第二章热传导方程

合集下载

传热学(第二章)

传热学(第二章)

(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp

数学物理方程2热传导方程

数学物理方程2热传导方程

对未来研究的展望
深入研究热传导方程的数学性质
尽管热传导方程已有广泛的研究和应用,但对其数学性质的理解仍不够深入。未来可以进一步研究热传导方程解的唯 一性、稳定性、渐近性等数学问题,以推动数学理论的发展。
拓展热传导方程的应用领域
随着科技的发展,热传导方程的应用领域也在不断拓展。例如,在新能源领域,热传导方程可以用于研究太阳能电池 板的工作原理和优化设计;在环保领域,热传导方程可用于研究污染物在环境中的扩散和迁移规律。
交换。
热传导方程是偏微分方程的一种形式,通常采用傅里叶级数或
03
有限元方法进行求解。
热传导现象的重要性
1
热传导现象在自然界和工程领域中广泛存在,如 气候变化、能源利用、材料科学等。
2
热传导方程的应用有助于深入理解热量传递的机 制,为相关领域的研究提供理论基础。
3
通过求解热传导方程,可以预测温度分布、热量 传递速率等关键参数,为实际问题的解决提供指 导。
04 热传导方程的数值解法
有限元法
有限元法是一种将连续的求解域离散化为有限个小的、互连 的子域(或单元)的方法。在每个单元内,选择合适的基函 数,将待求的解表示为这些基函数的线性组合。通过求解一 系列线性方程组,可以得到原问题的近似解。
有限元法在求解热传导方程时,可以将复杂的几何形状离散 化为有限个简单的几何形状,从而简化计算过程。同时,有 限元法能够处理复杂的边界条件和初始条件,适用于各种类 型的热传导问题。
有限差分法
总结词
有限差分法是一种数值求解偏微分方程的方法,通过将连续的偏微分方程离散化为差分 方程来求解。
详细描述
有限差分法的基本步骤是将偏微分方程中的空间变量离散化为有限个点,然后将偏微分 方程转化为差分方程,最后通过迭代求解差分方程得到原方程的近似解。这种方法适用

第二章__热传导方程

第二章__热传导方程

0 x l, t 0,
t 0 : u ( x),
0 x l,
x
0
:
u 0;
x l : ux hu 0,
t 0.
上述定解问题可分解为下面两个混合问题:
ut
a 2 uxx
0,
(I ) t 0 : u ( x),
0 x l, t 0, 0 x l,
x
0
:
u 0,
其中:
u( x, t) Tk (t)sin k x; k 1
f ( x, t) fk (t)sin k x; k 1
( x) k sin k x; k 1
fk (t)
1 Mk
l
f (, t)sin
0
k d;
1l
k Mk
() sin
0
k d;
l
h
Mk 2 2(h2 k ) .
流过物体表面 的流量可以从物质内部(傅里叶
定律)和外部介质(牛顿定律)两个方面来确定:
u k n dSdt k1 (u u1 )dSdt,

u k n k1 (u u1 ).
即得到(1.10):
( u n
u)
| ( x, y,z )
g( x,
y, z, t).
三、定解问题
定义1 在区域 G [0, ) 上,由方程(1.5)、初
u t
a2
2u x 2
2u y 2
2u z 2
f (x,
y, z, t),
(1.5)
其中 a2 k , f F , f 称为非齐次项(自由项)。
c
c
三维无热源热传导方程:
u t
a2
2u x 2

