开关电源研发范例
用uc3845b 设计开关电源实例

用uc3845b 设计开关电源实例Switching power supplies are widely used in various applications due to their high efficiency and compact design. One of the most common and popular control ICs used for designing switching power supplies is the UC3845B. This IC is known for its versatility and ease of use in various topologies such as flyback, forward, and boost.开关电源由于高效率和紧凑的设计而被广泛应用于各种领域。
在设计开关电源时常用的一个控制IC是UC3845B。
这个IC以其在飞行、正转和升压等各种拓扑结构中的通用性和易用性而闻名。
The UC3845B is a current mode PWM controller that operates at a fixed frequency and has a voltage feedforward design for improved transient response. It also has built-in soft start and frequency jitter features for reduced EMI emissions. These advanced features make the UC3845B a popular choice for designing efficient and reliable switch mode power supplies.UC3845B是一个固定频率工作的电流模式PWM控制器,具有电压前馈设计以提高瞬态响应。
芯片公司反激开关电源设计案例

芯片公司反激开关电源设计案例反激开关电源是一种常用的电源设计方案,它采用了开关元件的控制来实现高效率的能量转换。
对于芯片公司来说,设计一个稳定可靠的反激开关电源是至关重要的。
下面以一个具体案例来介绍芯片公司如何设计反激开关电源。
案例背景:芯片公司计划设计一款用于智能手表的反激开关电源。
该电源需要满足以下要求:输出电压为3.3V,最大输出电流为200mA,输入电压范围为3V到5V。
同时,该电源需要具备稳定可靠、高效率等特点。
设计步骤:1.电源需求分析:首先,需要对电源的工作条件进行分析。
智能手表作为一种可佩戴设备,体积小巧、功耗低是重要的特点。
因此,反激开关电源是一种理想的选择。
在电源需求分析中,需要确定输出电压和电流的要求,并考虑输入电压的范围。
2.开关电源拓扑选择:根据电源需求分析,可以选择反激开关电源作为设计方案。
反激开关电源可以提供相对较高的转换效率,并且适用于较宽的输入电压范围。
3.电源拓扑设计:在选择了反激开关电源后,需要设计电源的拓扑结构。
该案例中可以选择基于反激变换器的设计方案,使用变压器实现能量的传输。
通过选择合适的变压器匹配,可以实现输入电压到输出电压的转换。
4.元件选择:根据设计要求,选择合适的元件来搭建反激开关电源。
包括开关管、二极管、电感、电容等。
在选择元件时,需要考虑其参数和性能,并保证其可靠性和稳定性。
5.控制电路设计:反激开关电源需要一个控制电路来实现对开关管的控制。
控制电路可以采用传统的PWM或者脉冲频率调制(PFM)的控制方法。
通过控制开关管的导通与断开,实现对输出电压和电流的调节。
6.稳压电路设计:为了保证输出电压的稳定性,需要设计稳压电路。
可以采用负反馈稳压电路,通过对输出电压进行采样和比较,控制开关管的工作状态,使得输出电压能够稳定在设定值。
7.效率优化:为了提高转换效率,需要优化设计。
可以采用切换频率较高的开关管、合理选择电感和电容等方法。
通过优化设计,使能量转换更为高效。
12v3a开关电源研发范例

1 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以A T36—12V3A 为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢ B(max) 依铁心的材质及本身的温度来决定,以EC28 PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
在相同的价格下可以尽量选用大容量的电容。
一般选择电容为2P o 。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
新型开关电源优化设计与实例详解

新型开关电源优化设计与实例详解以新型开关电源优化设计与实例详解为标题,本文将从新型开关电源的基本原理、设计优化的方法以及实例分析等方面进行详细阐述。
一、新型开关电源的基本原理开关电源是一种将交流电转换为直流电的电源装置,其基本原理是通过开关管的开关动作来实现电源的开关控制。
传统的开关电源在工作过程中存在一些问题,如功率损耗大、效率低、噪声大等。
为了克服这些问题,新型开关电源采用了一些优化设计方法。
二、新型开关电源的设计优化方法1. 降低功率损耗:通过采用功率开关管的低导通电阻材料和优化电路设计,降低功率开关管的导通电阻,从而减少功率损耗。
2. 提高效率:采用高效的开关控制器和高效的变压器设计,减少能量的损耗,提高开关电源的转换效率。
3. 降低噪声:通过优化电路布局和选择低噪声元件,减少开关电源的噪声产生,提高工作环境的舒适性。
4. 提高稳定性:采用先进的控制算法和稳压电路设计,提高开关电源的稳定性,减少输出波动。
5. 减小体积:通过优化元件布局和采用高集成度的芯片设计,减小开关电源的体积,提高电源的集成度和便携性。
三、新型开关电源的实例分析以一款新型开关电源为例进行分析,该开关电源采用了先进的控制算法和高效的变压器设计,具有以下特点:1. 高效率:通过优化的开关控制器和变压器设计,该开关电源的转换效率达到了90%以上,相比传统开关电源提高了20%以上。
2. 低噪声:采用低噪声元件和优化的电路布局,该开关电源的噪声水平明显低于传统开关电源,提高了工作环境的舒适性。
3. 稳定性强:通过先进的控制算法和稳压电路设计,该开关电源的输出稳定性非常好,输出波动小于1%。
4. 小巧便携:采用高集成度的芯片设计和优化的元件布局,该开关电源的体积明显减小,非常适合便携式设备的使用。
以上是对新型开关电源优化设计与实例的详细阐述。
通过采用优化设计方法,新型开关电源在功率损耗、效率、噪声、稳定性和体积等方面都得到了显著提升,满足了现代电子设备对电源的高要求。
开关电源典型设计实例精选

