标准气体及应用介绍
标准气体及应用介绍--上海宝钢气体有限公司

标准气体重量法制备过程:在充入一定重量的已知纯度的气体组份之后,分别称量 气瓶,充入的气体组份的质量由两次称量的质量之差确定。 混合气体中组分含量由下式计算: Xi=ni/n Xi:组分的摩尔数(mol/mol) ni:组分的物质量(mol) n:混合气体中全部组分的物质的量 (mol)
正确使用减压器及其连接件
2、正确选用减压器连接管
应选择清洁过和钝化过的色谱级不锈钢管或铜管。 不建议金属混合使用,如黄铜调压器和不锈钢管 线之间往往不能取得良好的密封效果。 ★注意:避免引入污染。 切割管线用的切割器上不能有油等润滑剂,否则, 管路需重新清洁干净。
12
标准气体及配件概述
正确使用减压器及其连接件
22
标准气体的制备
标准气体不确定度的估算
式中: j —配制混合气的过程中加入的原料气,j=a,b,…,p。 i —原料气中的各种组分,i=1,2,…,n。 mj —原料气j加入的质量。 xi,j —原料气j中组分i的摩尔分数。 Mi —组分i的摩尔质量。 xk —标准气体中各组分k的摩尔分数(为避免与原料气中组分的摩尔分
• 气瓶自动更换系统:可使服务不间断,消除浪费
和停工期。当一个气瓶用完后,系统会转换到另 一边,允许空瓶带有不低于0.5MPa的余压返回。 选择更换系统时,系统应具有类似于调压器的特 征:整料结构,无润滑,关闭排空阀。
16
标准气体的制备
标准气体制备方法
标准气体的制备方法:称量法、渗透法、分压法、扩散法、静态 容量法、饱和法、流量比混合法、指数稀释法、体积比混合法
零点调节
钢瓶放置的位置
高纯标准气体

高纯标准气体高纯标准气体是指气体的纯度高达99.999%以上的气体,通常用于实验室分析、工业生产和科研领域。
高纯气体的制备和应用对于保障实验数据的准确性和产品质量的稳定性至关重要。
本文将就高纯标准气体的制备方法、应用领域和质量控制等方面进行介绍。
首先,高纯标准气体的制备方法主要包括物理方法和化学方法两种。
物理方法是通过物理手段,如吸附、凝聚、蒸馏等,来分离气体混合物中的杂质,从而得到高纯度气体。
而化学方法则是通过化学反应将气体混合物中的杂质转化成易于分离的化合物,再进行分离提纯。
无论是哪种方法,都需要严格控制生产过程中的各项参数,以确保最终产品的纯度符合标准要求。
其次,高纯标准气体在实验室分析、工业生产和科研领域有着广泛的应用。
在实验室分析领域,高纯气体常用于气相色谱、质谱分析等仪器的载气和检测气体。
在工业生产中,高纯气体则被用于半导体制造、光伏产业、医药生产等领域。
在科研领域,高纯气体则是各种实验和研究的重要原料和工具。
可以说,高纯标准气体在现代化工和科研领域中扮演着不可或缺的角色。
最后,对于高纯标准气体的质量控制十分重要。
在生产过程中,需要严格控制原料气体的纯度和纯净度,确保生产过程中不会受到外界杂质的污染。
同时,对于生产设备和生产环境也需要进行严格的清洁和维护,避免杂质的混入。
此外,对于成品气体需要进行严格的检测和分析,确保其符合相关的标准和规定。
总而言之,高纯标准气体作为一种重要的化工原料,在实验室分析、工业生产和科研领域有着广泛的应用。
其制备方法、应用领域和质量控制对于保障实验数据的准确性和产品质量的稳定性有着重要的意义。
希望本文的介绍能够对高纯标准气体有所了解,并在相关领域的工作中起到一定的指导作用。
标准气体的分析方法

标准气体的分析方法标准气体,其组分具有很好的均匀性、准确性和稳定性,广泛应用于科学研究、环境检测、医疗卫生、石油化工、化肥、电力、煤炭、冶金、机械等领域。
同时标准气体的鉴别方法很多,但常用的一般有:气相色谱法、化学发光法、非色散红外法以及用于微量水和微量氧分析的其他方法。
