[精品文档]数据挖掘考试题库
数据基础考试题库及答案

数据基础考试题库及答案一、选择题1. 数据的三种基本状态包括:A. 原始数据、处理数据、分析数据B. 存储数据、传输数据、分析数据C. 静态数据、动态数据、混合数据D. 未加工数据、半加工数据、完全加工数据答案:A2. 在数据库中,用于查询数据的语句是:A. INSERTB. UPDATEC. DELETED. SELECT答案:D3. 数据清洗的目的是什么?A. 增加数据量B. 减少数据量C. 提高数据质量D. 降低数据存储成本答案:C4. 以下哪个不是数据挖掘的常见算法?A. 决策树B. 聚类分析C. 线性回归D. 神经网络答案:C5. 数据仓库与数据库的主要区别是什么?A. 数据仓库用于存储数据,数据库用于处理数据B. 数据库用于存储数据,数据仓库用于处理数据C. 数据仓库用于分析数据,数据库用于事务处理D. 数据库用于分析数据,数据仓库用于事务处理答案:C二、填空题6. 数据的生命周期包括数据的____、____、____、____和____。
答案:创建、存储、使用、维护、销毁7. 在数据挖掘中,____是一种用于发现数据集中隐藏的模式和关系的技术。
答案:关联规则8. 数据可视化的目的是使数据更易于____和____。
答案:理解、分析9. 数据备份的目的是防止数据____和____。
答案:丢失、损坏10. 在数据库中,____是用来定义数据表结构的语句。
答案:CREATE TABLE三、简答题11. 请简述数据集成的概念及其重要性。
答案:数据集成是指将来自不同来源和格式的数据整合到一个统一的数据存储中的过程。
它的重要性在于能够提供一致的数据视图,便于数据的分析和决策制定,同时提高数据的可用性和可访问性。
12. 什么是数据隐私,为什么它在当今的数字时代尤为重要?答案:数据隐私是指保护个人信息不被未经授权的访问、使用或泄露。
在数字时代,随着数据的大量收集和分析,数据隐私变得尤为重要,因为它关系到个人的隐私权和数据安全,防止数据滥用和身份盗窃等风险。
数据挖掘考试题及答案

数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。
答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。
避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。
2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。
答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。
它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。
3. 描述“特征选择”在数据挖掘中的作用。
答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。
通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。
#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。
答案:首先,我会使用聚类分析来识别不同的用户群体。
然后,通过关联规则挖掘来发现不同用户群体的购买模式。
接着,利用分类算法来预测用户可能感兴趣的产品。
数据挖掘计算题考试题库

