椭圆中有关的取值范围问题大全(附详解)新高考

合集下载

2025届高考数学二轮复习解析几何常考问题第5讲椭圆与圆含解析

2025届高考数学二轮复习解析几何常考问题第5讲椭圆与圆含解析

第5讲椭圆与圆典型例题【例1】已知椭圆22221(0)x y a b a b +=>>的离心率e 的取值范围为,直线1y x =-+交椭圆于,M N 两点,O 是坐标原点且OM ON ⊥,则椭圆长轴长的取值范围是A.B.C.D.【答案】C【解析】解法1 :设点()()1122,,,M x y N x y . 由OM ON ⊥得12120x x y y +=, 即()()(12121211102x x x x x x x +--=⇒=+)21,x -()*又 222222,1,b x a y a b y x ⎧+=⎨=-⎩得 ()()222222210a b x a x a b +-+-=,所以()2221212222212,a b ax x x x a b a b-+==++. 代人()* 得 222121b a a =-,所以221111,2132e a ⎡⎤=-∈⎢⎥-⎣⎦,所以 2a ∈.解法 2 :椭圆的中心 O 到直线 1y x =-+ 的距离 为 d , 则22222111112.||||d OA OB a b =+=+=. 222121b a a =-, 所以221111,2132e a ⎡⎤=-∈⎢⎥-⎣⎦,所以2a ∈.【例2】若,,A B C 是椭圆22221(0)x y a b a b +=>>上的三点,求ABC 面积的最大值.设P 为椭圆2212516x y +=上一点,12,F F 为椭圆的左、右焦点,I 为12PF F 的内心.若内切圆半径为1,求IP 的长度.【答案】【解析】解法 1 :由等面积法可得()121222P F Sa c r =+8=.记12F PF ∠θ=. 122tan82F PF Sb θ==, 因此 1tan22θ=由此可 得sin25θ=,因此sin2r IP θ==解法 2: 如图, 记 ,D E , 由 1210PF PF +=210x y z ⇒++=,1226F F c y z ===+. 所以 2x =,所以 2DP =,而内切圆半径为 1DI =,所以IP =【例3】已知点()()121,0,1,0,F F M -是第一象限的点,且满意124MF MF +=.若I 是12MF F 的内心,G 是12MF F 的重心,记12IF F 与1GF M 的面积分别为12,S S ,则A.12S S >B.12S S =C.12S S <D.1S 与2S 大小不确定【答案】 B【解析】 由題意得点M 的轨迹方程为22143x y +=,其中 2,1,3a c b ===如图,设 12MF F 的面积为 S .因为 G 为重心, 所以 213S S =. 设 12MF F 的内切圆半径为 r , 则 222S Sr a c a c==++, 所以 111223c S c r S S a c =⋅⋅==+,所以 12S S =. 【例4】已知椭圆(22211x y a a+=>)的左、右焦点分别是12,,F F A是椭圆在第一象限的一个动点,圆C 与1F A 延长线以及线段2AF 相切,且()3,0M 为其中一个切点,则椭圆的离心率为A.32B.223C.22D.63【答案】 B【解析】 解法1: 如图,设另外两个切点分别为 ,N R .连 结 1,,CF CR CN , CM , 则易知AR AN =∣28,F N F M =∣.在 1FCM 中, 22211||FC CM F M =+,即 2221||(3)FC CM c =++.在 1FCR 中, ()22222111||||.FC CR F R CR F A AR =+=++ 因为 ()1122222323F A AR F A AN a F N a F M a c a c +=+=-=-=--=+-,所以 323c a c +=+-, 所以3,a c ==所以3e =. 解法 2: 由切线长定理得 11F R FM =.因为 ()()1111222223,2223232323F M c F R F A AR F A AF NF a NF a F M a c a c F M a c a c =+=+=+-=-=-=--=+-=--=+- .所以323c a c +=+-, 得3,a c ==所以3e =【例5】已知椭圆221164x y +=的下顶点为A ,若直线4x ty =+与椭圆交于不同的两点,M N ,则当t =时,AMN 外心的横坐标最大.【答案】2-【解析】 由已知可得点 ()0,2A -. 设点 ()4,0M , 则 AMN 外心在 AM 的垂直平分线上,即直线 23y x =-+上.224,01,164x ty y x y =+⎧⎪⇒=⎨+=⎪⎩ 或 284t y t =-+.所以MN 的中点坐标为 22164,44t t t ⎛⎫- ⎪++⎝⎭.则 MN 的垂直平分线方程为244t y t +=+2164t x t ⎛⎫-- ⎪+⎝⎭, 把23y x =-+ 代人上式,得2364t x t -+=+. 当 AMN 的外心的横坐标2364t t -++ 取得最大值 时,必有 0t <,故 ()23633384442242t x t t t -++==--=+--++- ,当 2t =- 时,函数()y g t = 取得极大值, 亦为最大值.【例6】已知椭圆2222:1(0)x y Ca b a b +=>>若以点()0,2N 为圆心,且与椭圆C此时椭圆C 的方程是.【答案】221189x y += 【解析】 由 c e a ==得 22212a b a -=, 即 222a b =.则椭圆 C 的方程为 222212x y b b +=.设 (),P x y 是椭圆上任一点, 依题意, PN 的最 大值为,则 ()22222||(2)22(PN x y b y y =+-=-+-()2222)(2)28y b b yb =-+++-.若2b ,则2y =- 时,max ||PN ==所以3b =,此时椭圆方程为221189x y +=;若 02b <<, 则 y b =- 时,max ||2PN b =+所以2622b =>, 不成立.综上可得, 椭圆方程为 221189x y +=.【例7】过点()2,1P 、斜率为正的直线交椭圆221245x y +=于,A B 两点.,C D 是椭圆上相异的两点,满意,CP DP 分别平分,ACB ADB ∠∠.则PCD 外接圆半径的最小值为A.2155B.655C.2413D.1913【答案】D【解析】解法 1 先固定直线AB ,则BC BD CADA==BP PA为定值.故点,,P C D 在一个阿波罗尼斯圆上,且PCD 的外接 圆就是这个阿波罗尼斯圆,设其半径为r ,先考虑BP AP >的阿波罗尼斯圆的状况,BA 的延长线与圆交于点,Q PQ 即为该圆的直径.2,2BP BQ BP rAPAQr AP+==-所以111r AP BP =-.同理, 当BP AP <时, 有111r BP AP=-. 综上, 111r AP BP=-.当直线AB 无斜率时, 与椭圆的交点纵坐标为1,1666AP BP ==+ 则 19;12r =当直线AB 斜率存在时,设直线AB 的方程为y ()12k x -=-, 即21y kx k =-+.2221,1,245y kx k x y =-+⎧⎪⎨+=⎪⎩ 得 ()()()8222454812961k x k k x k k ++-+--0=,设点 ()()1122,A x y B x y ++()()212229614821,245245k k k k x x k k ---=++.所以 111rAP BP=- 2212111212k x k x =+⋅-+⋅-21211221x x k =---+. ()()12212221221x x r x x k ---=--+()1222121212541241911k x x x x x x k k++-==-++++设 125t k =+, 则2121112191910169t r t t ==-+212261319241911169101t t ⨯=⎛⎫-⋅+ ⎪⎝⎭. 当 15169t =即 1695t = 时, 125k =, 故 1913r , 又 19191213>, 可得外接圆半径的 最小值为1913. 解法 2 如图, 设ACB ∠,ADB ∠的外角平分线交于点Q ,则 ,CP CQ DP DQ ⊥⊥, 所以,,,C P D Q 四点共圆,线段为直径 PQ .设半径为 r .由角平分线定理得PA CA PBCB=.由外角平分线定理得QA CA QA QBCBQB=⇒=PA PB,即 ,P Q 调和分割 ,A B .记点 (),Q x y .故点Q 在点 P 对应的极线224x +1512600.5yx y =⇒+-= 则 5212160381313PQ d ⨯+⨯-==,所以 1913r . 解法3: 设 QA PA QBPBλ==,则 0λ> 且 1λ≠.因为 ,,,A P B Q 四点共线, 所以 AP PB λ=-, AQ QB λ=设点 (),Q x y , 于是12122,111x x y y λλλλ--==--, 1212,11x x y y x y λλλλ++==++. 从而, 22212221x x x λλ-=- (1)2221221y y y λλ-=- (2)又点 ,A B 在梛圆 C 上, 即2211524120x y += (3)2222524120x y += (4)(1)5⨯+ (2)24⨯, 结合 (3) (4) 两式得 1024x y +=120 ,即点Q 总在直线512600x y +-=上,所以523813PQ d ⨯==,即1913r .【例8】已知椭圆222:1(1)x C y a a+=>.(1)若过点2,2P ⎛ ⎝⎭的直线l 与椭圆C 恒有公共点,求实数a 的取值范围; (2)若存在以点()0,2B 为圆心的圆与椭圆C 有四个公共点,求实数a 的取值范围.【答案】 (1) 22;a(2) a >【解析】 (1) 要使得直线l 与椭圆C 恒有公共点,则点2,2P ⎛⎫ ⎪ ⎪⎝⎭要在椭圆上或者椭圆内, 所以222212a ⎛⎫+ ⎪ ⎪⎝⎭, 所以 22a .(2)方法 1 要使得圆和椭圆有四个公共点,利用 对称性, 可知在椭圆的左半边 (或右半边) 存在不同 的两点到点 B 的距离相等.设动点 ()00,Q x y 在椭圆上.BQ ===()()()222000022222222221144,1,1),11,12::(2)(2),,f y a y y a f y a a B x y r x y r x a y a =--++-<<>-+-=⎧+-=⎨+=⎩令使得上不单调所以所以方法设圆整理得 ()22221440a y y a r --++-=,所以存在 r ,使得方程()22221440a yy a r --++-= 在 ()1,1- 上有两个解.令 ()()2222144f y a y y a r =--++-, 对称轴y 221a =-, 只需 22111a-<<-, 所以a >【例9】如图,已知,,A B C 是焦距为4的椭圆2222:1(0)x y G a b a b+=>>上的三点,A 是长轴的一个端点,BC 过椭圆的中心,且0,2BC BA BC BA ⋅==. (1)求椭圆G 的方程;(2)过椭圆G 上异于顶点的随意一点P 作圆22:2O x y +=的两条切线,切点分别为M ,N ,若直线MN 分别与x 轴、y 轴交于点,E F ,当EOF 的面积最小时,求PMN 与EOF 的面积之比.【答案】 (1) (221;262x y +=. 【解析】 (1) 由题意, 当点 (),0A a 时, 点 B 的坐标 可以取 ,22a a ⎛⎫⎪⎝⎭, 代人 22221x y a b+=; 又 224a b =+, 所以 222,6b a ==. 故椭圆 G 的方程为 32162x y +=. (2) 设点 ()()()001122,,,,,P x y M x y N x y ,则 2200162x y += (1)切线 MP 的方程为 112x x y y +=;切线 NP 的方程为 222x x y y +=.11因为切线 MP 与切线 NP 都过点 P ,故 101020202;2x x y y x x y y +=+=, 即点 ,M N 都在直线 002x x y y += 上,故直线 MN 的方程为 002x x y y +=. 令 0y =, 得点 02,0E x ⎛⎫ ⎪⎝⎭;令 0x = 得点 020,F y ⎛⎫ ⎪⎝⎭.故000012222DOP S x y x y =⋅=. 由(1式得22001262x y ⋅=所以003x y , 当且仅当 001x y = 时取得等号. 故0000122222233BBF S x y x y =⋅==即EOF.此时原点O 到直线MN 的距离1d=1=, 点P 到直线MN 的距离21d ==.故 2,MN PMN ==的面积PMN S 2112MN d =⋅=PMN 与EOF 2=.12。