开关电源典型设计实例精选
开关电源是一种常见的电源设计,它能够将输入电压转换为稳定的输出电压,常用于各种电子设备中。
以下是一些典型的开关电源设计实例:
1. Buck转换器,Buck转换器是一种常见的开关电源设计,它能够将高电压降低为稳定的较低电压。
这种设计常用于需要较低输出电压的应用,例如移动设备充电器和电源适配器。
2. Boost转换器,Boost转换器则是将输入电压升高为稳定的输出电压,常用于需要较高输出电压的场合,比如LED驱动器和太阳能电池充电器。
3. Buck-Boost转换器,Buck-Boost转换器能够实现输入电压的升压和降压,因此在需要输出电压高低变化范围较大的场合下应用广泛,比如电动汽车充电器和太阳能储能系统。
4. Flyback转换器,Flyback转换器是一种常见的离线开关电源设计,适用于输出功率较低的应用,例如家用电子设备和通信设备。
5. LLC谐振转换器,LLC谐振转换器结构简单,具有高效率和低电磁干扰等优点,适用于中高功率的电源设计,例如工业设备和服务器电源。
以上是一些典型的开关电源设计实例,每种设计都有其适用的场合和特点,工程师在实际设计中需要根据具体要求选择合适的设计方案。
希望以上信息能够对你有所帮助。
开关电源研发范例

1 目的希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教.2 設計步驟:2.1 繪線路圖、PCB Layout.2.2 變壓器計算.2.3 零件選用.2.4 設計驗證.3 設計流程介紹(以DA-14B33為例):3.1 線路圖、PCB Layout 請參考資識庫中說明.3.2 變壓器計算:變壓器是整個電源供應器的重要核心,所以變壓器的計算及驗証是很重要的,以下即就DA-14B33變壓器做介紹.3.2.1 決定變壓器的材質及尺寸:依據變壓器計算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 鐵心飽合的磁通密度(Gauss)➢ Lp = 一次側電感值(uH)➢ Ip = 一次側峰值電流(A)➢ Np = 一次側(主線圈)圈數➢ Ae = 鐵心截面積(cm 2)➢ B(max) 依鐵心的材質及本身的溫度來決定,以TDK FerriteCore PC40為例,100℃時的B(max)為3900 Gauss ,設計時應考慮零件誤差,所以一般取3000~3500 Gauss 之間,若所設計的power 為Adapter(有外殼)則應取3000 Gauss 左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae 越高,所以可以做較大瓦數的Power 。
3.2.2 決定一次側濾波電容:濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數的Power ,但相對價格亦較高。
3.2.3 決定變壓器線徑及線數:當變壓器決定後,變壓器的Bobbin 即可決定,依據Bobbin 的槽寬,可決定變壓器的線徑及線數,亦可計算出線徑的電流密度,電流密度一般以6A/mm 2為參考,電流密度對變壓器的設計而言,只能當做參考值,最終應以溫昇記錄為準。
3.2.4 決定Duty cycle (工作週期):由以下公式可決定Duty cycle ,Duty cycle 的設計一般以50%為基準,Duty cycle 若超過50%易導致振盪的發生。
一款国产化开关电源的研制

