有限元法简介

合集下载

有限元法概述

有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。

汽车有限元法概述

汽车有限元法概述

汽车有限元法概述有限元法(Finite Element Method,FEM)是一种工程数值分析方法,广泛应用于汽车工程领域,用于模拟和预测汽车结构在受力下的行为和性能。

本文将对汽车有限元法进行概述。

有限元法的基本原理是将连续结构离散化为有限个子结构,每个子结构称为有限元。

每个有限元内的应力和变形可以用简单的方程表示。

通过求解这些方程,可以推导出整个结构的应力和变形情况。

汽车有限元法主要有以下几个步骤:1.建模:将汽车的零部件、结构和系统进行建模,将其分割成有限元。

这个过程需要根据实际情况选择适当的网格划分和元素类型。

常见的元素包括线元素、面元素和体元素。

建模的准确性和合理性对于后续的分析和计算结果具有重要影响。

2.边界条件:确定模型的边界条件,包括支撑条件和外部加载条件。

支撑条件包括固定支撑和弹性支撑。

外部加载条件包括重力、加速度、风压等。

准确描述和设置边界条件是模拟计算的关键步骤。

3.材料特性:为每种材料分配相应的材料特性参数。

常见的材料特性包括弹性模量、泊松比、材料密度等。

这些参数将决定材料在受力下的行为和响应。

4.模拟计算:利用有限元软件对建模后的汽车结构进行计算和模拟。

通过求解每个有限元的位移和应变,再结合材料特性进行力学分析,得到汽车结构在受力下的应力和变形情况。

5.结果评估:根据计算得到的应力和变形结果,对汽车结构的强度、刚度、耐久性等性能进行评估和分析。

如果发现问题或不合理现象,可以进行模型修正和参数优化,以提高结构的性能。

在汽车工程领域,有限元法主要应用于以下几个方面:1.结构强度分析:通过有限元法,可以对汽车结构的强度进行评估和分析。

例如,分析车身在碰撞时的变形情况,以及主要部件在受力下的应力情况。

2.动态响应分析:有限元法可以模拟汽车在动力加载下的振动和动态响应情况。

例如,模拟车辆在行驶过程中的悬挂系统振动,以及发动机振动对车身的影响。

3.疲劳寿命评估:通过有限元法,可以分析汽车结构在复杂工况下的疲劳寿命。

有限元法应用举例

有限元法应用举例

核反应堆运行过程中涉及高温、 高压、高辐射等极端条件,热工 水力学分析是确保安全性的重要
环节。
有限元法可以对核反应堆的热工 水力学进行模拟,评估冷却剂流 动、热能传递、压力容器应力分
布等关键参数。
通过模拟分析,可以优化反应堆 设计,提高运行效率,降低事故
风险。
建筑物的能耗模拟与优化
建筑物的能耗是节能减排的重要领域,能耗模拟与优化有助于降低能源消耗和碳排 放。
况,为设备的电磁兼容性设计和优化提供依据。
通过有限元分析,可以评估设备的电磁辐射是否符合相关标准
03
和规定,以及优化设备的天线布局和结构设计等。
高压输电线路的电场分析
高压输电线路在运行过程中会 产生电场和磁场,其强度和分 布情况对环境和人类健康具有 一定影响。
有限元法可以用来分析高压输 电线路的电场分布情况,包括 电场强度的计算和分布规律的 分析等。
通过有限元分析,可以评估高 压输电线路对环境和人类健康 的影响,为线路的规划、设计 和优化提供依据。
07
有限元法应用举例:声学分析
消声室的声学设计
消声室是用于测试和测量声音的特殊 实验室,其内部环境需要极低的噪音 水平。
通过模拟和分析,可以确定最佳的吸 音材料和布局,以及最佳的隔音结构, 以达到最佳的消声效果。
有限元法应用举例
• 有限元法简介 • 有限元法应用领域 • 有限元法应用举例:结构分析 • 有限元法应用举例:流体动力学分析 • 有限元法应用举例:热传导分析 • 有限元法应用举例:电磁场分析 • 有限元法应用举例:声学分析
01
有限元法简介
定义与原理
定义
有限元法是一种数值分析方法,通过将复杂的物理系统离散 化为有限数量的简单单元(或称为元素),并建立数学模型 ,对每个单元进行单独分析,再综合所有单元的信息,得到 整个系统的行为。

有限元法

有限元法

李中秋20111323 热能一班第一章有限元法简介有限元法是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

1.1 有限元法发展简史早在1870年,英国科学家Rayleigh就采用假想的“试函数”来求解复杂的微分方程,1909年Ritz将其发展成为完善的数值近似方法,为现代有限元方法打下坚实基础。