小编为您介绍一下:一:气相色谱仪分析方法气相色谱法适用于氢气、氧气、氮气、氩气、氦气、一氧化碳、二氧化碳等无机气体,甲烷、乙烷、丙烯、及C3以上的绝大部分有机气体的分析.通过直接法、浓缩法、反应法等样品处理技术的应用,分析的含量范围为10-9~99.999%.所以,气相色谱法也是分析标准气体中应用最多、最普遍的方法。
二:化学发光法化学发光法是利用某些化学反应所产生的发光现象对组分进行分析的方法,具有灵敏度高,选择性好,使用简单方便、快速等特点.因些,适用于硫化物、氮氧化物、氨等标准气体的分析。
三:非色散红外分析法非色散红外气体分析器是利用不同的气室和检测器测量混合气体中的一氧化碳、二氧化碳、二氧化硫、氨、甲烷、乙烷、丙烷、丁烷、乙炔等组分的含量.非色散红外气体分析器主要由红外光源、试样室、滤波器、斩波器、检测器、放大器及数据显示装置组成。
四:微量氧分析仪分析法在高纯气体的分析中,几乎所有的高纯气体(高纯氧除外)中都要求准确测定其中微量氧的含量.由于大气中含有大量的氧,准确测定高纯气体中微量氧乃至痕量氧,是气体分析中的难点之一。
随着气体工业和仪器工业技术的不断进步,国内外分析仪器厂家已生产出不同原理的微量氧分析仪。
标准气体属于标准物质,标准物质是高度均匀的,良好稳定和量值准确的测定标准,它们具有复现,保存和传递量值的基本作用,在物理,化学,生物与工程测量领域中用于校准测量仪器和测量过程,评价测量方法的准确度和检测实验室的检测能力,确定材料或产品的特性量值,进行量值仲裁等...。
标准气体浓度标准值

标准气体浓度标准值标准气体浓度标准值是指在标准大气压下,特定条件下的气体浓度值,是工业生产和环境保护领域中非常重要的量值。
本文将围绕标准气体浓度标准值展开探讨,详细介绍其概念、测量方法、计算过程以及应用领域。
一、概念标准气体浓度标准值是指在标准大气压(101.325kPa)和一定温度、湿度下,某种气体在空气中的浓度值。
它的单位通常为毫克/立方米或百万分之几(ppm),用于衡量气体的浓度和纯度。
二、测量方法测量标准气体浓度标准值的主要方法有三种:直接测量法、化学分析法和物理化学法。
直接测量法主要指利用光谱法、红外法、热导法、电子学法、流量法等对气体进行浓度测量。
其中,光谱法是一种非常常用的方法,通过对气体分子的吸收光谱进行定量分析。
化学分析法主要利用化学反应,通过对反应前后物质含量的测量,计算出气体浓度。
例如,对于一些可以和氧气发生反应的气体,可以通过对氧气的消耗量来计算出气体的浓度。
物理化学法主要是利用物理量的变化,如颜色、密度、折射率、导电性等与气体浓度之间的关系推算浓度值,常用于工业生产领域中。
三、计算过程标准气体浓度标准值的计算需要考虑大气压、温度、湿度等因素的影响。
通常使用美国大气学会(American Meteorological Society,AMS)定义的标准条件进行计算,即25℃、50%的相对湿度条件下的浓度。
计算公式如下:C=(M/V)/(P/RT),其中,C为气体浓度;M和V分别为气体的质量和体积;P为大气压力;R为气体常数;T为气体的绝对温度。
四、应用领域标准气体浓度标准值广泛应用于工业生产、环境监测以及医学等领域。
在工业生产领域中,精确的气体浓度测量可以保证工艺安全及产品质量,如半导体行业、化工行业等。
在环境监测方面,对污染物的浓度进行监测是环境保护的重要手段之一。
标准气体浓度标准值可以帮助环保机构确定是否存在过高的气体浓度,保证大气质量。
在医学方面,标准气体浓度标准值的测量可以帮助判断人体呼吸系统是否正常。
标气及使用方法

一、标准气体介绍:
采用二元组分标准气体O2/N2,容量:4升,压力:10Mpa。
一套内容:一瓶标准气体、一个减压阀、一只流量计和导气管。
标准气体(以下简称:标气)属于高压物品,要从专门货站发运。