高三数学椭圆常考题型

高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。

3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。

4. 椭圆的准线方程为:x = ±a^2/c。

二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。

(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。

【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

由离心率的定义,我们有e = c/a = 1/2。

再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。

由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。

所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。

(2) 设AB的方程为y = kx + t。

代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。

设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。

由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。

将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

椭圆中6种常考基础题型(解析版)--2024高考数学常考题型精华版

第19讲椭圆中6种常考基础题型【考点分析】考点一:椭圆的通径过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a.考点二:椭圆中有关三角形的周长问题图一图二如图一所示:21F PF ∆的周长为c a 22+如图一所示:ABC ∆的周长为a 4考点三:椭圆上一点的有关最值①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c -.考点四:椭圆的离心率椭圆的离心率()10<<=e a c e ,222222221ab a b a ac e -=-==考点五:椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)考点六:中点弦问题(点差法)中点弦问题:若椭圆与直线l 交于AB 两点,M 为AB 中点,且AB k 与OM k 斜率存在时,则22ab K k OM AB -=⋅;(焦点在x 轴上时),当焦点在y 轴上时,22ba K k OMAB -=⋅若AB 过椭圆的中心,P 为椭圆上异于AB 任意一点,22ab K k PB P A -=⋅(焦点在x 轴上时),当焦点在y 轴上时,22ba K k PBP A -=⋅【题型目录】题型一:椭圆的定义有关题型题型二:椭圆的标准方程题型三:椭圆的离心率题型四:椭圆中焦点三角形面积题型五:椭圆中中点弦问题题型六:椭圆中的最值问题【典型例题】题型一:椭圆的定义有关题型【例1】已知△ABC 的周长为10,且顶点()2,0B -,()2,0C ,则顶点A 的轨迹方程是()A .221(0)95x y y +=≠B .221(0)59x y y +=≠C .221(0)64x y y +=≠D .221(0)46x y y +=≠【答案】A【解析】∵△ABC 的周长为10,顶点()2,0B -,()2,0C ,∴=4BC ,+=10464AB AC -=>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵3,2a c ==,∴2945b =-=,又因为,,A B C 三点构成三角形,∴椭圆的方程是()221095x y y +=≠.故选:A .【例2】如果点(),M x y =M 的轨迹是().A .不存在B .椭圆C .线段D .双曲线【答案】B=(),M x y 到点(0,3),(0,3)-的距离之和为3(3)6--=<M 的轨迹是椭圆,故选:B【例3】设1F ,2F 分别为椭圆2214x y +=的左、右焦点,点P 在椭圆上,且1223PF PF += ,则12F PF ∠=()A .6πB .4πC .3πD .2π【答案】D【解析】因32221==+PO PF PF ,所以213OF OF PO ===,所以︒=∠9021PF F 【例4】1F 、2F 是椭圆22:1259x yC +=的左、右焦点,点P 在椭圆C 上,1||6PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则||OM 的长为()A .1B .2C .3D .4【答案】C【详解】如图,直线1F M 与直线2PF 相交于点N ,由于PM 是12F PF ∠的平分线,且PM ⊥1F N ,所以三角形1F PN 是等腰三角形,所以1PF PN =,点M 为1F N 中点,因为O 为12F F 的中点,所以OM 是三角形12F F N 的中位线,所以212OM F N =,其中212112226F N PF PF PF a PF =-=-=-,因61=PF ,所以62=N F ,所以3=OM ,所以选C【例5】已知椭圆22:12516x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=()A .10B .15C .20D .25【答案】C【解析】设MN 的中点为G ,椭圆的左右焦点分别为21,F F ,则G 为MN 的中点,1F 为MA 的中点,所以12GF AN =,同理22GF BN =,所以()204221==+=+a GF GF BN AN【例6】方程x 2+ky 2=2表示焦点在x 轴上的椭圆的一个充分但不必要条件是()A .0k >B .12k <<C .1k >D .01k <<【答案】B【解析】方程x 2+ky 2=2可变形为:22122x y k+=,表示焦点在x 轴上的椭圆,则有:202k<<,解得k 1>.易知当12k <<时,k 1>,当k 1>时未必有12k <<,所以12k <<是k 1>的充分但不必要条件.故选B.【例7】点1F ,2F 为椭圆C :22143x y+=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为()A .()2,6B .[)4,6C .()4,6D .[)4,8【答案】C【解析】由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=,当点P 在x 轴上时,去最小值,为44c =,又因点P 为椭圆C 内部的动点,所以12PF F △周长的取值范围为()4,6.故选:C.【例8】椭圆22193x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,如果1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A .7倍B .6倍C .5倍D .4倍【答案】C【解析】由题意知:212F F PF ⊥,所以13322===a b PF ,因6221==+a PF PF ,所以51=PF ,所以521=PF PF【题型专练】1.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .2.焦点在x 轴上的椭圆222125x y a +=焦距为8,两个焦点为12,F F ,弦AB 过点1F ,则2ABF ∆的周长为()A .20B .28C .D .【答案】D【解析】由题意知252=b ,因为222c b a +=,所以16252+=a ,解得41=a ,所以2ABF ∆的周长为4144=a ,故选:D3.(2021新高考1卷)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C【解析】因2121262MF MF a MF MF ⋅≥==+,所以921≤⋅MF MF 4.已知椭圆22192x y +=的左、右焦点分别为12,F F ,点M 在椭圆上,若1||4MF =,则12F MF ∠=()A .30°B .60︒C .120︒D .150︒【答案】C 【解析】【分析】根据椭圆方程求得12F F =1226MF MF a +==,求得1||4MF =,所以22MF =,在12F MF △中,再由余弦定理列出方程,求得121cos 2F MF ∠=-,即可求解.【详解】解:由题意,椭圆方程22192x y +=,可得3,a b c ===所以焦点12(F F ,又由椭圆的定义,可得1226MF MF a +==,因为1||4MF =,所以22MF =,在12F MF △中,由余弦定理可得222121212122cos F F MF MF MF MF F MF =+-∠,所以2221242242cos F MF =+-⨯⨯∠,解得121cos 2F MF ∠=-,又由12(0,180)F MF ∠∈,所以12120F MF ∠= .故选:C .5.设1F ,2F 为椭圆22194x y +=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A .513B .45C .27D .49【答案】C 【解析】【分析】由中位线定理以及椭圆方程得出243PF =,再由椭圆的定义得出1PF ,再求21PF PF 的值.【详解】由椭圆的定义可知,1226PF PF a +==,由中位线定理可知,212PF F F ⊥,将x =22194x y+=中,解得43y =±,即243PF =,1414633PF =-=,故214323147PF PF =⨯=故选:C6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】由题意得:11122=+ny m x ,所以当0>>n m ,则nm 110<<,所以表示焦点在y 轴上的椭圆,所以A 对,B 错,当0>=n m 时,曲线C 为ny x 122=+,所以表示圆,半径为n 1,当0,0>=n m 时,曲线C 为ny 12=,所以n y 1±=,所以表示两条直线,故选:AD7.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()AB.CD.【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.8.在平面直角坐标系xOy 中,若△ABC 的顶点(0,2)A -和(0,2)C ,顶点B 在椭圆181222=+xy 上,则sin sin sin A C B +的值是()AB .2C .D .4【答案】A 【解析】【分析】由题设易知,A C 为椭圆的两个焦点,结合椭圆定义及焦点三角形性质有||||2AB CB a +=,||2AC c =,最后应用正弦定理的边角关系即可求目标式的值.【详解】由题设知:,A C 为椭圆的两个焦点,而B 在椭圆上,所以||||2AB CB a +==||24AC c ==,由正弦定理边角关系知:|||||sin sin sin |A A CB CB A BC +=+故选:A9.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .10.已知椭圆22143x y +=的左、右焦点分别为1F 、2F ,点P 在椭圆上且在x 轴的下方,若线段2PF 的中点在以原点O 为圆心,2OF 为半径的圆上,则直线2PF 的倾斜角为()A .6πB .4πC .3πD .23π【答案】C 【解析】【分析】设线段2PF 的中点为M ,连接1PF 、1MF ,利用圆的几何性质可得出12F M PF ⊥,求得11222PF F F c ===,利用椭圆的定义可求得2PF ,可判断出12PF F △的形状,即可得解.【详解】在椭圆22143x y +=中,2a =,b =,1c =,设线段2PF 的中点为M ,连接1PF 、1MF ,则12F F 为圆O 的一条直径,则12F M PF ⊥,因为M 为2PF 的中点,则11222PF F F c ===,则2122PF a PF =-=,所以,12PF F △为等边三角形,由图可知,直线2PF 的倾斜角为3π.故选:C.11.已知A 为椭圆2212516x y +=上一点,F 为椭圆一焦点,AF 的中点为P ,O 为坐标原点,若2OP =则AF =()A .8B .6C .4D .2【答案】B【解析】不妨设椭圆2212516x y +=左焦点为F ,右焦点为E ,因为AE 的中点为P ,EF 的中点为O ,所以24AE OP ==,又由210AE AF a +==,可得1046AF =-=.故选:B .12.已知椭圆C :22194x y +=的左右焦点分别是12,F F ,过2F 的直线与椭圆C 交于A ,B 两点,且118AF BF +=,则AB =()A .4B .6C .8D .10【答案】A【解析】由椭圆22:194x y C +=知:a =3,由椭圆的定义得:121226,26AF AF a BF BF a +==+==,所以11412AF BF AB a ++==,又因为118AF BF +=,所以AB 4=,故选:A题型二:椭圆的标准方程【例1】已知椭圆E :()222210x y a b a b+=>>右焦点为),其上下顶点分别为1C ,2C ,点()1,0A ,12AC AC ⊥,则该椭圆的标准方程为()A .22134x y +=B .22143x y +=C .2213y x +=D .2213x y +=【例2】已知椭圆C :()222210x y a b a b+=>>,椭圆C 的一顶点为A ,两个焦点为1F ,2F ,12AF F △焦距为2,过1F ,且垂直于2AF 的直线与椭圆C 交于D ,E 两点,则ADE ∆的周长是()A .B .8C .D .16【例3】如图,已知椭圆C 的中心为原点O ,(F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =,且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2214525x y +=C .2213010x y +=D .2213616x y +=故选:D【例4】阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为53,面积为12π,则椭圆C 的方程为()A .221188x y +=B .22198y x +=C .221188y x +=D .22184y x +=【例5】过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【例6】已知12,F F 分别是椭圆221(0)x y a b a b +=>>的左、右焦点,A ,B 分别为椭圆的上,下顶点,过椭圆的右焦点2F 的直线交椭圆于C ,D 两点,1FCD 的周长为8,且直线AC ,BC 的斜率之积为14-,则椭圆的方程为()A .2212x y +=B .22132x y +=C .2214x y +=D .22143x y +=【例7】已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过F 2的直线与C 交于A ,B 两点.若22||3||AF F B =,15||4||AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【题型专练】1.已知1F 、2F 是椭圆C :22221x ya b+=()0a b >>的左、右焦点,A 为椭圆的上顶点,B 在x 轴上,20AB AF ⋅= 且122AF AB AF =+.若坐标原点O 到直线AB 的距离为3,则椭圆C 的方程为()A .2214x y +=B .22143x y +=C .221169x y +=D .2211612x y +=1612故选:D2.已知椭圆()2222:10x y C a b a b +=>>,其左、右焦点分别为1F ,2F ,离心率为12,点P 为该椭圆上一点,且满足12π3F PF ∠=,若12F PF △的内切圆的面积为π,则该椭圆的方程为()A .221129x y +=B .2211612x y +=C .2212418x y +=D .2213224x y +=3.已知椭圆的两个焦点为1(F ,2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22172x y +=B .22127x y +=C .22194x y +=D .22149x y +=4.已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆C 于A ,B 两点,3AB =,则椭圆C 的标准方程为()A .2213y x +=B .2213x y +=C .22143x y +=D .22132x y +=方法二:由题意,设椭圆C 的标准方程为所以a =2或12a =-(舍去),所以2a 故椭圆C 的标准方程为22143x y +=.故选:C.5.已知椭圆C :()222210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA 的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为()A .2213x y +=B .22153x y +=C .22175x y +=D.22197x y +=6.已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -=与椭圆C 相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=7.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C :()222210x y a b a b+=>>的左,右焦点分别是1F ,2F ,P 是C 上一点,213PF PF =,123F PF π∠=,C 的面积为12π,则C 的标准方程为()A .221364x y +=B .22112x y +=C .221169x y +=D .22143x y +=8.已知椭圆C :22=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M 、N ),△AF 1B 的周长为AM 与AN 的斜率之积为-23,则椭圆C的标准方程为()A .22=134y x +B .22=134x y +C .22=13x y +D .22=132x y +9.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线交于C 与A ,B ,若222AF F B =,1AB BF =,则C 的方程为()A .2212x y +=B .22132x y +=C .22143x y +=D .22198x y +=1F 题型三:椭圆的离心率【例1】已知1F ,2F 为椭圆22221x ya b+=(a >b >0)的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A ,B ,若1ABF 为等边三角形,则椭圆的离心率为()A1B 1C .12D 又1290F AF ∠=,∴21,3AF c AF c ==,∴32c c a +=,可得2331c a ==+故选:B .【例2】已知椭圆C :()21024b b+=<<的左焦点为1F ,直线()0y kx k =≠与C 交于点M ,N .若1120MF N ︒∠=,1183MF NF ⋅=,则椭圆C 的离心率为()A .12B .22C D 因为O 为12,MN F F 的中点,所以四边形所以12MF NF =,12NF MF =,由椭圆的定义可得:又因为1183MF NF ⋅=,所以1MF 【例3】已知椭圆()22:10x y C a b a b+=>>上存在两点,M N 关于直线3310--=x y 对称,且线段MN 中点的纵坐标为53,则椭圆C 的离心率是()A B C .23D【例4】已知椭圆C :221a b+=()0a b >>的左右焦点分别为1F ,2F ,过点2F 做倾斜角为6π的直线与椭圆相交于A ,B 两点,若222,AF F B =,则椭圆C 的离心率e 为()AB .34C .35D【例5】设B 是椭圆()22:10C a b a b+=>>的上顶点,若C 上的任意一点P 都满足2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎝⎦【例6】12,F F 是椭圆C 的两个焦点,P 是椭圆C 上异于顶点的一点,I 是12PF F △的内切圆圆心,若12PF F △的面积等于12IF F △的面积的3倍,则椭圆C 的离心率为()A .13B .12C .2D .2a b如图,设()()()12,,,0,,0,P m n F c F c ∴-三角形由椭圆的定义可得22l a c=+122222PF F S cn cnr l a c a c∴===++ ,又2121113,2322P I F F F F cn S S c n a =∴⨯⨯=⨯⨯ 故选:B【例7】用平面截圆柱面,当圆柱的轴与α所成角为锐角时,圆柱面的截线是一个椭圆.著名数学家Dandelin 创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于α的上方和下方,并且与圆柱面和α均相切.给出下列三个结论:①两个球与α的切点是所得椭圆的两个焦点;②椭圆的短轴长与嵌入圆柱的球的直径相等;③当圆柱的轴与α所成的角由小变大时,所得椭圆的离心率也由小变大.其中,所有正确结论的序号是()A .①B .②③C .①②D .①③【答案】C【分析】根据切线长定理可以证明椭圆上任意一点到12,F F 的距离之和为定值,即12,F F 是焦点再运用勾股定理证明短轴长,最后构造三角形,运用三角函数表示离心率即可.【详解】如图:在椭圆上任意一点P 作平行于12O O 的直线,与球1O 交于F 点,与球2O 交于E 点,则PE ,2PF 是过点P 作球2O 的两条公切线,2PE PF =,同理1PF PF =,是椭圆的焦点;①正确;【例8】国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于34-,则椭圆的离心率为()A .34B .58C .12D .4【题型专练】1.直线:l y =与椭圆2222:1x y C a b+=交于,P Q 两点,F 是椭圆C 的右焦点,且0PF QF ⋅= ,则椭圆的离心率为()A .4-B .3C 1D .2【详解】的左焦点为F ',由对称性可知:四边形PF QF '为平行四边形,PF QF '∴=2PF PF QF a '=+=;2.设12,F F 分别是椭圆221x ya b+=的左、右焦点,若椭圆上存在点A ,使12120F AF ∠=︒且123AF AF =,则椭圆的离心率为()AB C D3.设椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点M ,N 在C 上(M 位于第-象限),且点M ,N 关于原点O 对称,若1222||,F F MN MF ==,则C 的离心率为()A .4B .37C .12D .377122a +故选:B4.如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是12A A 椭圆的长轴,1PA 垂直于地面且与球相切,16PA =,则椭圆的离心率为()A .12B .23C .13D .2【答案】A【分析】根据给定条件,结合球的性质作出截面12PA A ,再结合三角形内切圆性质求出12A A 长即可作答.【详解】依题意,平面12PA A 截球O 得球面大圆,如图,12Rt PA A 是球O 大圆的外切三角形,其中112,PA A A 切圆O 于点E ,F ,=5.如图圆柱12O O 的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱12O O 内部,现用一垂直于轴截面ABB A ''的平面α去截圆柱12O O ,且与上下两半球相切,求截得的圆锥曲线的离心率为()A .3B .3C D .3半径为1,12O O 平面α与底面夹角余弦值为圆柱的底面半径为1,∴又 椭圆所在平面与圆柱底面所成角余弦值为以G 为原点建立上图所示平面直角坐标系,12,332FH a EF a ∴===,则椭圆标准方程为2222c a b =-=,故离心率故选:A.6.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为坐标平面上一点,且满足120PF PF ⋅=的点P 均在椭圆C 的内部,则椭圆C 的离心率的取值范围为()A .2⎛ ⎝⎭B .10,2⎛⎫⎪⎝⎭C .,12⎛⎫ ⎪ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.已知点A ,P ,Q 为椭圆C :()222210x y a b a b +=>>上不重合的三点,且点P ,Q 关于原点对称,若12AP AQ k k ⋅=-,则椭圆C 的离心率为()A .2B C D8.已知椭圆22:1(0)x yC a ba b+=>>的一个焦点为F,椭圆C上存在点P,使得PF OP⊥,则椭圆C的离心率取值范围是()A.2⎛⎝⎦B.,12⎫⎪⎪⎣⎭C.10,2⎛⎤⎥⎝⎦D.1,12⎡⎫⎪⎢⎣⎭故选:B题型四:椭圆中焦点三角形面积【例1】已知椭圆()222210+=>>x y C a b a b:的左、右焦点分别为1F ,2F ,P 为C 上一点,12π3F PF ∠=,若12F PF △的面积为C 的短袖长为()A .3B .4C .5D .6【例2】(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.【题型专练】1.设P 为椭圆221259x y +=上一点,1,F 2F 为左右焦点,若1260F PF ︒∠=,则P 点的纵坐标为()A.4B.4±C.4D.4±【答案】B 【分析】根据椭圆中焦点三角形的面积公式2tan 2S b θ=求解即可.【详解】由题知12609tan2F PF S ︒=⨯= 设P 点的纵坐标为h则12421F F h h ⋅⋅=±⇒=.故选:B2.已知()()1200F c F c -,,,是椭圆E 的两个焦点,P 是E 上的一点,若120PF PF ⋅=,且122=△PF F S c ,则E 的离心率为()ABC .2D 3.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅ 12,则12F PF △的面积为()A.B.CD .9题型五:椭圆中中点弦问题【例1】已知椭圆C :22221x y a b+=(0a b >>)的长轴为4,直线230x y +-=与椭圆C 相交于A 、B 两点,若线段AB 的中点为(1,1)M ,则椭圆C 的方程为()A .221168x y +=B .22142x y +=C .2211612x y +=D .22143x y +=【例2】平行四边形ABCD 内接于椭圆221x y a b +=()0a b >>,椭圆的离心率为2,直线AB 的斜率为1,则直线AD 的斜率为()A .1-4B .1-2C .2D .-1设E 为AD 中点,由于O 为BD 中点,所以因为1133(,),(,)A x y D x y 在椭圆上,【例3】椭圆2294144x y +=内有一点(2,3)P ,过点P 的弦恰好以P 为中点,那么这条弦所在的直线方程为()A .23120x y +-=B .32120x y +-=C .941440x y +-=D .491440x y +-=【例4】已知椭圆E :143+=上有三点A ,B ,C ,线段AB ,BC ,AC 的中点分别为D ,E ,F ,O为坐标原点,直线OD ,OE ,OF 的斜率都存在,分别记为1k ,2k ,3k ,且123k k k ++=直线AB ,BC ,AC 的斜率都存在,分别记为AB k ,BC k ,AC k ,则111AB BC ACk k k ++=()AB .C .-D .1-【例5】离心率为2的椭圆()222210x y a b a b +=>>与直线y kx =的两个交点分别为A ,B ,P 是椭圆不同于A 、B 、P 的一点,且PA 、PB 的倾斜角分别为α,β,若120αβ+=︒,则()cos αβ-=()A .16-B .13-C .13D .16【例6】(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【例7】(2022·全国甲(理)T10)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】解:(),0A a -,设()11,P x y ,则()11,Q x y -,则1111,AP AQ y y k k x a x a==+-+,故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+,又2211221x y a b +=,则()2221212b a x y a -=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率2c e a ===.故选:A.【例8】椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.【答案】63【解析】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,因为||BF AF'=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=时,离心率的最大值为63,故答案为63.【题型专练】1.已知椭圆()222210x y a b a b+=>>,()0,2P ,()0,2Q -过点P 的直线1l 与椭圆交于A ,B ,过点Q 的直线2l 与椭圆交于C ,D ,且满足12l l ∕∕,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为则该椭圆的离心率为()A .13B .23C.3D .32.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是()A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦D .314⎡⎤⎢⎥⎣⎦,【答案】B【详解】由题意,椭圆C :22143x y +=的左、右顶点分别为12(2,0),(2,0)A A -,设00(,)P x y ,则()2200344y x =-,又由1220002200034PA PA y y y k k x a x a x a ⋅=⨯=-+--,可得1234PA PA k k -=,因为[]12,1PA k ∈--,即23421PA k --≤≤-,可得23384PA k ≤≤,所以直线2PA 斜率的取值范围33,84⎡⎤⎢⎥⎣⎦.故选:B3.已知椭圆22:184x y C +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线l 的斜率的乘积()A .1-B .1C .12D .12-【答案】D,进而联立方程求解中点4.点A ,B 在椭圆2212x y +=上,点11,2M ⎛⎫ ⎪⎝⎭,2OA OB OM +=,则直线AB 的方程是()A .12y x =-B .522y x =-+C .32y x =-+D .322y x =-5.已知椭圆143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若34OD OE OF k k k ++=-(O 为坐标原点),则111AB BC ACk k k ++=()A .1B .-1C .34-D .34【答案】A的斜率转化为6.直线:20l x y-=经过椭圆22+1(0)x y a ba b=>>的左焦点F,且与椭圆交于,A B两点,若M为线段AB中点,||||MF OM=,则椭圆的标准方程为()A.22+163x y=B.22+185x y=C.2214x y+=D.22+1129x y=7.已知三角形ABC 的三个顶点都在椭圆:143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=()A .43-B .3-C .1813-D .32-8.已知过点()1,1M 的直线l 与椭圆22184x y +=交于,A B 两点,且满足,AM BM =则直线l 的方程为()A .30x y -+=B .230x y +-=C .2230x y -+=D .230x y +-=题型六:椭圆中的最值问题【例1】已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别是1F ,2F ,点P 在椭圆C 上则下列结论正确的是()A .12PF PF ⋅有最大值无最小值B .12PF PF ⋅无最大值有最小值C .12PF PF ⋅既有最大值也有最小值D .12PF PF ⋅既无最大值也无最小值【例2】若点O 和点F 分别为椭圆()222210x y a b a b+=>>的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为()A .()a a c +B .()b a c +C .()a a c -D .()b ac -【例3】已知点P 是椭圆4x +2y =1上的动点(点P 不在坐标轴上),12F F 、为椭圆的左,右焦点,O 为坐标原点;若M 是12F PF ∠的角平分线上的一点,且1F M 丄MP ,则丨OM 丨的取值范围为()A .(0B .(0,2)C .(l ,2)D .2)【答案】A=因为1F M MP ⊥,因为PM 为12F PF ∠的角平分线,所以,PN 因为O 为12F F 的中点,所以,212OM F N =设点00(,)P x y ,由已知可得2a =,1b =,c 则022x -<<且00x ≠,且有220114y x =-,()2221000032331PF x y x x =++=+++-【例4】已知点P 在椭圆193x y +=上运动,点Q 在圆22(1)8x y -+=上运动,则PQ 的最小值为()A .2B .2C .24-D .4【答案】D【分析】先求出点P 到圆心(1,0)A 的距离的最小值,然后减去圆的半径可得答案。