传热学-第2章-稳态热传导

传热学-第2章-稳态热传导

(shuō míng)
温度随空间和时间变化的函数关系。
精品资料
几种简化形式的导热(dǎorè)微分方程
✓ 导热系数(xìshù)k= t
常数:
a(
2t x 2
2t y 2
2t z 2
)
V
c
✓ 无内热源фV=0:
t
2t 2t 2t
a( x2 y 2 z 2 )
✓ 稳态导热 t 0 :
✓ 影响因素:
• 温度;温度升高,导热能力增强; • 气体分子量;分子量小的气体导热能力强。
氢,氦的导热系数高。
精品资料
固体:
导电性能好的金属,导热性能也好
机理:分子运动表现为晶格的振动。 金属的导热主要依靠自由电子的迁移完成(wán
chéng); 非金属导热主要依靠分子或晶格振动完成(wán
ch金én属g):。 ✓ 值:常温 2.2—420 W/m.K
各向同性物体的稳态导热和非稳态导热。
各向异性材料:Q的方向与 温度梯度的方向和λ的方向性有关。
精品资料
直角坐标(zhí jiǎo zuò biāo)系中热流密度的大
小和温方度向梯度 :
grad
t
t
i
t
j
t
k
x y z
度热:流(rèliú)密q
grad
t
t n
n
t
i
t
j
t
k
x
y
z
q x i q y j q z k
传热学
第 2 章 稳态热传导
精品资料
第 2 章 稳态热传导
内容(nèiróng)要求: 导热的基本定律(Fourier定律); 导热问题的数学描述:导热微分方程及定解条件; 几种最典型的一维稳态导热问题分析解;

热传导方程

热传导方程

热传导方程引言热传导方程是描述物质内部温度分布随时间演变的一种偏微分方程。

它广泛应用于热传导领域,如材料科学、工程热学、地球科学等。

热传导方程描述了热量在物质内部的传递方式,是研究热传导过程和温度场分布的重要工具。

热传导方程的一维形式考虑物质在一维情况下的热传导,热传导方程可以写作:∂u/∂t = α * ∂²u/∂x²其中,u为物质内部的温度,t为时间,x为空间坐标,α为热扩散系数。

热传导方程的二维形式对于二维的情况,假设热传导方程适用于平面内任意点,可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y²)其中,u为物质内部的温度,t为时间,x和y为平面内的空间坐标,α为热扩散系数。

热传导方程的三维形式在三维情况下,热传导方程可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u为物质内部的温度,t为时间,x、y和z为空间坐标,α为热扩散系数。

定解条件为了求解热传导方程,需要给定一些定解条件。

常见的定解条件有:•初始条件:指定初始时刻的温度分布,即u(x, y, z, 0),其中u是温度,x、y和z分别是空间坐标,0表示初始时刻。

•边界条件:指定物体表面的温度或热流密度。

常见的边界条件有:第一类边界条件(温度指定),即u(x, y, z, t) = g(x, y, z, t);第二类边界条件(热流密度指定),即-k * ∂u/∂n = q(x, y, z, t),其中k为导热系数,n为法向量,q为热流密度。

热传导方程的数值解热传导方程是一个偏微分方程,通常无法得到解析解。

因此,需要借助数值计算方法来求解。

常见的数值方法有有限差分法、有限元法和边界元法等。

在有限差分法中,可以将空间离散为若干个网格点,时间离散为若干个时间步长。

热传导方程与扩散方程讲解

热传导方程与扩散方程讲解

x,
y,
z)
u n
dS dt .

在时间间隔[t1, t2 ]中, 温度从u( x, y, z, t1 )变化到u( x, y, z, t2 ), 它所吸收的热量是
c( x, y, z)( x, y, z)[u( x, y, z, t2 ) u( x, y, z, t1 )]dxdydz.
D 为扩散系数
第二节 初边值问题的分离变量法
定解问题
ut a2uxx , 0 x L u |x0 0, u |xL 0 u |t0 ( x)
未知函数分离 u(x, t) X(x)T(t)
T' X a2TX"

泛定方程分离
T' X a 2T X
u u(x,t)
u Tk Xk
典型问题的求解
例题1
分离变量 分别求解 合成半通解 代入初始条件
ut a2uxx 0, 0 x u |x0 0, u |x 0 u |t0 sin x( A B cos x)
u(x,t) X (x)T (t)
分离结果的求解
X" 2 X 0
X (0) X (L) 0
T'a2 2T 0
X ( x) C cos x D sin x
空间方程解出 X (0) C 0
X (L) D sin L 0
非零解条件 非零解
sin L 0 L k k / L, k N
它构成一个定解问题
u
初始问题: t

a2
2u x2
,
x ,t 0
u(x, 0) (x), x

数学物理方程_2_热传导方程

数学物理方程_2_热传导方程

因为
C 1C 20,
(h)elC 1(h)elC 20.
1
1
( h)el (h)el 0
分离变量法
此时方程通解可以写成
为了满足边界条件,必须
C 10, C 2hlC 20
对于情形A和情形B,方程没有分离变量形式的非 平凡解。
分离变量法
此时方程通解可以写成 由边界条件 由边界条件
分离变量法
tan v v , lh
分离变量法