一款国产化开关电源的研制摘要:文中针对开关电源提出的技术指标和产品元器件需要全部国产化的要求,根据技术指标要求提出产品的设计思路和方案,以及产品在调试过程中出现的技术问题给与其解决方案。
关键词:开关电源;有源钳位正激式拓扑结构;1.引言:随着世界格局的不断变化,科技竞争愈演愈烈,根据国际形势和市场调研情况并结合我公司发展的需要,我公司决定自主研发DC/DC变换器,实现了对电源模块的小体积、高效率、可靠性高的大功率电源的要求以及元器件的全部国产化要求,实现产品技术自主可控,满足国防事业的需求。
该产品的研制目标是全部选用国产元器件,满足立项单里规定的技术指标和性能要求,完成设计定型,同时满足产品的批量生产能力。
1.产品技术指标:1.输入电压:15V~40V;2.输出电压:27.72V~28.28V;3.输出电流;I O≤4.1A;4.电压调整度≤80mV;负载调整度≤100mV;5.输出电压纹波(常温):20MHz带宽,满载下≤120mV;6.效率(常温)≥85%;7.所有引脚与外壳隔离:DC500V电压,绝缘电阻≥100MΩ;8.环境条件:工作温度-55℃~+125℃;储存温度:-65℃~+150℃;9.封装形式:全密封金属外壳,平行缝焊封装;10.外形尺寸:长×宽×高≤76.8 mm×38.8 mm×10.5mm;1.设计方案:图1 原理图由于产品体积小,功率大,要保证产品在三温下可靠运行,必须降低产品功耗,提高产品的效率;为了达到此要求,该产品设计采用正激有源钳位变换器拓扑结构,初级开关管、钳位管实现零电压开通与关断(ZVS)降低开关损耗;次级选用二极管普通整流技术;选择综合考虑开关损耗和导通损耗兼顾开关管和整流管。
通过合理分区布局减少开关管和整流管开关损耗以及减少输入输出功率回路的损耗。
对主电路采取输出电感反馈供电的方式减少电路自身损耗,提高电源模块整体工作可靠性。
开关电源项目立项报告范文模板