椭圆中的最值和取值范围问题课件

椭圆中的最值和取值范围问题课件

(三)合作探究,强化运用意识
(1)解:由题意,可设直线 AB 的方程为 x=﹣ky+n,代入椭圆方程

可得(k2+2)y2﹣2kny+n2﹣2=0, 设 A(x1,y1),B(x2,y2). 由题意,△=4k2n2﹣4(k2+2)(n2﹣2)=8(k2﹣n2+2)>0,
由韦达定理得
设线段 AB 的中点 P(x0,y0),
解:︱MP︱+︱MF2︱=︱MP︱+2a-︱MF1︱ 连接 PF1 延长 PF1 交椭圆于点 M1,延长 F1P 交椭圆于点 M2 由三角形三边关系知–︱PF1︱ ︱MP︱-︱MF1︱ ︱PF1︱ 当且仅当 M 与 M1 重合时取右等号、M 与 M2 重合时取左等号。 因为 2a=10, ︱PF1︱=2 所以(︱MP︱+︱MF2︱)max=12, (︱MP︱+︱MF2︱)min=8
(一)知识回顾,聚焦核心考点
2.椭圆的标准方程 和简单几何性质
|x|≤a,|y|≤b (±a,0),(0,±b)
|y|≤a,|x|≤b (0,±a),(±b,0)
x=0,y=0 (0,0)
(一)知识回顾,聚焦核心考点
3.弦长公式
设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 的两个交点为 A(x1,y1),B(x2,y2),则
1、 椭圆中的最值问题类型较多, 距离、离心率、弦长、面积,斜率等等, 解法灵活多变, 有函数法、不等式法、定义法、几何法、三角代换 法,设而不求法,等,但总体上主要有两种角度: 一是几何角度,即利用曲线的定义、几何性质以及平面几何中的定 理、性质等进行求解; 二是代数角度,即把几何条件转化为代数表达,然后利用方程法,函
丰富学生思维活动,提升数学核心素养

椭圆中的定点、定值-2024年新高考数学(解析版)

椭圆中的定点、定值-2024年新高考数学(解析版)

椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1)联立直线方程和椭圆方程得(1+2k2)x2-8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1-22⋅y2x2-22计算即可得证;(2)由题意可得直线l的方程为y=k(x-2),联立直线方程与椭圆方程得(1+2k2)x2-8k2x+8(k2-1)= 0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.【详解】(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:y=kxx2+2y2-8=0,得(1+2k2)x2-8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=-81+2k2,所以y1y2=k2x1x2=-8k21+2k2,又因为A(22,0),所以k AM=y1x1-22,k AN=y2x2-22,所以k AM⋅k AN=y1x1-22⋅y2x2-22=y1y2x1x2-22(x1+x2)+8=y1y2x1x2+8=-8k21+2k2-81+2k2+8=-8k21+2k216k21+2k2=-8k2 16k2=-12所以直线AM和AN的斜率之积为定值-1 2;(2)解:假设存在满足题意的点P,设P(m,0),因为椭圆C的右焦点F(2,0),所以2k+n=0,即有n=-2k,所以直线l的方程为y=k(x-2).由y=k(x-2)x2+2y2-8=0,可得(1+2k2)x2-8k2x+8(k2-1)=0,设M(x3,y3),N(x4,y4),则有x3+x4=8k21+2k2,x3x4=8(k2-1)1+2k2;因为点F到直线NP的距离与点F到直线MP的距离相等,所以PF平分∠MPN,所以k PM+k PN=0.即y 3x 3-m +y 4x 4-m =k (x 3-2)x 3-m +k (x 4-2)x 4-m =k (x 3-2)(x 4-m )+k (x 3-m )(x 4-2)(x 3-m )(x 4-m )=k [2x 3x 4-(m +2)(x 3+x 4)+4m ](x 3-m )(x 4-m )=0,又因为k >0,所以2x 3x 4-(m +2)(x 3+x 4)+4m =0,代入x 3+x 4=8k 21+2k 2,x 3x 4=8(k 2-1)1+2k 2,即有4m -161+2k 2=0,解得m =4.故x 轴上存在定点P (4,0),使得点F 到直线NP 的距离与点F 到直线MP 的距离相等.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析,x 24+y 23=1(2)存在,λ=12【分析】(1)依题意可得OO 1 =2-PM 2,连接PN ,可得OO 1 =PN2,即可得到PM +PN 为定值,根据椭圆的定义得到点P 的轨迹是以M ,N 为焦点的椭圆,且2a =4,c =1,即可求出椭圆方程;(2)设Q x 0,y 0 ,G 2,y 1 ,H 2,y 2 ,直线AQ 的方程为x =my -2m ≠0 ,即可得到m =4y 1,再联立直线与椭圆方程,解出y 0,从而得到k QN ,k NH ,设∠BNH =θ,再根据二倍角的正切公式得到方程,即可得到y 2=12y 1,从而得解;【详解】(1)解:如图,以AB 为直径的圆O 与以PM 为直径的圆O 1内切,则OO 1 =AB 2-PM 2=2-PM2.连接PN ,因为点O 和O 1分别是MN 和PM 的中点,所以OO 1 =PN2.故有PN 2=2-PM2,即PN +PM =4,又4>2=MN,所以点P的轨迹是以M,N为焦点的椭圆.因为2a=4,c=1,所以b2=a2-c2=3,故Ω的方程为x24+y23=1.(2)解:存在λ=12满足题意.理由如下:设Q x0,y0,G2,y1,H2,y2.显然y1y2>0.依题意,直线AQ不与坐标轴垂直,设直线AQ的方程为x=my-2m≠0,因为点G在这条直线上,所以my1=4,m=4 y1 .联立x=my-2,3x2+4y2=12,得3m2+4y2-12my=0的两根分别为y0和0,则y0=12m3m2+4,x0=my0-2=6m2-83m2+4,所以k QN=y0x0-1=12m3m2+46m2-83m2+4-1=4mm2-4=4y14-y21,k NH=y2.设∠BNH=θ,则∠BNQ=2θ,则k QN=tan2θ,k NH=tanθ,所以tan2θ=2tanθ1-tan2θ=2y21-y22=4y14-y21,整理得y1-2y2y1y2+2=0,因为y1y2>0,所以y1-2y2=0,即y2=12y1.故存在常数λ=12,使得BH=λBG.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.【答案】(1)证明见解析(2)是定值,定值为619π【分析】(1)利用仿射变换将椭圆方程变为圆的方程,设原斜率分别为k1,k2,k1k2=-1,则变换后斜率k 1⋅k 2=a2b2k1k2,设变换后坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0,将圆的方程和直线方程联立,利用直线和圆相切结合韦达定理求解即可;(2)由图中的垂直关系,利用等面积法S△OYW=12OYOW=12YWOZ和1|OY|2+1|OW|2=OY|2+OW|2 OY|2OW|2=|YW|2OW|2OY|2,结合椭圆的性质求解即可.【详解】(1)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1设原斜率存在分别为k1,k2,k1k2=-1,变换后为k 1=abk1,k 2=abk2,所以k 1⋅k 2=a2b2k1k2=-a2b2=e2-1,设变换后的坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0l:kx-y-kx0-y0=0到原点距离为d=kx0-y0k2+1=1,即kx0-y02=k2+1⇒x20-1k2-2x0y0k+y20-1=0,由韦达定理得:k 1k 2=y20-1x20-1=-a2b2,化简得:a2x20+b2y20=a2+b2由于原坐标系中x0=xa,y0=yb⇒x=ax0,y=by0所以在原坐标系中轨迹方程为:x2+y2=a2+b2,由e=ca=55b2a=455解得a2=5b2=4,所以点P的轨迹方程为x2+y2=9,当切线斜率不存在时,由椭圆方程x25+y24=1易得P点在x2+y2=9上.(2)如图所示延长OY交l1于N,延长OW交l2于M,由题意可知∠GPM=∠OGP=∠OHP=π2,所以四边形OGPH为矩形,∠YOW=π2,所以S△OYW=12OYOW=12YWOZ,且1|OY|2+1|OW|2=OY|2+OW|2OY|2OW|2=|YW|2OW|2OY|2,|YW |2OW |2OY |2分子分母同乘|OZ |2得4S 24OZ 2S 2=1OZ 2=1OY 2+1OW 2,因为OY ⊥OW ,当直线OY ,OW 斜率存在时,设l OY :y =k 3x ,l OW :y =-1k 3x ,由x 2a 2+y 2b 2=1y =k 3x解得x 2Y=a 2b 2b 2+a 2k 23,y 2Y =a 2b 2k 23b 2+a 2k 23,所以OY 2=a 2b 21+k 23 b 2+a 2k 23,由x 2a 2+y 2b 2=1y =-1k 3x解得x 2W=a 2b 2k 23b 2k 23+a 2,y 2W =a 2b 2b 2k 23+a 2,所以OW 2=a 2b 21+k 23 b 2k 23+a2,所以1OY 2+1OW 2=b 2+a 2k 23a 2b 2(1+k 23)+b 2k 23+a 2a 2b 2(1+k 23)=a 2+b 2a 2b 2,当斜率不存在时仍成立,所以1|OZ |2=a 2+b 2a 2b 2,OZ 2=x 2+y 2=a 2b 2a 2+b 2=209,所以Z 所形成的轨迹与P 所形成的轨迹的面积之差=9-209 π=619π是定值.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的离心率为22,椭圆W 上的点与点P 0,2 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线x =4上,点B 关于x 轴的对称点为B 1,直线PB ,PB 1分别交椭圆W 于C ,D 两点(不同于P 点).求证:直线CD 过定点.【答案】(1)x 28+y 24=1(2)证明见解析【分析】(1)根据离心率可得a =2b =2c ,设点T m ,n 结合椭圆方程整理得TP =-(n +2)2+8+2b 2,根据题意分类讨论求得b =2,即可得结果;(2)设直线CD 及C ,D 的坐标,根据题意结合韦达定理分析运算,注意讨论直线CD 的斜率是否存在.【详解】(1)设椭圆的半焦距为c ,由椭圆W 的离心率为22,得a =2b =2c ,设点T m ,n 为椭圆上一点,则m 22b 2+n 2b2=1,-b ≤n ≤b ,则m 2=2b 2-2n 2,因为P 0,2 ,所以TP =m 2+(n -2)2=2b 2-2n 2+n 2-4n +4=-(n +2)2+8+2b 2,①当0<b <2时,|TP |max =-(-b +2)2+8+2b 2=4,解得b =2(舍去);②当b ≥2时,|TP |max =8+2b 2=4,解得b =2;综上所述:b =2,则a =22,c =2,故椭圆W 的标准方程为x 28+y 24=1.(2)①当CD 斜率不存在时,设C x 0,y 0 ,-22<x 0<22且x 0≠0,则D x 0,-y 0 ,则直线CP 为y =y 0-2x 0x +2,令x =4,得y =4y 0-8x 0+2,即B 4,4y 0-8x 0+2,同理可得B 14,-4y 0-8x 0+2.∵B 与B 1关于x 轴对称,则4y 0-8x 0+2+-4y 0-8x 0+2=0,解得x 0=4>22,矛盾;②当直线CD 的斜率存在时,设直线CD 的方程为y =kx +m ,m ≠2,设C x 1,y 1 ,D x 2,y 2 ,其中x 1≠0且x 2≠0,联立方程组y =kx +mx 28+y 24=1,消去y 化简可得2k 2+1 x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-42k 2+1 2m 2-8 =88k 2+4-m 2 >0,则m 2<8k 2+4,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,由P 0,2 ,可得k PC =y 1-2x 1,k PD =y 2-2x 2,所以直线PC 的方程为y =y 1-2x 1x +2,令x =4,得y =4y 1-8x 1+2,即4,4y 1-8x 1+2,直线PD 的方程为y =y 2-2x 2x +2,令x =4,得y =4y 2-8x 2+2,即4,4y 2-8x 2+2,因为B 1和B 关于x 轴对称,则4y 1-8x 1+2+4y 2-8x 2+2=0,把y 1=kx 1+m ,y 2=kx 2+m 代入上式,则4kx 1+m -8x 1+2+4kx 2+m -8x 2+2=0,整理可得1+2k x 1x 2+m -2 x 1+x 2 =0,则1+2k ×2m 2-81+2k 2+m -2 ×-4km1+2k2=0,∵m ≠2,则m -2≠0,可得1+2k ×m +2 -2km =0,化简可得m =-4k -2,则直线CD 的方程为y =kx -4k -2,即y +2=k x -4 ,所以直线CD 过定点4,-2 ;综上所述:直线CD 过定点4,-2 .【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)点D (4,0),斜率为k 的直线l 不过点D ,且与椭圆C 交于A ,B 两点,∠ADO =∠BDO (O 为坐标原点).直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1)x 24+y 2=1;(2)过定点,1,0 .【分析】(1)根据已知条件列方程即可解得a ,b 值,方程可求解;(2)设直线l 的方程为y =kx +m ,联立椭圆方程结合韦达定理得x 1,x 2关系,又∠ADO =∠BDO 得k AD +k BD =0,代入坐标化简即可求解.【详解】(1)由题意可得2b =2ca =32c 2=a 2-b 2,解得a 2=4,b 2=1所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 联立y =kx +mx 24+y 2=1整理得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=8km 2-44k 2+1 (4m 2-4)>0,即4k 2-m 2+1>0又x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1因为∠ADO =∠BDO ,所以k AD +k BD =0,所以y 1x 1-4+y 2x 2-4=kx 1+m x 2-4 +kx 2+m x 1-4x 1-4 x 2-4 =0所以2kx 1x 2+(m -4k )x 1+x 2 -8m =0,即2k ⋅4m 2-44k 2+1+(m -4k )⋅-8km 4k 2+1-8m =0整理得8k +8m =0,即m =-k ,此时Δ=3k 2+1>0则直线l 的方程为y =kx -k ,故直线l 过定点1,0 .6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.【答案】(1)y 212+x 29=1;y 2=4x(2)存在;H 92,0 【分析】(1)依题意得到方程组,即可求出a 2,b 2,从而得到椭圆方程,再求出椭圆的右顶点,即可求出p ,从而求出抛物线方程;(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立直线与抛物线方程,消元、列出韦达定理,根据OA ⋅OB=-4得到m =-2k ,再假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,联立直线与椭圆方程,消元、列出韦达定理,由y 3x 3-x 0+y 4x 4-x 0=0,即可求出x 0,从而求出H 的坐标;【详解】(1)解:由已知得c a =124a 2+6b 2=1a 2=b 2+c 2,∴a 2=12,b 2=9.∴椭圆C 的方程为y 212+x 29=1.∴椭圆C 的右顶点为3,0 .∴3+p2=4,解得p =2.∴抛物线E 的方程为y 2=4x .(2)解:由题意知直线l 的斜率存在且不为0.设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .由y =kx +my 2=4x消去y ,得k 2x 2+2km -4 x +m 2=0.∴Δ1=2km -4 2-4k 2m 2=-16km +16>0,∴km <1.∴x 1+x 2=4-2km k 2,x 1x 2=m 2k2.∴y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=km 4-2km k2+2m 2=4m k .∴OA ⋅OB =x 1x 2+y 1y 2=m 2k2+4m k =-4.∴m k +2 2=0,∴mk=-2.∴m =-2k ,此时km =-2k 2<1.∴直线l 的方程为y =k x -2 .假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,由y =k x -2y 212+x 29=1消去y ,得3k 2+4 x 2-12k 2x +12k 2-36=0.∴Δ2=12k 2 2-43k 2+4 12k 2-36 >0,即5k 2+12>0恒成立.∴x 3+x 4=12k 23k 2+4,x 3x 4=12k 2-363k 2+4.∵y 3x 3-x 0+y 4x 4-x 0=0,∴k x 3-2 x 4-x 0 +k x 4-2 x 3-x 0 =0.∴2x 3x 4-x 0+2 x 3+x 4 +4x 0=0.∴24k 2-723k 2+4-x 0+2 12k 23k 2+4+4x 0=0.∴16x 0-723k 2+4=0.解得x 0=92.∴在x 轴上存在点H 92,0 ,使得x 轴平分∠MHN .【点睛】本题考查直线与圆锥曲线的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题;在解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.【答案】(1)x 24+y 23=1(2)点1,0 或4,0【分析】(1)由已知条件,椭圆的定义及a ,b ,c 的关系可知a 2=4c 2和b 2=3c 2,再设出椭圆的方程,最后将点代入椭圆的方程即可求解;(2)设点A x 1,y 1 ,B x 2,y 2 ,由直线AA 1的方程即可求出点M 的坐标,由BA 2的方程即可求出点N 的坐标,由已知条件可知5x 1+x 2 -2x 1x 2-8=0,分直线AB 的斜率存在和直线AB 的斜率不存在两种情况分别求解,得出直线AB 的方程,即可判断出直线恒过定点的坐标.【详解】(1)∵△F 1B 1F 2为等边三角形,且B 1F 1 +B 1F 2 =2a ,∴a =2c ,又∵a 2=b 2+c 2,∴b 2=3c 2,设椭圆的方程为x 24c 2+y 23c 2=1,将点P 1,32 代入椭圆方程得14c 2+912c2=1,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由已知得A 1-2,0 ,A 22,0 ,设A x 1,y 1 ,B x 2,y 2 ,则直线AA 1的斜率为y 1x 1+2,直线AA 1的方程为y =y 1x 1+2x +2 ,即点M 坐标为0,2y 1x 1+2,直线BA 2的斜率为y 2x 2-2,直线AA 1的方程为y =y 2x 2-2x -2 ,即点N 坐标为0,-2y 2x 2-2,∵|ON |=3|OM |,∴|ON |2=9|OM |2,∴4y 22x 2-2 2=36y 21x 1+2 2,又∵y 21=3-3x 214=12-3x 214,y 22=3-3x 224=12-3x 224,∴4-x 22x 2-2 2=9×4-x 21x 1+22,即2+x 22-x 2=92-x 1 2+x 1,整理得5x 1+x 2 -2x 1x 2-8=0,①若直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,将直线方程与椭圆方程联立y =kx +bx 24+y 23=1得3+4k 2 x 2+8kbx +4b 2-12=0,其中Δ=64k 2b 2-43+4k 2 4b 2-12 =1612k 2-3b 2+9 >0,x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2,即-5×8kb 3+4k 2-2×4b 2-123+4k2-8=0,4k 2+5kb +b 2=0,4k +b k +b =0,所以b =-4k 或b =-k ,当b =-4k 时,直线AB 的方程为y =kx -4k =k x -4 ,此时直线AB 恒过点4,0 ,当b =-k 时,直线AB 的方程为y =kx -k =k x -1 ,此时直线AB 恒过点1,0 ,②若直线AB 的斜率不存在时x 1=x 2,由2+x 22-x 2=92-x 1 2+x 1得2+x 22-x 2=92-x 2 2+x 2,即x 22-5x 2+4=0,解得x 2=1或x 2=4,此时直线AB 的方程为x =1或x =4,所以此时直线AB 恒过点1,0 或4,0 ,综上所述,直线AB 恒过点1,0 或4,0 .8(2023·江苏扬州·仪征中学校考模拟预测)已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1(2)存在,D =(5,+∞),证明见解析【分析】(1)求出点A 2,53到两焦点的距离,再用椭圆的定义可得a =3,结合b 2=a 2-c 2可得b 2,从而可得椭圆的方程;(2)直线l 与抛物线联立,结合判别式有p +4t >0,要使得点F 1在以线段MN 为直径的圆内,根据题意,有F 1P ⋅F 1Q<0,结合韦达定理可得p >5,从而可证明问题.【详解】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2px y =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为M 1、M 2,短轴长为23,点C 上的点P 满足直线PM 1、PM 2的斜率之积为-34.(1)求C 的方程;(2)若过点1,0 且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线M 1A 、M 2B 交于点Q .探究:点Q是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线x =4上【分析】(1)设点P x 0,y 0 ,则x 0≠±a ,可得出y 20=b 21-x 20a2,利用斜率公式结合已知条件可得出b 2=34a 2,再利用椭圆的短轴长可得出b 2、a 2的值,即可得出椭圆C 的方程;(2)设l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,设点Q x ,y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,写出直线M 1A 、M 2B 的方程,联立这两条直线方程,可得出点Q 的横坐标,即可得出结论.【详解】(1)解:设P x 0,y 0 ,则x 0≠±a ,且x 20a 2+y 20b 2=1,所以,y 20=b 21-x 20a2,则k PM 1⋅k PM 2=y 0x 0+a ⋅y 0x 0-a =y20x 20-a 2=b 21-x 20a 2x 20-a2=-b 2a2=-34,故b 2=34a 2①,又2b =23②,联立①②,解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1.(2)解:结论:点Q 在定直线上x =4.由(1)得,M 1-2,0 、M 22,0 ,设Q x ,y ,设直线l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,联立x 24+y 23=1x =my +1,整理得3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 直线M 1A 的方程为y =y 1x 1+2x +2 ,直线M 2B 的方程为y =y 2x 2-2x -2 ,所以,y 1x 1+2x +2 =y 2x 2-2x-2 ,可得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2my 1+3 y 1my 2-1 =my 1y 2+3y 2my 1y 2-y 1=-9m 3m 2+4+3-6m 3m 2+4-y 1 -9m 3m 2+4-y 1=-27m 3m 2+4-3y 1-9m 3m 2+4-y 1=3,解得x =4,因此,点Q 在直线x =4上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.