分离变量法
根据边界条件
X ( 0 ) T ( t) 0 X ( 0 ) 0 .
X ' ( l ) T ( t ) h X ( l ) T ( t ) 0 X ' ( l ) h X ( l ) 0 .
综上,需求解下述常微分方程
分离变量法
此时方程通解可以写成
为了满足边界条件,必须
分离变量法
由以上结果可知特征问题
存在着无穷多个固有值
及相应的固有函数
分离变量法
由于方程和边界条件都是齐次的,故可利用叠加原 理构造级数形式的解
分离变量法
XmXn ''nXmXn 0, XnXm''mXmXn 0,
分离变量法
l
l
0 (X m X n '' X n X m '') d x (n m )0 X n X m d x 0
扩散定律与质量守恒定律
扩散方程
通过比较可知,扩散过程中所满足的物理规律与热 传导过程中所满足的物理规律具有非常类似的形式。
基于上述物理规律,并通过与热传导方程类似的推 导,可得如下扩散方程
第二章
2.2 初边值问题的分 离变量法

传热学课件第 二 章 稳 态 热传导

传热学课件第 二 章  稳 态 热传导

d2t d x2
m 2 t t f
1
通过肋壁的导热
一、等截面直肋的导热
4.求解:
4>.引入过余温度:<1>式变为 <4> 5>.解微分方程得温度场 <4>式为一个二阶线性齐次常微分方程,它的通解为: =C1emx+C2e-mx <5> 将边界条件<2>、<3>代入<5>即得肋片沿H方向的温度分布:
通过圆筒壁的导热
一、已知第一类边界条件
据傳里叶定律并整理后可得热流量的表达式: 1 ln d2 2l d1 式中的分母即为长度为l的圆筒壁的导热热阻。 单位为:℃/W 实际工程多采用单位管长的热流量ql来计算热流量:

t w1 t w 2
ql
Q l

t w1 t w 2
d ln d2 2 1 1
通过平壁的导热
二、已知第三类边界条件:
q
q
t f 1 t f 2
1 1 h1 h2
也可写作:q=k(tf1-tf2) (请牢记K的物理意义!) 对于冷热流体通过多层平壁的导热,可写作:
t f 1 t f 2
1 h1

i 1
n
i 1 i h2
若已知传热面积A,则热流量为:
e m x H e m x H 0 e mH e mH
d 2 m 2 d x2
or :
0
或写作:
0
ch mx H ch mH
expmx H exp mx H expmH exp mH
1
h21d x 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热传导试 验定律或 牛顿定律 从物体流到介质中的热量和两者的温差成正比:
dQ k1 (u u1 )dSdt , (1.11) 其中比例常数 k1 0 称为热交换系数
流过物体表面 的流量可以从物质内部(傅里叶 定律)和外部介质(牛顿定律)两个方面来确定: u u 或 k k1 (u u1 ). k dSdt k1 (u u1 )dSdt , n n u ( u) |( x , y , z ) g( x, y, z, t ). 即得到(1.10):
分析:(两个物理定律)
1、热量守恒定律: 温度变 化吸收 的热量