开关电源项目立项报告范文模板【立项报告】开关电源项目一、项目背景开关电源作为一种高效可靠的电源供应装置,被广泛应用于各个领域。
由于其小体积、高效率、稳定性好等特点,开关电源在市场上有着广阔的发展前景。
然而,当前市场上存在着一些开关电源产品的质量不过关、效率低下等问题,迫切需要一种更先进、更高效的开关电源产品。
二、项目概述本项目旨在开发一种新型的开关电源产品,解决当前市场上存在的问题,提高产品的质量和效率,满足用户对电源供应装置的需求。
项目将采用先进的技术和工艺,设计和生产出更小巧、更高效的开关电源产品,以提升市场竞争力,并为用户提供更优质的电源供应装置。
三、项目目标1.开发一种新型的开关电源产品,满足用户对电源供应装置的需求。
2.提高产品的效率和质量,确保产品的稳定性和可靠性。
3.实现产品的小型化,节省空间和成本,提高市场竞争力。
4.推广和应用先进的技术和工艺,提高研发团队的技术水平和竞争力。
四、项目内容1.市场调研:了解当前开关电源市场的需求和竞争状况。
2.技术研发:研发新型的开关电源产品,设计合理的电路结构和控制方案。
3.产品生产:建立生产线,制造出符合质量标准的产品。
4.市场推广:将产品推广到市场上,提高市场占有率。
五、项目预算1.研发经费:100万人民币。
2.生产设备及材料费用:50万人民币。
3.市场推广费用:30万人民币。
4.团队人员工资和福利费用:50万人民币。
总投资额为230万人民币。
六、项目风险1.竞争风险:面临来自国内外其他开关电源厂商的竞争压力。
2.技术风险:在技术研发阶段可能遇到一些难题,需要技术团队的不断努力和创新。
3.市场风险:市场需求变化、经济波动等因素可能影响产品的销售和市场份额。
七、项目管理项目将由一个专业的项目团队进行管理,包括市场调研、技术研发、生产制造和市场推广等方面的工作。
项目团队将按照项目计划进行分工和管理,确保项目按时、按质量完成。
八、项目进度计划1.第一年:市场调研和技术研发阶段;2.第二年:产品生产和市场推广阶段;3.第三年:产品销售和市场份额提升阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源研发范例文件编码(TTU-UITID-GGBKT-POIU-WUUI-0089)1目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2设计步骤:2.1绘线路图、PCB Layout.2.2变压器计算.2.3零件选用.2.4设计验证.3设计流程介绍(以DA-14B33为例):3.1线路图、PCB Layout请参考资识库中说明.3.2变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍. 3.2.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp =一次侧电感值(uH) Ip = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae越高,所以可以做较大瓦数的Power。
3.2.2决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。
3.2.3决定变压器线径及线数:当变压器决定後,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温昇记录为准。
3.2.4决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
xD Vin D x V Vo Np Ns D (min))1()(-+= N S = 二次侧圈数N P = 一次侧圈数Vo = 输出电压V D = 二极体顺向电压Vin(min) = 滤波电容上的谷点电压D = 工作周期(Duty cycle)3.2.5 决定Ip 值:I Iav Ip ∆+=21 ηxDx Vin Pout Iav (min)= f P x Lp Vin I (min)=∆ Ip = 一次侧峰值电流Iav = 一次侧平均电流Pout = 输出瓦数η效率=f PWM震荡频率=3.2.6决定辅助电源的圈数:依据变压器的圈比关系,可决定辅助电源的圈数及电压。
3.2.7决定MOSFET及二次侧二极体的Stress(应力):依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。
3.2.8其它:若输出电压为5V以下,且必须使用TL431而非TL432时,须考虑多一组绕组提供Photocoupler及TL431使用。
3.2.9 将所得资料代入Gauss x NpxAeLpxIp B 100(max )=公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新调整。
3.2.10 DA-14B33变压器计算:输出瓦数4A),Core = EI-28,可绕面积(槽宽)=10mm ,Margin Tape = (每边),剩余可绕面积=.假设f T = 45 KHz ,Vin(min)=90V ,η=,.=(cos θ),Lp=1600 Uh计算式:变压器材质及尺寸:由以上假设可知材质为PC-40,尺寸=EI-28,Ae=,可绕面积(槽宽)=10mm ,因Margin Tape 使用,所以剩余可绕面积为.假设滤波电容使用47uF/400V ,Vin(min)暂定90V 。
决定变压器的线径及线数:A x x x x Vin Pout Iin 42.05.07.0902.13cos (m in)===θη 假设N P 使用ψ的线电流密度=A x x 286.11024.014.342.0232.014.342.02==⎪⎭⎫ ⎝⎛ 可绕圈数=()圈線徑剩餘可繞面績57.1203.032.04.4=+= 假设Secondary 使用ψ的线 电流密度=A x x 07.440289.014.34235.014.342==⎪⎭⎫ ⎝⎛ 假设使用4P ,则电流密度=A 02.11407.44=可绕圈数=()圈57.1103.035.04.4=+ 决定Duty cycle:假设Np=44T ,Ns=2T ,V D =(使用schottky Diode)()()DVin D V Vo Np Ns D (min)1-+= ()()%2.489015.03.3442=⇒-+=D DD决定Ip 值:I Iav Ip ∆+=21 A x x xD x Vin Pout Iav 435.0482.07.0902.13(min)===η A Kx u f D x Lp Vin I 603.045482.0160090(min)===∆ A Ip 737.02603.0435.0=+= 决定辅助电源的圈数:假设辅助电源=12V128.31=A N Ns 128.321=A N N A1=圈假设使用ψ的线可绕圈数=圈13.19)02.023.0(4.4=+ 若N A1=6Tx2P ,则辅助电源=决定MOSFET 及二次侧二极体的Stress(应力):MOSFET(Q1) =最高输入电压(380V)+()D V Vo Ns Np + =()5.03.3244380++ =Diode(D5)=输出电压(Vo)+Np Ns x 最高输入电压(380V)=3804423.3x +=Diode(D4)=)380()(2V x NpNs N A 最高輸入電壓輸出電壓+ =3804446.6x += 其它:因为输出为,而TL431的Vref 值为,若再加上photo coupler 上的压降约,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。
假设N A2 = 4T 使用ψ线,则可绕圈数=()T 58.1103.035.04.4=+,所以可将N A2定为4Tx2P228.3A A V N Ns = V V V A A 6.78.34222=⇒=Gauss x x x Gauss x NpxAe LpxIp B 3.311610086.044737.01600)(100(max )===变压器的接线图:3.3 零件选用:零件位置(标注)请参考线路图: (DA-14B33 Schematic) 3.3.1 FS1:由变压器计算得到Iin 值,以此Iin 值可知使用公司共用料2A/250V ,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。
ΦΦΦΦ3.3.2TR1(热敏电阻):电源启动的瞬间,由於C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。
3.3.3VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之後),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考量,可先忽略不装。
3.3.4CY1,CY2(Y-Cap):Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap , AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(LeakageCurrent )必须符合安规须求(3Pin公司标准为750uA max)。
3.3.5CX1(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15JClass B 、 CISPR 22(EN55022) Class B 两种, FCC测试频率在450K~30MHz,CISPR22测试频率在150K~30MHz, Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在以上(包含,安规规定必须要有泄放电阻(RX1,一般为Ω 1/4W)。
3.3.6LF1(Common Choke):EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温昇,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温昇可能较高。
3.3.7BD1(整流二极体):将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极体,因为是全波整流所以耐压只要600V即可。
3.3.8C1(滤波电容):由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。
3.3.9D2(辅助电源二极体):整流二极体,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异:1.耐压不同(在此处使用差异无所谓)2.V F不同(FR105=,BYT42M=3.3.10 R10(辅助电源电阻):主要用於调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大於(Min.Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。