【答案】(1)x 22+y 2=1(2)是定值,定值为32【分析】(1)由题意求出直线AC ,BD 的斜率,即可求出-b 2a2=-12,又因为焦距为2,即可就出椭圆的标准方程.(2)方法一:联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出2t 2=1+2k 2,又因为:MO 2+MQ 2=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,代入即可求出答案.方法二:由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2,联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出y 1=-x 1x 22y 2,代入化简得x 21=2y 22,即可求出答案.【详解】(1)由题意,c =1,则A -a ,-b ,B a ,-b ,C a ,b ,D -a ,b ,所以k AC =2b 2a =b a ,k BD =2b-2a=b -a ,所以k AC ⋅k BD =-b 2a2=-12,解得:a =2,=1,∴椭圆的标准方程为x 22+y 2=1.(2)(方法一)设P x 1,y 1 ,Q x 2,y 2 ,则M x 1+x 22,y 1+y 22.设直线PQ :y =kx +t ,由y =kx +t x 22+y 2=1,得:1+2k 2 x 2+4ktx +2t 2-2=0,x 1+x 2=-4kt1+2k2x 1x 2=2t 2-21+2k2,由k OP ⋅k OQ =-12,得x 1x 2+2y 1y 2=1+2k 2 x 1x 2+2kt x 1+x 2 +2t 2=0,代入化简得:2t 2=1+2k 2.∵MO 2+MQ 2=x 1+x 22 2+y 1+y 22 2+x 1-x 1+x 22 2+y 1-y 1+y 222=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,∴x 212+y 21=1,x 222+y 22=1,即x 21+x 224+y 21+y 222=1,∵x 21+x 22=x 1+x 2 2-2x 1x 2=-4kt 2t 22-2⋅2t 2-22t 2=2,∴x 21+x 224=12.∴MO 2+MQ 2=x 21+x 224+y 21+y 222+x 21+x 224=32.即MO 2+MQ 2=32为定值.(方法二)由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2 ,把y 1=-x 1x 22y 2代入上式,化简x 21=2y 22,得y 21+y 22=1,x 21+x 22=2,MO 2+MQ 2=12x 21+x 22+y 21+y 22 =32.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,左、右顶点分别为A 1、A 2,上顶点为B ,且△A 1BF 的外接圆半径大小为3.(1)求椭圆C 方程;(2)设斜率存在的直线l 交椭圆C 于P ,Q 两点(P ,Q 位于x 轴的两侧),记直线A 1P 、A 2P 、A 2Q 、A 1Q 的斜率分别为k 1、k 2、k 3、k 4,若k 1+k 4=53k 2+k 3 ,求△A 2PQ 面积的取值范围.【答案】(1)x 24+y 22=1(2)0,5830 【分析】(1)根据椭圆离心率确定椭圆中a ,b ,c 的关系,再结合正弦定理的推论确定外接圆半径与边角关系即可得c 的值,从而求得椭圆方程;(2)由题可设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立直线与椭圆即可得交点坐标关系,根据斜率的计算式可得k 1k 2=-12,k 3k 4=-12,再由已知等式k 1+k 4=53k 2+k 3 确定k 2k 3=-310,由坐标关系进行转化可求得m 的值,求解△A 2PQ 面积的表达式,结合函数性质即可得△A 2PQ 面积的取值范围.【详解】(1)根据椭圆C 的离心率为22知a =2c ,所以b =a 2-c 2=c ,如图,则OF =OB =c则在△A 1BF 中,可得∠BFA 1=3π4,A 1B =OA 1 2+OB 2=3c ,由正弦定理得A 1Bsin ∠BFA 1=3c22=6c =2×3,解得c =2,所以a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由条件知直线l 的斜率不为0,设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立x =ty +mx 24+y 22=1,得t 2+2 y 2+2mty +m 2-4=0,Δ>0得2t 2+4>m 2于是y 1+y 2=-2mt t 2+2,y 1y 2=m 2-4t 2+2,因为A 1-2,0 ,A 22,0 ,P x 1,y 1 代入椭圆方程得x 214+y 212=1,所以k 1k 2=y 1x 1+2⋅y 1x 1-2=y 21x 21-4=21-x 214 x 21-4=-12,同理k 3k 4=-12,于是k 1=-12k 2,k 4=-12k 3,因为k 1+k 4=53k 2+k 3 ,所以-12k 2-12k 3=53k 2+k 3 ,即-k 2+k 32k 2k 3=53k 2+k 3 .又直线l 的斜率存在,所以k 2+k 3≠0,于是k 2k 3=-310,所以y 1x 1-2⋅y 2x 2-2=-310,即10y 1y 2+3x 1-2 x 2-2 =0,又x 1=ty 1+m ,x 2=ty 2+m ,所以10y 1y 2+3ty 1+m -2 ty 2+m -2 =0,整理得3t 2+10 y 1y 2+3t m -2 y 1+y 2 +3m -2 2=0,所以3t 2+10 m 2-4t 2+2 +3t m -2 -2mt t 2+2+3m -2 2=0,化简整理得m -2 2m +1 =0,又P 、Q 位于x 轴的两侧,所以y 1y 2=m 2-4t 2+2<0,解得-2<m <2,所以m =-12,此时直线l 与椭圆C 有两个不同的交点,于是直线l 恒过定点D -12,0 .当m =-12时,y 1+y 2=t t 2+2,y 1y 2=-154t 2+2,△A 2PQ 的面积S △A 2PQ =12A 2D ⋅y 1-y 2 =12×52×y 1+y 2 2-4y 1y 2=54t t 2+22-4-154t 2+2 =54⋅16t 2+30t 2+2,令16t 2+30=λ,因为直线l 的斜率存在,则λ>30,t 2=λ2-3016,于是S △A 2PQ =54⋅16λλ2+2=20λ+2λ,又函数y =20λ+2λ在30,+∞ 上单调递减,所以△A 2PQ 面积的取值范围为0,5830 .【点睛】关键点点睛:本题考查了直线与椭圆相交的坐标关系,利用坐标运算解决直线斜率关系及面积关系.解决本题的关键是确定直线直线A 1P 、A 2P 、A 2Q 、A 1Q 之间的斜率关系,结合椭圆上的任意一点与左右顶点之间的斜率关系,可将四个斜率值简化为两个斜率关系,即可减少位置数,从而利用坐标运算及坐标关系确定所设直线过定点,于是简化所求面积表达式中的变量个数从而可结合函数关系确定取值范围,得以解决问题.12(2023·江西南昌·统考模拟预测)已知A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点.(1)求椭圆E 的标准方程;(2)过点P 2,1 的直线l 与椭圆E 交于C ,D ,与直线AB 交于点M ,求PM PC +PMPD的值.【答案】(1)x 24+y 2=1(2)PM PC +PM PD =2【分析】(1)根据椭圆顶点坐标直接可得椭圆方程;(2)设直线方程,可得点M ,联立直线与椭圆结合韦达定理,再根据两点间距离化简可得解.【详解】(1)由A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点,得a =2,b =1,即E :x 24+y 2=1;(2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,所以设C x 1,y 1 ,D x 2,y 2 ,M x 3,y 3 ,直线l 的斜率为k ,则PC =x P -x 1 1+k 2=2-x 1 1+k 2,同理PD =2-x 2 1+k 2,PM =2-x 3 1+k 2,则PM PC+PM PD=2-x 32-x 1+2-x 32-x 2.设l :y -1=k x -2 ,而AB :x 2+y =1,联立解得x 3=4k2k +1,所以2-x 3=2-4k 2k +1=22k +1;联立直线l 与椭圆E 方程,消去y 得:4k 2+1 x 2-8k 2k -1 x +16k 2-16k =0,所以x 1+x 2=8k 2k -1 4k 2+1,x 1x 2=16k 2-16k 4k 2+1,所以12-x 1+12-x 2=-x 1+x 2-4x 1-2 x 2-2=-x 1+x 2-4x 1x 2-2x 1+x 2 +4=-8k 2k -14k 2+1-416k 2-16k4k 2+1-2×8k 2k -1 4k 2+1+4=2k +1,所以2-x 32-x 1+2-x 32-x 2=22k +1×2k +1 =2,即PM PC +PMPD =2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.13(2023·江苏盐城·校考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 在C 上,当AF 1⊥x 轴时,AF 1 =12;当AF 1 =2时,∠F 1AF 2=2π3.(1)求C 的方程;(2)已知斜率为-1的直线l 与椭圆C 交于M ,N 两点,与直线x =1交于点Q ,且点M ,N 在直线x =1的两侧,点P (1,t )(t >0).若|MP |⋅|NQ |=|MQ |⋅|NP |,是否存在到直线l 的距离d =2的P 点?若存在,求t 的值;若不存在,请说明理由.【答案】.(1)x 24+y 2=1(2)存在,t =52【分析】(1)利用通径公式和椭圆定义,结合余弦定理即可建立方程,从而可求解椭圆方程;(2)由点M ,N 在直线x =1的两侧可得1-32<m <1+32,设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,联立椭圆方程,消元,利用韦达定理可得y 1+y 2=2m 5,y 1y 2=m 2-45.根据MP ⋅NQ =MQ ⋅NP ,得到k MP +k NP =0.代入斜率公式,得到4m -5 t =4-m ,再由d =1+t -m2=12-4m 2+8m -14m -5=2,求出m 的取值范围即可.【详解】(1)当AF 1⊥x 轴时,AF 1 =b 2a =12,即b 2=12a ①,当AF 1 =2时,AF 2 =2a -2,在△AF 1F 2中,F 1F 2 =2c ,由余弦定理可知,AF 12+AF 2 2-F 1F 2 2=2AF 1 AF 2 cos ∠F 1AF 2,即22+2a -2 2-2c 2=2×2×2a -2 ×-12,整理,可得a 2-c 2-a +1=0,即b 2=a -1②,由①②,解得a =2,b =1.所以C 的方程为x 24+y 2=1.(2)设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,令x =1,则14+y 2=1,y =±32,由点M ,N 在直线x =1的两侧,可得1-32<m <1+32,联立x +y =m x 24+y 2=1,消去x ,可得5y 2-2my +m 2-4=0,则Δ=4m 2-20m 2-4 =165-m 2 >0恒成立,所以y 1+y 2=2m 5,y 1y 2=m 2-45.因为MP ⋅NQ =MQ ⋅NP ,所以MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,而∠MQP +∠NQP =π,即sin ∠MQP =sin ∠NQP ,所以sin ∠MPQ =sin ∠NPQ ,而∠MPQ +∠NPQ =∠MPN <π,则∠MPQ =∠NPQ ,所以k MP +k NP =0,则y 1-t x 1-1+y 2-t x 2-1=0,即y 1-t -y 1+m -1+y 2-t-y 2+m -1=0,即-2y 1y 2+m +t -1 y 1+y 2 -2m -1 t =0,整理,得4-m -4mt +5t =0,所以4m -5 t =4-m ,因为1-32<m <1+32,所以4-m >0,又t =4-m 4m -5>0,所以54<m <1+32,所以d =1+t -m 2=121+4-m 4m -5-m =12-4m 2+8m -14m -5 .令d =12-4m 2+8m -14m -5=2,结合54<m <1+32,解得m =32,则t =4-324×32-5=52.所以t =52时,点P 到直线l 的距离d =2.【点睛】关键点睛:第二问中的关键是能把MP ⋅NQ =MQ ⋅NP 转化为MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,从而得到∠MPQ =∠NPQ ,即k MP +k NP =0,从而利用斜率公式和韦达定理求解.14(2023·全国·高三专题练习)已知椭圆C :x 2b 2+y 2a2=1a >b >0 与椭圆x 28+y 24=1的离心率相同,P 22,1为椭圆C 上一点.(1)求椭圆C 的方程.(2)若过点Q 13,0 的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 22=1(2)存在T 的坐标为(-1,0),理由见解析【分析】(1)先求出椭圆x 28+y 24=1的离心率为22,由此得到a 2=2b 2,将点P 的坐标代入椭圆C ,得到12b 2+1a2=1,再代入a 2=2b 2,解得b 2=1,a 2=2,则可得结果;(2)先用两个特殊圆求出交点(-1,0),再猜想以AB 为直径的圆经过定点T (-1,0),再证明猜想,设直线l :x =my +13,并与x 2+y 22=1联立,利用韦达定理得到y 1+y 2,y 1y 2,进一步得到x 1+x 2,x 1x 2,利用y 1+y 2,y 1y 2,x 1+x 2,x 1x 2证明TA ⋅TB=0即可.【详解】(1)在椭圆x 28+y 24=1中,a 1=22,b 1=2,c 1=8-4=2,离心率e =c 1a 1=222=22,在椭圆C :x 2b 2+y 2a2=1a >b >0 中,e =c a =a 2-b 2a =1-b 2a 2,所以1-b 2a2=22,化简得a 2=2b 2,因为P 22,1 在椭圆C :x 2b 2+y 2a 2=1a >b >0 上,所以12b 2+1a 2=1,所以12b 2+12b2=1,所以b 2=1,a 2=2,所以椭圆C :x 2+y22=1.(2)当直线l 的斜率为0时,线段AB 是椭圆的短轴,以AB 为直径的圆的方程为x 2+y 2=1,当直线l 的斜率不存在时,直线l 的方程为x =13,代入x 2+y 22=1,得y =±43,以AB 为直径的圆的方程为x -13 2+y 2=169,联立x 2+y 2=1x -13 2+y 2=169,解得x =-1y =0 ,由此猜想存在T (-1,0),使得以AB 为直径的圆是经过定点T (-1,0),证明如下:当直线l 的斜率不为0且斜率存在时,设直线l :x =my +13,联立x =my +13x 2+y 22=1,消去x 并整理得m 2+12 y 2+23my -89=0,Δ=49m 2+4m 2+12 ⋅89>0,设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=-2m 3m 2+12 ,y 1y 2=-89m 2+12,则x 1+x 2=my 1+13+my 2+13=m (y 1+y 2)+23=-2m 23m 2+12 +23,x 1x 2=my 1+13 my 2+13 =m 2y 1y 2+13m (y 1+y 2)+19=-8m 29m 2+12 -2m 29m 2+12 +19=-10m 29m 2+12 +19,因为TA ⋅TB=(x 1+1,y 1)⋅(x 2+1,y 2)=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+y 1y 2=-10m 29m 2+12 +19-2m 23m 2+12 +23+1-89m 2+12 =-16m 2+89m 2+12+169=0,所以TA⊥TB,所以点T(-1,0)在以AB为直径的圆上,综上所述:以AB为直径的圆是经过定点T(-1,0).【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x1,y1,x2,y2;(2)联立直线与圆锥曲线的方程,得到关于x(或y)的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x1+x2、x1x2(或y1+y2、y1y2)的形式;(5)代入韦达定理求解.15(2023·广东广州·广州市从化区从化中学校考模拟预测)已知双曲线C:x2a2-y23a2=1(a>0)的左、右焦点分别为F1,F2,且F2到C的一条渐近线的距离为3.(1)求C的方程;(2)过C的左顶点且不与x轴重合的直线交C的右支于点B,交直线x=12于点P,过F1作PF2的平行线,交直线BF2于点Q,证明:Q在定圆上.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据焦点到渐近线的距离求出c=2即可得解;(2)由题意可设PA,PF2的斜率分别为k,-k,设直线AP的方程为y=k x+1,联立双曲线方程,求出B3+k23-k2,6k 3-k2,由三角函数可得∠F2F1Q=∠PF2A=∠BF2P=∠F1QF1,即化为QF2= F1F2=4得证.【详解】(1)根据题意可知C的一条渐近线方程为y=3aax=3x,设F2c,0(c>0),F2到渐近线y=3x的距离为d=3c3+1=3,所以c=2,c2=4=a2+3a2,a2=1,所以C的方程为x2-y23=1.(2)设C的左顶点为A,则A(-1,0),故直线x=12为线段AF2的垂直平分线.所以可设PA,PF2的斜率分别为k,-k,故直线AP的方程为y=k x+1.与C 的方程联立有3-k 2 x 2-2k 2x -k 2-3=0,设B (x 1,y 1),则-1+x 1=2k 23-k 2,即x 1=3+k 23-k 2,所以B 3+k 23-k 2,6k3-k 2当BF 2⊥x 轴时,BF 2= AF 2 =3,△AF 2B 是等腰直角三角形,且易知∠PF 2A =∠BF 2P =π4当BF 2不垂直于x 轴时,直线BF 2的斜率为2k k 2-1,故tan ∠BF 2A =2kk 2-1因为tan ∠PFA =-1,所以tan2∠PF 2A =2kk 2-1=tan ∠BF 2A ,所以∠BF 2A =2∠PF 2A ,∠PF 2A =∠BF 2P因为QF 1∥PF 2所以∠F 2F 1Q =∠PF 2A =∠BF 2P =∠F 1QF 1所以QF 2= F 1F 2 =4为定值,所以点Q 在以F 2为圆心且半径为4的定圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.16(2023春·湖南常德·高二临澧县第一中学校考开学考试)如图,椭圆M :y 2a 2+x 2b2=1a >b >0 的两顶点A -2,0 ,B 2,0 ,离心率e =32,过y 轴上的点F 0,t t <4,t ≠0 的直线l 与椭圆交于C ,D两点,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(1)当t =23且CD =4时,求直线l 的方程;(2)当点P 异于A ,B 两点时,设点P 与点Q 横坐标分别为x P ,x Q ,是否存在常数λ使x P ⋅x Q =λ成立,若存在,求出λ的值;若不存在,请说明理由.【答案】(1)2x -y +23=0或2x +y -23=0(2)存在,λ=4【分析】(1)先求得椭圆M 的方程,再以设而不求的方法即可求得直线l 的方程;(2)先以设而不求的方法得到x P 、x Q 的解析式,再去计算x P ⋅x Q 是否为定值即可解决.【详解】(1)椭圆的方程y 2a 2+x 2b2=1a >b >0 ,由题可得b =2;由e =c a =32,结合a 2=b 2+c 2,得a =4,椭圆的标准方程:y 216+x 24=1;当直线l 的斜率不存在时,CD =8,与题意不符,故设直线l 的方程为y =kx +23,代入椭圆方程y 2+4x 2=16整理得k 2+4 x 2+43kx -4=0,设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-43k k 2+4,x 1⋅x 2=-4k 2+4;∴CD =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-43k k 2+42-4-44+k 2=8k 2+1 k 2+4=4,解得k =± 2.则直线l 的方程为2x -y +23=0或2x +y -23=0.(2)当直线l 的斜率不存在时,直线l 与y 轴重合,由椭圆的对称性可知直线AC 与直线BD 平行,不符合题意;∴由题意可设直线的方程:x =my +n m ≠0,n ≠0 代入椭圆方程,得1+4m 2 y 2+8mny +4n 2-16=0;设C x 1,y 1 ,D x 2,y 2 ,∴y 1+y 2=-8mn 1+4m 2,y 1⋅y 2=4n 2-161+4m 2;∴my 1⋅y 2=4-n 22ny 1+y 2 ①直线AC 的方程为y =y 1x 1+2x +2 ②则直线BD 的方程为y =y 2x 2-2x -2 ③由②③得x -2x +2=y 1x 2-2 y 2x 1+2 =y 1my 2+n -2 y 2my 1+n +2 =my 1y 2+y 1n -2 my 1y 2+y 2n +2由①代入,得x -2x +2=2-n n +2 y 2+2-n y 1 2+n n +2 y 2+2-n y 1 =2-n 2+n ,解得x =4n ,即x Q =4n ;且知x P =n ;∴x P ⋅x Q =n ×4n=4(常数)即点P 与点Q 横坐标之积为定值4.故存在常数λ=417(2023春·四川遂宁·高三射洪中学校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,且离心率为22.(1)求椭圆C 的方程;(2)已知直线l :y =mx +2与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,使MP =MQ 且MP ⊥MQ ,若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1)x 24+y 22=1(2)详见解析【分析】(1)根据条件得到关于a ,b ,c 的方程组,即可求得椭圆方程;。