其有效期为1年。
二、通入标气检验的程序:
1,按下变送器的“氧量”键;
2,打开标气瓶阀,再将减压阀慢慢打开把标气流量调节为300—500ml/分钟(可观察流量计的指示);
3,拧开探头接线盒底板下“标气入口”螺帽,将调节好流量的标气从“标气入口”处接入探头中;
4,通气约1分钟后,调节变送器面板上的“本底调节”键将显示氧量值调节为标气值(例如7.5%O2)即可;
5,检验完毕后,一定要先从气嘴上拔掉导气管,然后才关气,否则可能因关气时反冲大气流冲坏氧化锆元件;
6,务必重新拧紧“标气入口”螺帽,此时仪器校准完毕。
三、注意事项:
1,开炉前,先开仪器;
2,开炉后,仪器上炉24小时后一定要校准;
3,停炉时,仪器最好不停,有利于延长探头寿命;
4,经常备有完好的仪器,留作备用;
5,仪器应存放在干燥、防震处。
磷烷标准气体

磷烷标准气体概述磷烷(PH3)是一种无色、有毒的气体,常用作半导体行业中的腐蚀剂和杀虫剂。
磷烷标准气体是一种用于检测和校准磷烷浓度的参考物质。
本文将详细讨论磷烷标准气体的性质、制备方法、应用领域以及安全注意事项。
性质磷烷(PH3)是一种无色的气体,在常温常压下呈现为液体状态。
它具有特殊的刺激性气味,类似于腐败鱼类的臭味。
磷烷易燃,能与空气中的氧气剧烈反应产生磷酸和水蒸气。
其相对分子质量为33.997。
制备方法磷烷标准气体的制备方法有多种,下面介绍两种常用的方法。
方法一:化学合成法该方法需要使用磷化铝(AlP)和酸反应生成磷烷。
具体步骤如下:1.将适量的磷化铝样品置于反应器中。
2.加入适量的稀酸,如盐酸(HCl)。
3.在适当的温度和压力条件下,进行反应,产生磷烷气体。
4.将得到的磷烷气体收集,纯化,制备成磷烷标准气体。
方法二:气瓶充填法该方法是通过将磷烷气体充填到高压气瓶中制备磷烷标准气体。
1.制备纯度较高的磷烷气体样品。
2.将磷烷气体充填到高压气瓶中。
3.进行适当的净化处理和标定,制备成磷烷标准气体。
应用领域磷烷标准气体在以下领域具有广泛的应用:1. 环境监测磷烷是一种环境监测中常见的气体成分之一。
磷烷标准气体可以被用于校准环境监测仪器,确保监测结果的准确性和可靠性。
2. 安全探测在一些工业生产过程中,如半导体生产、化工等,磷烷泄漏可能会导致安全事故和环境污染。
磷烷标准气体可以被用于检测和监测磷烷泄漏情况,以及帮助制定相应的安全预防措施。
3. 实验室研究磷烷标准气体在实验室研究中也发挥着重要的作用。
研究人员可以使用磷烷标准气体来模拟和研究磷烷在不同条件下的行为,以便更好地理解其化学性质和反应机制。
安全注意事项磷烷是一种有毒和易燃的气体,使用磷烷标准气体时需要注意以下安全事项:1.严格遵守相关的安全操作规程,如佩戴适当的防护设备(手套、护目镜等)。
2.在通风良好的地方操作,避免磷烷积聚在空气中造成爆炸风险。
二氧化硫标准气体

二氧化硫标准气体二氧化硫(SO2)是一种常见的空气污染物,主要来源于工业生产、交通运输和能源消耗等活动。
它对人类健康和环境都有着严重的影响,因此监测和控制二氧化硫排放至关重要。
本文将介绍二氧化硫标准气体的相关内容,包括其定义、特性、监测方法和控制措施。
首先,二氧化硫是一种无色有刺激性气味的气体,具有较强的腐蚀性。
它在大气中的滞留时间较长,可以通过空气传播到较远的地方,对植物、土壤和水体造成危害。
此外,二氧化硫还是酸雨的主要成分之一,对大气环境和生态系统造成严重破坏。
其次,监测二氧化硫的方法主要包括使用化学分析仪器和光学分析仪器。
化学分析仪器通过化学反应将二氧化硫转化为其他物质,再通过检测这些物质的含量来确定二氧化硫的浓度。
光学分析仪器则是利用二氧化硫对特定波长的吸收特性进行测量。
这些方法都能够准确、快速地监测二氧化硫的浓度,为环境监测和控制提供了重要依据。