20世纪40年代,由于航空事业的飞速发展,设计师需要对飞机结构进行精确的设计和计算,便逐渐在工程中产生了的矩阵力学分析方法;1943年,Courant 发表了第一篇使用三角形区域的多项式函数来求解扭转问题的论文;1956年波音公司的Turner,Clough,Martin和Topp在分析飞机结构时系统研究了离散杆、梁、三角形的单元刚度表达式;1960年Clough在处理平面弹性问题,第一次提出并使用“有限元方法”(finite element met hod)的名称;1955年德国的Argyris出版了第一本关于结构分析中的能量原理和矩阵方法的书,为后续的有限元研究奠定了重要的基础,1967年Zienkiewicz和Cheung出版了第一本有关有限元分析的专著;1970年以后,有限元方法开始应用于处理非线性和大变形问题;我国的一些学者也在有限元领域做出了重要的贡献,如胡海昌于1954提出了广义变分原理[8],钱伟长最先研究了拉格朗日乘子法与广义变分原理之间关系,钱令希在20世纪五十年代就研究了力学分析的余能原理,冯康在20世纪六十年代就独立地、并先于西方奠定了有限元分析收敛性的理论基础。

1.2基本概念1.2.1 有限单元数值计算的思路是将复杂问题简单化,求近似解。

即将复杂的结构分解成若干相对简单的构件或部件,分别分析,然后求解。

而且这种近似解可以收敛于问题的精确解。

有限元法(FEM)简介

有限元法(FEM)简介

EA ( − cosθ sin θ u1 − sin 2 θ v1 + cosθ sin θ u2 + sin 2 θ v2 ) + EA ( v2 − v3 ) l1 l2
节点3的x方向 节点3的y方向
Fx 3 = Rx23 = 0 EA 2 Fy 3 = Ry 3 = ( −v2 + v3 ) l2
u12=1,u11= v11= v12= 0
EA R = k13 = − cos 2 θ l1
1 x1
v12=1,u11= v11= u12= 0
R11 = k14 = − x R11 = k24 = − y
1 Rx 2 = k34 =
EA cos θ sin θ l1 EA 2 sin θ l1
EA R = k23 = − cos θ sin θ l1
写成矩阵形式
R11 cos 2 θ x 1 Ry1 EA cos θ sin θ 1 = Rx 2 l1 − cos 2 θ R1 2 − cos θ sin θ y cos θ sin θ sin 2 θ − cos θ sin θ − sin 2 θ − cos 2 θ − cos θ sin θ cos 2 θ cos θ sin θ
EA ( cosθ sin θ u1 + sin 2 θ v1 − cosθ sin θ u2 − sin 2 v2 ) l1
EA ( − cos2 θ u1 − cosθ sin θ v1 + cos2 θ u2 + cosθ sin θ v2 ) l1
节点2的y方向
2 Fy 2 = R1 2 + Ry 2 = y

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程引言电磁场计算是电磁学领域中重要的研究内容之一,广泛应用于电气工程、通信工程、电子技术等领域。