求解椭圆范围问题+专题课件

求解椭圆范围问题+专题课件

y0
kx0
m
m 4k 2
1
.∴
kAP
y0 1 m 1 4k2
x0
4km

又 AM AN ,∴ AP MN ,则 m 1 4k 2 1 ,即3m 4k2 1,②
4km
k
把②代入①得 m2<3m ,解得 0<m<3 ,由②得 k 2 3m 1 0 ,解得 m 1 .
4
3
综上可知
m
2k2 1 m2 ,化简,得 2m2k4 7m2k2 3m2 2k4 3k2 1 ,
2k2 1
整理得
m2
k2 k2
1 3
,而 g k
k2 k2
1 3
1
2 k2 3
1
2 3
1 3
(当且仅当 k
0 时等号成立)
所以 m2 1 ,由 m 0 ,得 0 m 3 ,综上, m 的取值范围是 0 m 3 .
1 PF2
8 mn
1 2
.
2 3
.
故选:A.
【例 4】已知椭圆 C:x2 y2 1 ,设经过其右焦点 F 的直线交椭圆 C 于 M ,N 两点,线段 MN
43
的垂直平分线交 y 轴于点 P0, y0 ,求 y0 的取值范围.
【例 4】解:当 MN x 轴时,显然 y0 0 .
当 MN 与 x 轴不垂直时,可设直线 MN 的方程为 y k(x 1)(k 0) .
0
,或 0
y0
3 12
.
综上:
y0
的取值范围是
3 12
,
3 12
.
【训练
2】如图,椭圆
x2 a2
y2 b2
1(a>b>0)的左焦点为

2020高考数学专项训练《24椭圆中与面积有关的取值范围问题》(有答案)

2020高考数学专项训练《24椭圆中与面积有关的取值范围问题》(有答案)