在控制二氧化硫排放方面,可以采取多种措施。
首先是加强工业生产和能源消耗过程中的二氧化硫排放监管,推行清洁生产技术,减少二氧化硫的产生。
其次是在交通运输领域推广清洁能源车辆,减少尾气排放中的二氧化硫含量。
此外,应加强对燃煤、燃油等能源的燃烧过程进行监管,减少二氧化硫的排放。
总的来说,二氧化硫标准气体的监测和控制是保护环境和人类健康的重要举措。
通过科学、准确的监测方法和有效的控制措施,可以有效减少二氧化硫对环境的危害,改善大气质量,保护生态系统的健康。
我们每个人都应该关注二氧化硫污染问题,积极参与到环保工作中,共同呵护我们的家园。
丙烷气体国标

丙烷气体国标丙烷气体是一种常见的燃气,广泛应用于家庭煤气、工业燃料和交通运输等领域。
为了确保丙烷气体的安全使用和质量标准,国际上制定了一系列的国标,以规范丙烷气体的生产、储存、运输和使用。
本文将从以下几个方面介绍丙烷气体国标的相关内容。
一、丙烷气体的物理性质与化学性质丙烷气体,化学式C3H8,是一种无色、无味的气体。
它具有较高的燃烧热值和燃烧温度,燃烧产物主要是二氧化碳和水。
丙烷气体具有较低的沸点和易于液化的性质,方便储存和运输。
同时,丙烷气体具有一定的挥发性和易燃性,需要在使用和储存过程中注意安全。
二、丙烷气体的国标标准国际上对丙烷气体的质量和安全进行了严格的规定,制定了一系列的国标标准。
这些标准主要包括以下几个方面:1. 物理性质标准:包括丙烷气体的密度、沸点、燃烧热值等物理性质的要求。
这些物理性质的标准可以用于确定丙烷气体的品质和适用范围。
2. 化学性质标准:包括丙烷气体的成分、纯度、杂质含量等化学性质的要求。
这些化学性质的标准可以保证丙烷气体的安全性和稳定性。
3. 安全标准:包括丙烷气体的储存和运输安全要求,以及使用过程中的安全措施和防护措施。
这些安全标准可以保护人员和设备的安全,防止事故的发生。
4. 环境标准:包括丙烷气体的排放标准,以及对环境的影响和污染控制措施。
这些环境标准可以保护环境,减少对大气和水源的污染。
三、丙烷气体国标的应用与意义丙烷气体国标的制定和执行对于保障丙烷气体的安全和质量具有重要意义。
丙烷气体国标可以规范丙烷气体的生产和质量控制,保证消费者获得安全可靠的产品。
丙烷气体国标可以规范丙烷气体的储存和运输,确保在储存和运输过程中不发生泄漏和事故。
丙烷气体国标还可以指导丙烷气体的使用,明确使用者的权责和安全措施,降低使用过程中的风险。
丙烷气体国标的制定和执行有助于促进国际间的贸易和合作,推动丙烷气体行业的发展和创新。
丙烷气体国标的制定和执行对于保障丙烷气体的安全和质量至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机气体 标准气体
4
标准气体及分类
标准气体及配件概述
标准气体属于标准物质,具有一种或多种足够均匀和很
好地确定了的特性,用以校准测量装置、评价测量方法
或给气相物质赋值。
标准气体分类
仪器仪表校正用混和气 石油化工用标准气 环境检测用标准气
医学与医疗用标准校正气体 电力能源用标准气体 气体报警用用标准气体 地震监测用标准气体
880
8.0
Al
QF21A(21.8)
5
4
120
470
6.6 Fe,内涂 QF21A(21.8)
6
40
230
1500
55
Fe
PX32(G5/8)
6
空气 一氧化氮 一氧化碳
硅烷 煤气 三氟甲烷
氦 氨 氖 二氟氯溴甲烷 氩 丁烷 氪 2-丁烯 氙 二氟氯乙烷 氧 环丙烷 氢 一氟二氯甲烷 氰 氮
标准气体及配件概述
C2H2 BF3 CF2=CFBr COCl Cl2 ClF3 CNCl F2 HBr HCl HF CH3Cl CH3Br NOC
×
8
减压器