而有限元方法(Finite Element Method,简称FEM)是一种常用的数值计算技术,可以解决电磁场计算中的复杂问题。

本文将介绍有限元方法在电磁场计算中的基本原理、步骤和应用。

一、有限元方法简介有限元方法是一种通过将待求解区域划分成有限数量的小单元,利用单元上的近似函数构造整个区域上的解的数值计算方法。

有限元方法的基本思想是在每个小单元内近似解以建立一个代数方程组,通过将这些方程组联立得到整个区域上的解。

有限元方法具有处理复杂几何形状、边界条件变化和非线性问题的优势,因此被广泛应用于工程和科学计算中。

二、电磁场方程建立在电磁场计算中,关键是建立合适的电磁场方程。

常见的电磁场方程包括静电场方程、恒定磁场方程、麦克斯韦方程等。

根据具体情况选择适用的方程,并根据材料的性质和边界条件确定相应的方程形式。

三、有限元网格划分有限元方法需要将计算区域划分为有限数量的小单元。

在电磁场计算中,通常采用三角形或四边形单元来进行划分,这取决于计算区域的几何形状和分辨率要求。

划分过程需要考虑电场变化的特点和计算精度的需求,合理划分网格对精确计算电磁场起着重要的作用。

四、有限元方程的建立有限元网格划分完成后,需要建立相应的有限元方程组。

以求解静电场问题为例,我们可以利用能量最小原理、偏微分方程等方法建立有限元方程组。

有限元方程组的建立需要考虑电场的连续性、边界条件和材料特性等。

五、有限元方程求解有限元方程组的求解是求解电磁场分布的核心任务。

根据具体的方程形式和计算区域的几何形状,可以采用直接法、迭代法、近似法等方法来求解方程。

在电磁场计算中,常用的求解算法包括高斯消元法、迭代法、有限元法和有限差分法等。

六、计算结果的后处理在得到有限元方法计算的电磁场分布结果后,需要进行相应的后处理,进行数据分析和可视化。

有限元结合格子boltzmann方法

有限元结合格子boltzmann方法

有限元结合格子boltzmann方法随着计算机技术的飞速发展,数值模拟方法在工程领域中的应用越来越广泛。

有限元法(FEM)和格子Boltzmann方法(LBM)作为两种常见的数值方法,各自具有独特的优势。

将这两种方法相结合,可以充分发挥它们在计算流体力学、材料科学等领域的潜力。

本文将简要介绍有限元结合格子Boltzmann方法的基本原理及其在工程中的应用。

一、有限元法与格子Boltzmann方法简介1.有限元法(FEM)有限元法是一种将连续域问题转化为离散问题求解的数值方法。

它通过将复杂的几何形状划分成简单的单元(如三角形或四边形),在每个单元内采用插值函数近似求解偏微分方程,从而实现整个域上的问题求解。

2.格子Boltzmann方法(LBM)格子Boltzmann方法是一种基于微观粒子的动力学行为的宏观现象模拟方法。

它通过离散化的Boltzmann方程,在格子网络上模拟粒子的碰撞和传播过程,从而得到宏观物理量(如速度、密度等)。

二、有限元结合格子Boltzmann方法的基本原理有限元结合格子Boltzmann方法的主要思想是将FEM的高精度与LBM 的微观模拟相结合,以解决复杂的流体力学问题。

具体步骤如下:1.划分网格:在计算域内同时采用有限元和格子Boltzmann方法进行网格划分,其中有限元网格主要用于求解宏观物理量,而格子Boltzmann网格则用于模拟微观粒子的运动。

2.确定边界条件:根据实际问题,为有限元和格子Boltzmann方法设置相应的边界条件。

3.求解宏观物理量:利用有限元法求解宏观物理量,如速度、压力等。

4.更新微观粒子分布函数:在格子Boltzmann网格上,根据微观粒子的碰撞和传播过程,更新粒子的分布函数。

5.反向映射:将格子Boltzmann方法得到的微观粒子信息映射到有限元网格上,更新宏观物理量。

6.迭代求解:重复步骤3-5,直至满足收敛条件。

三、有限元结合格子Boltzmann方法在工程中的应用有限元结合格子Boltzmann方法在工程领域具有广泛的应用前景,以下列举几个典型应用:1.计算流体力学:结合FEM的高精度和LBM的微观模拟,可以更准确地预测复杂流场中的流动现象。

有限元法概述

有限元法概述
但真正的应用实际问题是到1960年以后,随着电子数 值计算机的广泛应用和发展,有限单元法的发展速度才显 著加快。现代有限元法第一个成功的尝试,是将刚架位移 法推广应用于弹性力学平面问题,这是Turner,Clough 等人在分析飞机结构时于1956年得到的成果。他们第一 次给出了用三角形单元求得平面应力问题的正确解答。
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法的孕育过程及诞生和发展 牛顿(Newton) 莱布尼茨(Leibniz G. W.)
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
技术路线:
发展过程: 如何处理 对象的离散化过程
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
..
轴对称实体)
. .
...
. .
...
线性
二次
. . 线(弹簧,梁,杆,间隙)
有限元法介绍
有限元法的基本思想是将结构离散化,用 有限个容易分析的单元来表示复杂的对象, 单元之间通过有限个结点相互连接,然后 根据变形协调条件综合求解。由于单元的 数目是有限的,结点的数目也是有限的, 所以称为有限元法(FEM,Finite Element Method)。
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
X
0.056
0.058
X
0.06
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
X
0.056
0.058
X
0.06
受垂直载荷的托架
体单元
•线性单元 / 二次单元 – 更高阶的单元模拟曲面的精度就越高。
各( 力对 学象 学、 科变 分量 支、 的方 关程 系、
求 解 途 径 )
任意变形体力学分析的基本变量及方程 研究对象:任意形状的变形体 几种典型的对象 (1) 桥梁隧道问题
圆形隧道
三维模型
(2) 中华和钟 (3) 矿山机械
(4) 压力容器的成形
变形体及受力情况的描述
求解方法
有限元方法的思路及发展过程
瑞利(Rayleigh)
在19世纪末及 20世纪初,数 学家瑞利和里 兹(Rayleigh Ritz)首先提出 可对全定义域 运用展开函数 来表达其上的 未知函数。
1915年,数学家伽辽金(Galerkin)提出了选 择展开函数中形函数的伽辽金法,该方法 被广泛地用于有限元。1943年,数学家库 朗德第一次提出了可在定义域内分片地使 用展开函数来表达其上的未知函数。这实 际上就是有限元的做法。
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
高斯(Gauss)
在牛顿之后约一百年, 著名数学家高斯提出了 加权余值法及线性代数 方程组的解法。这两项 成果的前者被用来将微 分方程改写为积分表达 式,后者被用来求解有 限元法所得出的代数方 程组。
拉格朗日(Lagrange J.)
在18世纪,另 一位数学家拉 格朗日提出泛 函分析。泛函 分析是将偏微 分方程改写为 积分表达式的 另一途径。
低阶单元
更高阶单元
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
.. .体..(三..维实.体..).............
单元
线 单元
线 单元
点 单元
面 单元
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054
-0.1 0
0.02 0.04 0.06 0.08
0.1
0.12
相关文档
最新文档