专题24 椭圆中与面积有关的取值范围问题例题:如图,已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x=-2.(1)求椭圆C 的标准方程;(2)若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围.变式1在平面直角坐标系xOy 中,已知椭圆E :x22+y 2=1,点A 是椭圆上异于长轴端点的任一点,F 为椭圆的右焦点,直线AF 与椭圆交于B 点,直线AO 与椭圆交于C 点,求△ABC 面积的最大值.变式2设椭圆E:x216+y24=1,P为椭圆C:x24+y2=1上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(1)求OQOP的值;(2)求△ABQ面积的最大值.串讲1如图,已知椭圆C :x22+y 2=1,设A 1,A 2分别为椭圆C 的左、右顶点,S 为直线x =22上一动点(不在x 轴上),直线A 1S 交椭圆C 于点M ,直线A 2S 交椭圆于点N ,设S 1,S 2分别为△A 1SA 2,△MSN 的面积,求S 1S 2的最大值.串讲2已知点A(0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.(2018·广西初赛改编)已知椭圆C :x24+y 2=1,设不过原点O 的直线l 与椭圆C 交于两点P ,Q ,且直线OP ,PQ ,OQ 的斜率成等比数列,求△OPQ 面积的取值范围.(2018·南通泰州一模)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y2b 2=1(a >b >0)的离心率为22,两条准线之间的距离为4 2.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且△AOB 的面积是△AOM 的面积的2倍,求直线AB 的方程.答案:(1)x 24+y 22=1;(2)y =x +2y +2=0,x -2y +2=0.解析:(1)设椭圆的焦距为2c ,由题意得,c a =22,2a 2c =42,2分解得a =2,c =2,所以b =2,所以椭圆的标准方程为x 24+y 22=1.4分(2)解法1:因为S △AOB =2S △AOM ,所以AB =2AM ,所以点M 为AB 的中点.6分 因为椭圆的方程为x 24+y 22=1,所以A(-2,0).设M(x 0,y 0),则B(2x 0+2,2y 0),所以x 02+y 02=89,①(2x 0+2)24+(2y 0)22=1,②10分由①②,得9x 02-18x 0-16=0,解得x 0=-23或x 0=83(舍去).把x 0=-23代入①,得y 0=±23,12分所以k AB =±12,因此,直线AB 的方程为y =±12(x +2),即x +2y +2=0,x -2y +2=0.14分解法2:因为S △AOB =2S △AOM ,所以AB =2AM ,所以点M 为AB 的中点.6分设直线AB 的方程为y =k(x +2),由⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),得(1+2k 2)x 2+8k 2x +8k 2-4=0,所以(x +2)[(1+2k 2)x +4k 2-2]=0,解得x B =2-4k 21+2k 2,8分所以x M =x B +(-2)2=-4k 21+2k 2,10分y M =k(x M +2)=2k 1+2k 2,代入x 2+y 2=89,得⎝ ⎛⎭⎪⎫-4k 21+2k 22+⎝⎛⎭⎫2k 1+2k 22=89, 化简得28k 4+k 2-2=0,12分 即(7k 2+2)(4k 2-1)=0,解得k =±12,因此,直线AB 的方程为y =±12(x +2),即x +2y +2=0,x -2y +2=0.14分专题24例题答案:(1)x 22+y 2=1;(2)S ∈⎣⎡⎦⎤23,22.解析:(1)由题设知e =22,a 2=2c 2=b 2+c 2,即a 2=2b 2,将⎝⎛⎭⎫1,-22代入椭圆C 的方程得到12b 2+12b 2=1,则b 2=1,a 2=2,所以椭圆C :x 22+y 2=1.(2)当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22.当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1k x.设A(x 1,y 1),B(x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,所以x 12=22k 2+1,y 12=2k 22k 2+1,同理x 22=2k 22+k 2,y 22=22+k 2,△AOB 的面积S =OA·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈[1,+∞), S =t 2(2t -1)(t +1)=12+1t -1t2,令u =1t ∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22.综上所述,S ∈⎣⎡⎦⎤23,22.变式联想变式1 答案: 2.解析:①当直线AB 的斜率不存在时,不妨取A ⎝⎛⎭⎫1,22, B ⎝⎛⎭⎫1,-22, 则C ⎝⎛⎭⎫-1,-22. 此时S △ABC =12×2×2=2;②当直线AB 的斜率存在时,设直线AB 方程为y =k(x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 2+2y 2=2. 化简得(2k 2+1)x 2-4k 2x +2k 2-2=0,设A(x 1,y 1),B(x 2,y 2),则有Δ=16k 4-4(2k 2+1)(2k 2-2)=8(1+k 2),x 1,2=4k 2±Δ2(1+2k 2), 所以AB =(1+k 2)·|x 1-x 2|=1+k 2·Δ(1+2k 2)=221+k 21+2k 2.(弦长公式)另一方面点O 到直线y =k(x -1)的距离d =|k|k 2+1, 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d =2|k|k 2+1, ∴S △ABC =12AB·2d =12·⎝ ⎛⎭⎪⎫22·1+k 21+2k 2· 2|k|k 2+1=22k 2(k 2+1)(2k 2+1)2=2214-14(2k 2+1)2< 2. 综上,△ABC 面积的最大值为 2.说明:O 为AC 中点,所以△ABC 的面积是△OAB 面积的两倍,而△OAB 的面积可以用公式S △OAB =12OF·|y 1-y 2|得出,所以S △ABC =2S △OAB =|y 1-y 2|=|k|·|x 1-x 2|=22k 2(k 2+1)(2k 2+1)2.这样计算可以简洁一些.变式2答案:(1)2;(2)6 3.解析:(1)设P(x 0,y 0),OQ OP =λ,由题意知Q(-λx 0,-λy 0),因为x 024+y 02=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 024+20=1,所以λ=2,即OQ OP=2. (2)设A(x 1,y 1),B(x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0.由Δ>0,可得m 2<4+16k 2①则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m),所以△OAB的面积S =12|m|·|x 1-x 2|=216k 2+4-m 2|m|1+4k 2=2(16k 2+4-m 2)·m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2·m 21+4k 2.令m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程可得(1+4k 2)x 2+8kmx +4m 2-4=0.由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1. 因此S =2(4-t )t =2-t 2+2t ,故S ≤2 3.当且仅当t =1,即m 2=1+4k 2时取得最大值2 3.由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.串讲激活串讲1 答案:43.解析:设S(22,t),则t ≠0,直线SA 1:y =t32(x +2),直线SA 2:y =t2(x -2). 由⎩⎨⎧x 22+y 2=1,y =t32(x +2),得x 2+t 29(x +2)2=2,解得x 1=-2,x 2=-2t 2+92t 2+9,即x M =-2t 2+92t 2+9.同理,由⎩⎨⎧x 22+y 2=1,y =t2(x -2),可得x N =2t 2-2t 2+1.所以S 1S 2=12SA 1·SA 2·sin ∠S12SM ·SN ·sin ∠S =SA 1·SA 2SM ·SN= |22+2|·|22-2|⎪⎪⎪⎪⎪⎪22+2t 2-92t 2+9·⎪⎪⎪⎪⎪⎪22-2t 2-2t 2+1=(t 2+9)(t 2+1)(t 2+3)2=1+4t 2t 4+6t 2+9=1+4t 2+9t2+6≤1+412=43,等号当且仅当t 2=3,即t =±3时成立. 所以,当S(22,±3)时,S 1S 2的最大值为43.说明:本题用三角形面积公式S 1=12SA 1·SA 2·sin ∠S ,最后得到S 1S 2=|x S -xA 1||x S -xA 2||x S -x M ||x S -x N |,这样运算就简单了.还有,用直线SA 1的方程求点M 坐标时,要注意方程组一定有一个解x A1,所以,也可以用韦达定理求出x M .串讲2答案:(1)x 24+y2=1;(2)y =72x -2或y =-72x -2.解析:(1)设F(c ,0),由条件知2c =233,得c =3,又c a =32,所以a =2,b 2=a 2-c 2=1,故E 的方程为x 24+y 2=1.(2)解法1:依题意,当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2),将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2= 8k±24k 2-31+4k 2,从而PQ =k 2+1|x 1-x 2|=4k 2+1·4k 2-31+4k 2,又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d·PQ =44k 2-31+4k 2,设4k 2-3=t ,则t >0,S △OPQ=4t t 2+4=4t +4t≤1,当且仅当t =2,k =±72时等号成立,且满足Δ>0,所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 解法2由题意知直线l 的斜率必存在.则S △OPQ = 12OP 2·OQ 2-(OP →·OQ →)2,设P(2cos α,sin α),Q(2cos β,sin β).所以S △OPQ =12·2·|sin (α-β)|≤1,当sin (α-β)=±1时,等号成立.此时α-β=2k π+π2或α-β=2k π-π2(k ∈Z ).又P (2cos α,sin α),Q (2cos β,sin β)与A (0,-2)共线,则sin β+22cos β=sin α+22cos αsin(α-β)=2(cos α-cosβ)=±1cos α-cos β=±12.又k PQ =sin α-sin β2(cos α-cos β)=±(sin α-sin β).①若α-β=2kπ+π2(k ∈Z ),则sin α=sin ⎝⎛⎭⎫2k π+π2+β=cos β,同理cos α=-sin β.所以sin α-sin β=sin α+cos α.因为cos α-cos β=12得到cos α-sin α=12.且(sin α+cos α)2+(sin α-cosα)2=2,所以sin α-sin β=sin α+cos α=±72.②同理,当α-β=2k π-π2(k ∈Z )时,sin α-sin β=±72,所以k PQ =±72.(以下同解法1)新题在线答案:(0,1).解析:由题意,直线l 的斜率存在且不为0,故设l :y =kx +m (m ≠0). 设P (x 1,y 1),Q (x 2,y 2),则x 1≠x 2,且x 1·x 2≠0.联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4.消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0. 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2.因为直线OP ,PQ ,OQ 的斜率成等比数列,所以y 1x 1·y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2,得-8k 2m 21+4k 2+m 2=0. 因为m ≠0,所以k 2=14,所以k =±12.因为Δ>0,且x 1·x 2≠0,所以0<m 2<2且m 2≠1.设点O 到直线l 的距离为d ,则d =|m |1+k2, 所以S △OPQ =12·d ·PQ =12d ·1+k 2|x 1-x 2|=m 2(2-m 2)=-(m 2-1)2+1.所以△OPQ 面积的取值范围是(0,1).1说明:命题人用直线OP,PQ,OQ的斜率成等比数列,是为了告知直线PQ斜率为±2.。

押题第37道 椭圆中与面积有关的取值范围问题(解析版)

押题第37道 椭圆中与面积有关的取值范围问题(解析版)

