温度、操作需求(树脂凝胶时间)、调制的树脂重量等因素定制促进剂的加入量,加入促进剂时要按照比例用标准量杯添加,用电动搅拌机充分搅拌均匀,调制好树脂后调胶员要进行测试并记录固化时间,直至满足操作需求为止。
2.3添加固化剂,所有胶衣、树脂均要在使用前搅拌均匀,避免长时间放置使树脂中添料或其它成分沉淀影响树脂性能,固化剂必须在糊制前现场调制,避免因调制过多来不及使用使其凝胶造成不必要的浪费,加入固化剂时,操作工人要根据现场的温度、需要的固化时间来添加固化剂的使用量,用标准量杯加入固化剂,加入固化剂后要用调胶棒或搅拌机搅拌均匀,避免过多气体的混入,待固化剂与树脂充分混合后即可使用,具体固化时间由调胶员每天要根据现场温度进行测试并记录,以方便工人查询和操作。