几种常用的标准气体减压器
标准气体及配件概述
序号
名称
1 铜减压器
2 氢气减压器 3 不锈钢减压器 4 不锈钢微调阀
接口 W21.8-14-RH , G5/8-14-RH W21.8×1/14-LH 以上三种接口
n
ja ( xi, j M i )
xk
i1
p
mj
n
ja ( xi, j M i )
i1
(3.1)
ISO 6142-2001标准物质配制浓度不确定度的计算公式见3.2:
u2( xk )
p
ja
xk m j
2
u2(m j )
n
i1
xk M i
2u2 (Mi )
p
n
xk
ja i1 xi, j
2
u
2
(
xi
,
j
)
(3.2)
22
标准气体的制备
标准气体不确定度的估算
式中: j —配制混合气的过程中加入的原料气,j=a,b,…,p。 i —原料气中的各种组分,i=1,2,…,n。 mj —原料气j加入的质量。 xi,j —原料气j中组分i的摩尔分数。 Mi —组分i的摩尔质量。 xk —标准气体中各组分k的摩尔分数(为避免与原料气中组分的摩尔分
标准气体及应用
前
言
气体广泛应用于化工、冶金、石油、石化、机械、电子、轻工、纺织以及 航空、航天、核工业、环保等诸多领域 我国工业气体行业以12%以上的超常速度飞速发展 标准气体: 在工业生产上发挥着独特的规范和保证质量的作用
正确使用标准气体是保证测量结果准确可靠的关键技术之一
制备 包装 连接部件 分析方法 安全注意事项
正确使用减压器及其连接件
2、正确选用减压器连接管
应选择清洁过和钝化过的色谱级不锈钢管或铜管。 不建议金属混合使用,如黄铜调压器和不锈钢管 线之间往往不能取得良好的密封效果。 ★注意:避免引入污染。 切割管线用的切割器上不能有油等润滑剂,否则, 管路需重新清洁干净。
12
标准气体及配件概述
正确使用减压器及其连接件
国家标准GB5274-2008完全采用了ISO6142国际标准,按此标准钢瓶装标准气体 配制采用重量法。
标准气体重量法制备过程:在充入一定重量的已知纯度的气体组份之后,分别称量 气瓶,充入的气体组份的质量由两次称量的质量之差确定。 混合气体中组分含量由下式计算: Xi=ni/n Xi:组分的摩尔数(mol/mol) ni:组分的物质量(mol) n:混合气体中全部组分的物质的量 (mol)
HCN CF3Br
H2S CF3Cl (CH3)2C=CH2 CH2=CF2 C3H8 CH3NH2
SO2 CH3SH CH2=CHBr N2O3 CF2Cl-CF2Cl
√
7
标准气体及配件概述
不允许充装于铝合金气瓶的气体
乙炔 三氟化硼 三氟溴乙烯 碳酰氯
氯 三氟化氯 氯化氰
氟 溴化氢 氯化氢 氟化氢 氯甲烷 溴甲烷 亚硝酰氯
14
标准气体及配件概述
正确使用减压器及其连接件
5、更换气瓶时避免污染
气瓶从减压器上卸下时,在大气压的作用下,大气会进入系统, 出现污染。
正确方法:关闭减压器,下游系统维持管道压力,卸下减压器, 更换气瓶,避免污染。
15
标准气体及配件概述
正确使用减压器及其连接件
6、安装气瓶更换系统
• 许多色谱学家认为每更换一个气瓶就需要四个小时去恢复基线,这往往 是因为污染物进入了系统。即使有上述保护措施,更换一个气瓶常常要 花费半小时或更多时间。用户也往往是在方便时而不是必需时换气瓶。 例如,他们会在星期五下午更换还带有超过2MPa余压的气瓶以避免可想 得到的停工检修期。
正确选用减压器
更换气瓶时避免污染
减压器 及连接件 注意事项
正确选用减压器连接管
正确连接承压件
正确安装减压器
10
标准气体及配件概述
正确使用减压器及其连接件
1、正确选用减压器
隔膜
不锈钢隔膜: 不吸附污染物
氯丁二烯橡胶隔膜: 随时吸附污染物并将其释 放到气流中
是否任何减压器都适用于分析过程?