【押题背景】取值范围类似于函数的值域,解析几何中几何量的取值范围问题,需要选择合适的变量构建出可解出范围的函数,是高中数学的传统难点.解决椭圆中的面积取值范围问题,关键在于找到构建面积的合理路径,设法简化表达式,将问题转化为常见的函数模型,从而求出取值范围.【押题典例】典例1 已知椭圆C:2222x ya b+=1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2292y⎛+=⎝⎭过点F2.(1)求椭圆C的方程;(2)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值.【答案】(1)22184x y+=;(2).【解析】(1)在圆E的方程中,令y=0,得到:x2=4,所以F1(﹣2,0),F2(2,0),又因为212OE F P=,所以P点坐标为(2,所以122a PF PF=+=则a=b=2,因此椭圆的方程为22184x y+=;(2)设直线l1:y=k(x﹣2)(k>0),所以点B的坐标为()42k,设A(x A,y A),D(x D,y D),将直线l1代入椭圆方程得(1+2k2)x2+(﹣8k2)x+8k2﹣k﹣4=0,所以x P x A228412kk--=+,所以x A224212kk--=+,直线l2的方程为y1k=-(x﹣3),所以点D坐标为14k⎛⎫⎪⎝⎭,押题第37道椭圆中与面积有关的取值范围问题所以S △ABD 12=(4﹣x A )|y B ﹣y D |12=•12k k +=2k 3k ++≥,当且仅当2k 3k =,即k =时取等号,综上,△ABD 面积的最小值. 典例2如图所示,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1)求椭圆C 的标准方程;(2)若A ,B 两点满足OA ⊥OB (O 为坐标原点),求△AOB 面积的取值范围. 【答案】 (1)x 22+y 2=1;(2)S ∈⎣⎡⎦⎤23,22.【解析】 (1)由题设知,c =1,a 2c =2,又∵a 2=b 2+c 2,∴b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)解法一:当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22; 当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1k x .设A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 得到x 2+2k 2x 2=2,所以x 21=22k 2+1,y 21=2k 22k 2+1, 同理x 22=2k 22+k 2,y 22=22+k 2,△AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈(1,+∞),S =t 2(2t -1)(t +1)=12+1t -1t2, 令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22.综上所述,S ∈⎣⎡⎦⎤23,22. 解法二:设A (x 1,y 1),B (x 2,y 2),因为OAOB ,所以x 1x 2+y 1y 2=0.①当直线AB 的斜率不存在时,△AOB 是等腰直角三角形.所以, 可设A (t ,t ),B (t ,-t ),则t 22+t 2=1,得t 2=23.此时△AOB 面积S =t 2=23;②当直线AB 的斜率存在时,设AB 方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1.得1+2k 2x 2+4kmx +2m 2-2=0.所以Δ=8(1+2k 2-m 2)>0,且⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k2,所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=3m 2-2-2k 21+2k2,所以m 2=23(1+k 2). 又AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|,O 到AB 的距离h =|m |1+k 2,所以△AOB 面积S =12AB ·h =12|m ||x 1-x 2|=2|m |·1+2k 2-m 21+2k 2= 2 3· 1+5k 2+4k 4 1+2k 2= 23· 1+k 21+4k 2 +4k 4,当k =0时,S = 2 3,当k≠0时,S =231+ 14k 2+1 k2+4,∵4k 2+1k 2≥4,当且仅当k 2=12取“=”,∴0< 1 4k 2+1k 2+4≤18∴S ∈(23,22],综上,△AOB 面积的取值范围是⎣⎡⎦⎤23,22.【押题匹配】(2020·无锡模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(3,12),点P 在第四象限,A 为左顶点,B 为上顶点,P A 交y 轴于点C ,PB 交x 轴于点D .如图所示.(1)求椭圆C 的标准方程;(2)求△PCD 面积的最大值. 【答案】 (1)x 24+y 2=1;(2)2-1.【解析】(1)设c 2=a 2-b 2,则c a = 32,所以a 2=4b 2.又点⎝ ⎛⎭⎪⎫ 3,12在椭圆上,所以3a 2+14b 2=1.解得a 2=4,b 2=1,所以椭圆方程为x 24+y 2=1. (2)由题意,AP 直线斜率存在,所以设直线AP :y =k(x +2),P 在第四象限,所以-12<k <0.令x =0得y C =2k ,所以C (0,2k ).由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y ,得(1+4k 2)x 2+16k 2x +16k 2-4=0.所以x A x P =16k 2-41+4k 2.又x A =-2,所以x P =-8k 2-21+4k 2,y P =k (x P+2)=4k 1+4k 2.即P ⎝ ⎛⎭⎪⎫-8k 2-21+4k 2,4k 1+4k 2. 设D(m,0),因为B(0,1),P ,B ,D 三点共线,所以m -00-1=-8k 2-21+4k 24k 1+4k 2-1,解得m =2(1+2k )1-2k .即D ⎝ ⎛⎭⎪⎫2(1+2k )1-2k ,0.所以S △PCD =S △P AD -S △CAD =12·AD ·||y P -y C =12·⎝ ⎛⎭⎪⎫2(1+2k )1-2k +2⎪⎪⎪⎪4k 1+4k 2-2k =4||k (1+2k )1+4k 2. 因为-12<k <0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2(1-2k )1+4k 2.令t =1-2k ,则1<t <2,所以2k =1-t ,所以S △PCD =-2+2t t 2-2t +2=-2+2t +2t-2≤-2+22 2-2=2-1.当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.【押题变式】1、(2020江苏无锡高三)若椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,B 是短轴的一个端点,则△F 1BF 2的面积的最大值是________. 【答案】 2【解析】根据题意可得a =2,c =4-b 2,S △F1BF 2=12×2 4-b 2·b = 4-b 2·b ≤4-b 2+b 22=2,当且仅当4-b 2=b ,即b =2时等号成立.2、(2020江苏盐城高三)椭圆x 2a 2+y 2b 2=1()a >b >0的长轴端点为A ,B ,短轴端点为C ,D ,动点P 满足P APB =2,△P AB 面积的最大值为163,△PCD 面积的最小值为23,则此椭圆的离心率为_________.【答案】32【解析】设P (x ,y ),A (-a,0),B (a,0),∵P APB =2,∴(x +a )2+y 2=4[(x -a )2+y 2],化简得⎝⎛⎭⎫x -53a 2+y 2=⎝⎛⎭⎫43a 2,∴点P 的轨迹是圆心为⎝⎛⎭⎫53a ,0,半径R =43a 的圆. 当S △P AB 最大时,有S △P AB =12·2a ·R =43a 2=163,∴a =2.当S △PCD 最小时,有S △PCD =12·2b ·⎝⎛⎭⎫53a -R =ab 3=23,∴b =1.∴椭圆离心率e = 1-⎝⎛⎭⎫b a 2=32. 3、(2020江苏镇江高三)已知A ,B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点,直线y =kx (k >0)与椭圆交于C ,D 两点,若四边形ACBD 的面积最大值为3b 2,则椭圆的离心率为________. 【答案】73【解析】如图所示,不妨设点C 在第一象限,设C (x 0,y 0),则x 0=a cos θ,y 0=b sin θ,θ∈(0,π2).那么△ACD 的面积为ay 0,△BCD 的面积为bx 0,所以四边形面积S ACBD =ay 0+bx 0=ab (cos θ+sin θ)= 2ab sin ⎝⎛⎭⎫θ+π4≤2ab =3b 2.当且仅当θ=π4时取“=”, 所以b a =23,所以e =c a=1-b 2a 2=73.4、(2020江苏连云港高三)过椭圆x 216+y 24=1上一点P 作圆x 2+y 2=2的两条切线,切点分别为M ,N ,若直线MN 与x 轴、y 轴分别交于点A ,B ,则△OAB 面积的最小值为________. 【答案】 12【解析】设M (x 1,y 1),N (x 2,y 2),P (x 0,y 0),则切线PM ,PN 方程分别为x 1x +y 1y =2,x 2x +y 2y =2,两直线均过点P ,则有⎩⎪⎨⎪⎧x 1x 0+y 1y 0=2,x 2x 0+y 2y 0=2.所以MN 坐标满足方程xx 0+yy 0=2,所以MN 直线方程为x 0x +y 0y =2.所以A ⎝⎛⎭⎫2x 0,0,B ⎝⎛⎭⎫0,2y 0,所以S △OAB =12·⎪⎪⎪⎪2x 0·2y 0=2|x 0y 0|.又因为x 2016+y 204=1≥2x 20y 264=|x 0y 0|4, 所以|x 0y 0|≤4,即S △OAB ≥12.当且当仅x 04=y 02时,等号成立.所以△OAB 面积的最小值为12.5、(2020江苏泰州高三)椭圆两焦点分别为F 1(-4,0),F 2(4,0),P 为椭圆上的动点,直线PF 2与椭圆的交点为Q ,若△PF 1Q 面积的最大值为15,则该椭圆的标准方程为________.【答案】 x 225+y 29=1【解析】设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),且c =4,设直线PF 2:x =my +c ,则由方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x =my +c得(my +c )2a 2+y 2b 2=1,即⎝⎛⎭⎫m 2a 2+1b 2y 2+2cmy a 2-b 2a2=0.所以Δ=4c 2m 2a 4+4·b 2a 2⎝⎛⎭⎫m 2a 2+1b 2=4m 2a 2a 4+4a 2=4(1+m 2)a 2.面积S =12·2c ·|y 1-y 2|=c |y 1-y 2| =c ·Δm 2a 2+1b 2=2acb 21+m 2b 2m 2+a 2.令1+m 2=t ,则t ≥1,则S =2acb 2t b 2t 2+c2=2acb 2b 2t +c 2t≤2acb 22bc =ab , 当且仅当t =c b 时“=”成立.因为t ≥1,所以当c ≥b ,即b ≤4时,当t =cb 时,S 有最大值ab ;当b >4时,当t =1时,S 有最大值8b 2a ;当b ≤4时,令ab =15,即a a 2-16=15,得a 4-16a 2-225=0,解得a 2=25(a 2=-9舍去),b 2=9(符合题意);当b >4时,令8b 2a=15,即8a 2-15a -128=0,解得a =116(15+ 4 321),b 2=158a ≈9.46不合题意.综上所述,此时椭圆的方程为x 225+y 29=1.6、(2020江苏通州高三)如图所示,点A (1,3)为椭圆x 22+y 2n =1上一定点,过点A 引两直线与椭圆分别交于B ,C 两点. (1)求椭圆的标准方程;(2)若直线AB ,AC 与x 轴围成的是以点A 为顶点的等腰三角形. ①求直线BC 的斜率;②求△ABC 的面积的最大值,并求出此时直线BC 的方程.【答案】 (1)x 22+y 26=1;(2)①k BC =3,②△ABC 面积取得最大值 3.此时,直线BC 的方程为y =3x ± 6.【解析】(1)把点A (1,3)代入x 22+y 2n =1得n =6,故椭圆的标准方程为x 22+y 26=1.(2)①显然题中等腰三角形腰所在的直线不可能与x 轴垂直.因此其斜率必存在,且斜率不为0,设两腰的斜率分别为k 1,k 2,由⎩⎪⎨⎪⎧y -3=k 1(x -1),x 22+y 26=1,消去y ,得(3+k 21)x 2+2k 1(3-k 1)x +(3-k 1)2-6=0,∴点B 的横坐标为x =1-6+23k 1k 21+3(x =1为点A 的横坐标),∴点B 的纵坐标为y =3-23k 21+6k 1k 21+3,即B ⎝ ⎛⎭⎪⎫1-6+23k 1k 21+3,3-23k 21+6k 1k 21+3. 同理可得点C 的坐标为⎝⎛⎭⎪⎫1-6+23k 2k 22+3,3-23k 22+6k 2k 22+3.∵k 1+k 2=0, ∴C ⎝ ⎛⎭⎪⎫1-6-23k 1k 21+3,3-23k 21-6k 1k 21+3,∴k BC =12k 143k 1=3,∴直线BC 的斜率为k BC = 3. ②设B (x 1,y 1),C (x 2,y 2),直线BC 的方程为y =3x +m ,代入方程x 22+y 26=1得6x 2+23mx +m 2-6=0,其中Δ=(23m )2-24(m 2-6)>0,所以m 2<12∴x 1+x 2=-33m ,x 1x 2=m 2-66,∴|BC |=1+(3)2·|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=23312-m 2,又点A 到直线BC 的距离为d =|m |2,∴S △ABC =12|BC |·d =36m 2(12-m 2)=36-(m 2-6)2+36,∴当m 2=6,满足Δ>0即m =6或m =-6时,△ABC 面积取得最大值 3. 此时,直线BC 的方程为y =3x± 6.7、(2020江苏扬州高三)如图所示,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,与x 轴平行的直线与椭圆E 交于B ,C 两点,过B ,C 两点且分别与直线AB ,AC 垂直的直线相交于点D .已知椭圆E 的离心率为53,右焦点到右准线的距离为455. (1)求椭圆E 的标准方程;(2)证明点D 在一条定直线上运动,并求出该直线的方程; (3)求△BCD 面积的最大值.【答案】(1)x 29+y 24=1;(2)证明略;直线方程为x =3;(3)△BCD 面积的最大值为274.【解析】(1)由题意得c a =53,a 2c -c =455,解得a =3,c =5,所以b =a 2-c 2=2,所以椭圆E 的标准方程为x 29+y 24=1.(2)证明:设B (x 0,y 0),C (-x 0,y 0),显然直线AB ,AC ,BD ,CD 的斜率都存在,设为k 1,k 2,k 3,k 4,则k 1=y 0x 0+3,k 2=y 0-x 0+3,k 3=-x 0+3y 0,k 4=x 0-3y 0.所以直线BD ,CD 的方程为y =-x 0+3y 0(x -x 0)+y 0,y =x 0-3y 0(x +x 0)+y 0.消去y 得-x 0+3y 0(x -x 0)+y 0=x 0-3y 0(x +x 0)+y 0,化简得x =3,故点D 在定直线x =3上运动.(3)由(2)得点D 的纵坐标为y D =x 0-3y 0(3+x 0)+y 0=x 20-9y 0+y 0,又x 209+y 204=1,所以x 20-9=-9y 204,则y D =-94y 20y 0+y 0=-54y 0,所以点D 到直线BC 的距离h 为|y D -y 0|=⎪⎪⎪⎪-54y 0-y 0=94|y 0|, 将y =y 0代入x 29+y 24=1得x =±31-y 204,所以BC =|x C -x B |=61-y 204,所以△BCD 面积S △BCD =12|BC |·h =12×61-y 204·94|y 0|=2721-y 204·12|y 0|≤272·1-y 204+y 2042=274,当且仅当1-y 204=y 204,即y 0=±2时等号成立,故y 0=±2时,△BCD 面积的最大值为274.8、(2020江苏徐州高三)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.如图37­6所示.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时, 求l 的方程.【答案】 (1)x 24+y 2=1;(2)y =72x -2或y =-72x -2.【解析】(1) 设F(c,0),由条件知2c =233,得c =3,又c a =32,所以a =2,b 2=a 2-c 2=1,故E 的方程为x 24+y 2=1.(2) 依题意,当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P (x 1,y 1),Q (x 2,y 2),将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1+x 2=16k 1+4k 2,x 1x 2=121+4k 2从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-31+4k 2,又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-31+4k 2,设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t ≤1,当且仅当t =2即k =±72时等号成立,且满足Δ>0,所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 9、(2020江苏南京高三)如图所示,已知椭圆C :x 22+y 2=1,设A 1,A 2分别为椭圆C 的左、右顶点,S 为直线x =22上一动点(不在x 轴上),直线A 1S 交椭圆C 于点M ,直线A 2S 交椭圆于点N ,设S 1,S 2分别为△A 1SA 2,△MSN 的面积,求S 1S 2的最大值.【答案】 43.【解析】 设S (22,t ),则t ≠0,直线SA 1:y =t 32(x +2),直线SA 2:y =t2(x -2).由⎩⎨⎧x 22+y 2=1,y =t32(x +2),得x 2+t 29(x +2)2=2,解得x 1=-2,x 2=-2t 2+92t 2+9, 即x M =-2t 2+92t 2+9.同理,由⎩⎨⎧x 22+y 2=1,y =t2(x -2),可得x N =2t 2-2t 2+1.所以S 1S 2=12SA 1·SA 2·sin ∠A 1SN12SM ·SN ·sin ∠A 1SN =SA 1·SA 2SM ·SN =|22+2|·|22-2|⎪⎪⎪⎪⎪⎪22+2t 2-92t 2+9·⎪⎪⎪⎪⎪⎪22-2t 2-2t 2+1=(t 2+9)(t 2+1)(t 2+3)2=1+4t 2t 4+6t 2+9=1+4t 2+9t 2+6≤1+412=43,等号当且仅当t 2=3,即t =±3时成立. 所以,当S (22,±3)时,S 1S 2的最大值为43.10、(2020江苏苏州高三)设椭圆E :x 216+y 24=1,P 为椭圆C :x 24+y 2=1上任意一点,过点P 的直线y =kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .如图所示.(1)求OQOP的值;(2)求△ABQ 面积的最大值. 【答案】(1)2;(2)6 3.【解析】 (1)设P (x 0,y 0),OQ OP =λ,由题意知Q (-λx 0,-λy 0),因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1,所以λ=2,即OQ OP=2. (2)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0. 由Δ>0,可得m 2<4+16k 2①,则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m),所以△OAB 的面积S =12|m |·|x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)·m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2·m 21+4k 2.令m 21+4k2=t ,将y =kx +m 代入椭圆C 的方程可得(1+4k 2)x 2+8kmx +4m 2-4=0. 由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1.因此S =2(4-t )t =2-t 2+4t ,∴当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆中有关的取值范围问题
【目标导航】
求解最值,可直接求导. 但是解析几何中的最值,直接求导,暴力求解最值的较少,更多的是化简函数表达式,根据结构采用基本不等式(无法取等的时候就求导来解决)来求解最终的最值(或者值域),必然要有定义域,所以寻找函数的定义域是非常重要的,而解析几何中直线和曲线联立(曲直联立)以后的关于x(或者y)的一元二次方程有解,判别式就是很重要的一个点,也就是定义域的一个重要来源,有些题目甚至是唯一来源.
与线段有关的最值问题关键是建立关于线段的目标函数,然后运用基本不等式或者函数有关的问题,运用基本不等式或者函数求解。

线段的长度可以通过两点间的距离或者利用相交弦长公式进行求解。

与向量有关的最值问题关键就是表示出点坐标,通过数量积转化为函数问题,然后运用基本不等式或者求导研究最值。

与面积有关的最值问题通常建立起面积的目标函数,可以通过公式
B ac
C ab sh s sin 2
1sin 2121===求解。

然后通过基本不等式或者求导研究函数的最值问题。

【例题导读】
例1、在平面直角坐标系 xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32
,且过点⎝⎛⎭⎫3,12,点P 在第四象限, A 为左顶点, B 为上顶点, PA 交y 轴于点C ,PB 交x 轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
例2、如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22
,且右焦点F 到左准线的距离为6 2.
(1) 求椭圆C 的标准方程;
(2) 设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线P A 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .
①当直线P A 的斜率为12时,求△FMN 的外接圆的方程; ②设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.
例3、如图所示,椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为22
,右准线方程为x =4,过点P(0,4)作关于y 轴对称的两条直线l 1,l 2,且l 1与椭圆交于不同两点A ,B ,l 2与椭圆交于不同两点D ,C.
(1) 求椭圆M 的方程;
(2) 证明:直线AC 与直线BD 交于点Q(0,1);
(3) 求线段AC 长的取值范围.
例4、在平面直角坐标系 xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32
,且过点⎝⎛⎭⎫3,12,点P 在第四象限, A 为左顶点, B 为上顶点, PA 交y 轴于点C ,PB 交x 轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.。

相关文档
最新文档