通过边 界流入 的热量

热源放 出的热 量
2、傅里叶(Fourier)热传导定律:
u dQ k ( x , y , z ) dS dt , n k ( x , y, z ) 为热传导系数。
热传导方程的推导: 任取物体 G 内一个由光滑闭曲面 S 所围成的区 域 ,研究物体在该区域 内热量变化规律。 热量 守恒 定律 区域 内各点的温度从时刻 t 1 的温度u( x , y , z , t1 ) 改变为时刻 t 2 的温度 u( x, y, z , t 2 ) 所吸收(或 放出)的热量,应等于从时刻 t 1 到时刻 t 2 这 S 流入(或流出) 段时间内通过曲面 内的 热量和热源提供(或吸收)的热量之和。即
(1.6)
通常称(1.5)为非齐次的热传导方程,而称(1.6) 为齐次热传导方程。
二、定解条件(初始条件和边界条件)
初始条件:
t 0 : u( x , t ) ( x , y, z ), ( x , y, z ) G , (1.7)
边界条件:( G )
1、第一边界条件( Dirichlet 边界条件)
t 0,
(1.9)
注: u u 沿边界 上的单位外法线方向 n 的方 表示 n 向导数 3、第三边界条件 ( D-N 混合边界条件 )
u n , t ) 0 时,表示物体绝热。
g( x, y, z , t ), ( x, y, z ) ,
c (

u dt )dV t

t2 t1
u [ c dV ]dt t
(2)通过曲面 S 进入 内的热量 Q1
由傅里叶热传导定律,从 t 1 到 t 2 这段时间内通过 S 进入 内的热量为
Q1
由高斯公式
t2
t1
u k ( x, y, z ) dS dt , n S
t 0,
(1.10)
k1 k1 其中: 0, g u1 . k k
注意第三边界条件的推导: 研究物体与周围介质在物体表面上的热交换问题 把一个温度变化规律为 u( x , y , z , t )的物体放入 空气介质中,已知与物体表面接触处的空气介质温 度为 u1 ( x , y , z , t ) ,它与物体表面的温度 u( x , y , z , t ) 并不相同。这给出了第三边界条件的提法。
x
divAdxdydz A ndS
S

u u u Q1 [ ( (k ) ( k ) ( k ))dV ]dt .(1.2) t1 x x y y z z
t2
(3)热源提供的热量 Q2 用 F ( x , y , z , t ) 表示热源强度,即单位时间内从单位 体积内放出的热量,则从 t 1 到 t 2 这段时间内 内热 源所提供的热量为 t2 Q2 [ F ( x, y, z, t )dV ]dt (1.3)
2 2 2 u u u u 2 a 2 2 2 f ( x , y , z , t ), t y z x
(1.5)
k , 其中 a c
2
F f , f 称为非齐次项(自由项)。 c
三维无热源热传导方程:
2 2 2 u u u u 2 a 2 2 2 0 . t y z x
dQ c [u( x , y, z , t 2 ) u( x , y, z , t1 )]dV 整个 内温度变化所需要的能量 Q
Q
dQ c [u( x , y , z , t
t2 t1
2
) u( x , y , z , t1 )]dV (1.1)
u

g( x, y, z, t ),
( x, y, z ) ,
t 0,
(1.8)
特别地:g( x , y , z , t ) 0 时,物体表面保持恒温。
2、第二边界条件 ( Neumann 边界条件)
u k n

g( x , y , z , t ),
( x , y , z ) ,
t1
t2
由 及 t1 , t 2 的任意性知 u u u u c (k ) (k ) (k ) F ( x, y, z, t ).(1.4) t x x y y z z

三维有热源的热传导方程: (均匀且各向同性物 体,即 c , , k 都为常数的物体)
t1
由热量守恒定律得:
t2 u u u u c dV ]dt [ ( ( k ) ( k ) ( k ))dV ]dt t1 [ t1 t x x y y z z t2

[ F ( x , y, z , t )dV ]dt
内温度变化所需要的热量 Q =通过曲面 S 流入 内的热量 Q1 +热源提供的热量 Q2
下面分别计算这些热量
(1) 内温度变化所需要的能量 Q 的比热(单位质量的物体温度改变 1 C 所需要的热量)为 c c( x , y , z ), 密度为 ( x , y , z ), 那么包含点 ( x , y , z ) 的体积微元 dV 的温度从u( x , y , z , t1 变为 u( x, y, z , t 2 )所需要的热量为 设物体 G
相关文档
最新文档