阀体结构
减压器
20
标准气体的制备
标准气体不确定度的估算
与组分气相关的误差来源
气瓶中的残余气体泄露,来源于: 抽真空后空气泄露进入气瓶; 充填过程中气瓶阀门的泄露; 充填完成后气瓶的泄露; 从气瓶向管道的漏气; 当用质量减少法时,残留在气体充填装置 中的气体; 在气瓶内表面上组分发生的吸附/反应: 组分之间的反应; 所用纯气中的杂质; 混匀不充分;
• 气瓶自动更换系统:可使服务不间断,消除浪费
和停工期。当一个气瓶用完后,系统会转换到另 一边,允许空瓶带有不低于0.5MPa的余压返回。 选择更换系统时,系统应具有类似于调压器的特 征:整料结构,无润滑,关闭排空阀。
16
标准气体的制备
标准气体制备方法
标准气体的制备方法:称量法、渗透法、分压法、扩散法、静态 容量法、饱和法、流量比混合法、指数稀释法、体积比混合法
允许充装于铝合金气瓶的气体
Air NO CO SiH4
CHF3 He NH3 Ne CFClBr Ar C4H10 Kr CH3CH=CHCH Xe CH3CF2C O2 CH2CH2CH2 H2 CHFCl2 NCCN N2
1-丁炔 重氢
六氟丙烯 二氧化碳
硒化氢 磷化氢 异丁烷 甲烷 丙炔 氧硫化碳 四氧化二氮 氧化亚氮 丙烯 六氟化硫 三甲胺 六氟乙烷 氯乙烯 四氟甲烷 乙烯基甲醚 乙烯 二氟氯甲烷 丙二烯
W21.8-14-RH
5 带流量计减压器 W21.8-14-RH
6 双级减压器
G5/8-14-RH
用途 适用于载气和无腐蚀性气体
适用于可燃气体 适用于腐蚀性气体 适用于微量氧、硫化氢、氨气、 氯等标准气体 适用于气体报警仪用标准气体 适用于载气
9
标准气体及配件概述
正确使用减压器及其连接件
安装气瓶更换系统
CH3CH2CCH D2
CF3CF=CF2 CO2 H2Se PH3
(CH3)2CHCH3 CH4
CH4CCH COS N2O4 N2O
CH3CH=CH2 SF6
(CH3)3N C2H5F6 CH2=CHCl
CF4 CH3OCH=CH2
C2H4 CHF2Cl CH2=C=CH2
砷化氢 二氟二氯甲烷
1-丁烯 偏二氟乙烷
21
标准气体的制备
标准气体不确定度的估算
我们对按照GB/T 5274-2008 气体分析 标准混合气体的制备-称量法中计算的 所有实验数据按ISO 6142-2001提供的公式进行了验证,其二者实验结果相吻合。 ISO 6142-2001标准物质配制浓度的计算公式见3.1。
p
xk, j m j
整料加工阀体: 内腔小 气体通道笔直
铸造阀体: 内腔很大 无直接气体通道
如果污染物 进入,很容 易释放出去
随时捕获和释 放污染物,难 以置换
只有清洁的,整料加工的,带有不锈钢隔膜的减压器才用于分析系统。
★注意:色谱载气压力控制应采用双级减压器,因为单级减压器需随压力下降频繁调节。
11
标准气体及配件概述
气瓶表面的金属、漆或商标脱落; 阀门、部件的螺丝位置的金属脱落; 气瓶、阀门或相关部件上的灰尘; 气瓶外表的吸附/脱附。
气瓶本身; 由于充填气体导致的气瓶与环境 空气之间的温度差异; 充填气体导致的气瓶体积变化。
空气密度的变化来源于
温度; 空气压力; 湿度和二氧化碳含量; 气瓶外体积测定的不确定度。
• 错误观念2:将金属压帽拧得越紧,密封效果就会越好。这种做法将导致
压帽压垮变形,从而产生泄漏而让上述污染物进入系统。金属压帽应按 制造商所详述的标准来拧紧。
★注意:a.如果系统有铜制连接件,不能用铜焊的方法来连接。轨道焊接法是一种 可行的替代方案,因为它使金属和金属融合结合而不需要填充金属物。 b.管子螺纹结合处所用Teflon 胶带必须不含润滑剂或密封剂。
4、正确连接承压件
• 对于承压件的装配,通常用与管路同样材质的双卡套。如材质不一样, 例如,黄铜卡套及压帽用在不锈钢管上,密封性将不会很好。
• 错误观念1:松的装配只是仅仅让气体从系统中泄漏出来。系统处于静止
状态时的确如此,但是,当气体处于流动状态时,泄露产生的真空还会 吸进大气中的氧、水分和碳氢化合物等污染物。
数相混淆,此处用脚标k表示,k =1,2,…,n)