数据挖掘计算题考试题库1. 数据挖掘中的“分类”任务是用来做什么的?A. 识别数据集中的异常值B. 将数据集分成不同的类别C. 预测数值型数据D. 找出数据集中的相关性答案: B2. 下面哪种算法不是分类算法?A. 决策树B. K-均值聚类C. 随机森林D. 支持向量机(SVM)答案: B3. 在数据挖掘过程中,“数据清洗”指的是什么?A. 删除重复的记录B. 提取关键特征C. 创建可视化D. 选择重要的数据子集答案: A4. 下面哪个是关联规则学习中的一个常见算法?A. AprioriB. AdaBoostC. 梯度提升机D. 主成分分析甮案: A5. 在数据挖掘中,“过拟合”指的是什么?A. 模型在新数据上的表现很差B. 模型没有捕捉到数据的关键特征C. 模型在训练集上的表现过于完美D. 模型参数过于简单答案: C6. “集成学习”在数据挖掘中指的是什么?A. 使用一个单一的模型进行预测B. 结合多个模型的预测以提高性能C. 对数据进行分层抽样D. 应用一个算法在不同的数据集上答案: B7. 哪个度量标准经常用来评估分类器的性能?A. 均方误差(MSE)B. 精确率和召回率C. 相关系数D. K-均值答案: B8. 下面哪个不是数据预处理的一部分?A. 归一化B. 主成分分析(PCA)C. 数据编码D. 计算数据均值答案: D9. 下面哪个算法适合于处理大量未标记数据?A. 监督学习B. 半监督学习C. 无监督学习D. 强化学习答案: C10. 下面哪个不是异常检测的算法?A. Local Outlier Factor (LOF)B. One-Class SVMC. Isolation ForestD. Linear Regression答案: D11. 在数据挖掘中,“特征选择”是为了什么?A. 减少数据的维度B. 增加更多的数据特征C. 创建数据的可视化D. 计算数据的主成分答案: A12. 下面哪个是决策树算法的一种?A. C4.5B. K-最近邻(K-NN)C. 随机森林D. 线性判别分析(LDA)答案: A13. 在聚类问题中,"轮廓系数"是用来做什么的?A. 评估聚类的紧密度和分离度B. 计算每个点到其最近的聚类中心的距离C. 确定最佳的聚类数D. 预测新数据点的类别答案: A14. 下面哪个技术用于减少过拟合?A. 正则化B. 增加更多的特征C. 使用更复杂的模型D. 删除数据集中的一些样本答案: A15. 支持向量机(SVM)的主要目的是什么?A. 最大化分类器的边界B. 最小化预测误差C. 找到数据的最佳表示D. 减少计算成本答案: A16. 数据挖掘中的“回归分析”用于什么?A. 预测数值型的目标变量B. 分类数据C. 数据的可视化D. 数据的归一化处理答案: A17. 下面哪个算法是基于概率的分类算法?A. 决策树B. 朴素贝叶斯C. 支持向量机(SVM)D. K-最近邻(K-NN)答案: B18. “梯度提升机”(Gradient Boosting Machine)主要用于什么?A. 数据预处理B. 特征选择C. 优化模型性能D. 聚类分析答案: C19. 在K-最近邻(K-NN)算法中,K代表什么?A. 选择的特征数B. 数据点将考虑的最近邻居的数量C. 聚类的数量D. 数据维度的数量答案: B20. 下面哪个不是数据挖掘任务?A. 预测B. 聚类C. 分类D. 数据录入答案: D21. 数据挖掘中的“提升”技术是用来做什么的?A. 减少模型的计算复杂度B. 减小数据集的规模C. 增强模型的预测能力D. 清洗数据集答案: C22. 下面哪个算法通常用于文本数据的分类?A. 朴素贝叶斯B. 线性回归C. K-均值聚类D. 随机森林答案: A23. 时间序列分析在数据挖掘中用于什么?A. 识别数据中的异常点B. 预测未来的数据点C. 分类数据点D. 查找数据集的子集答案: B24. 下面哪个方法不适用于缺失数据的处理?A. 使用均值填充缺失值B. 删除包含缺失值的记录C. 使用模型预测缺失值D. 增加更多的数据特征答案: D25. “维度的诅咒”指的是什么?A. 数据越多越好B. 数据维度增加导致分析变得更加困难C. 低维度数据不足以解释现象D. 高维度数据易于可视化答案: B26. 在数据挖掘中,下面哪个是一个常见的数据变换方法?A. 数据归一化B. 数据扩充C. 数据删除D. 数据复制答案: A27. 什么是数据挖掘中的“支持”?A. 一个数据集的所有数据点B. 关联规则中项集出现的频率C. 分类算法的准确率D. 聚类质量的度量答案: B28. 决策树中的“节点”代表什么?A. 数据特征的一个可能值B. 一个分类规则C. 数据集的一个子集D. 一个概率分布答案: B29. “随机森林”算法中的“森林”是由什么组成的?A. 决策树B. 数据集C. 神经网络D. 聚类答案: A30. 在数据挖掘中,“基于实例的学习”通常指什么?A. 构建一般化模型B. 用大量的数据实例来做决策C. 用少量的代表性实例来做决策D. 仅使用单个实例进行训练答案: C31. 在数据挖掘中,什么是“过度拟合”?A. 模型不能适应新数据B. 模型在训练数据上表现不佳C. 模型对训练数据的噪声也进行了学习D. 模型过于简化,丢失了重要信息答案: C32. 下面哪个是数据挖掘中的一种特征提取方法?A. 主成分分析(PCA)B. 决策树分析C. 线性回归D. 逻辑回归答案: A33. “聚类”在数据挖掘中的目的是什么?A. 找出数据集中的异常值B. 预测数据点的值C. 将数据集分组成相似的子集D. 减少数据维度答案: C34. 数据挖掘中,“神经网络”主要用于什么?A. 数据预处理B. 特征选择C. 复杂模式识别和预测建模D. 数据压缩答案: C35. “深度学习”在数据挖掘中通常用来处理哪些问题?A. 只有小规模数据集的问题B. 高维度和复杂结构的数据问题C. 简单线性问题D. 无需特征工程的问题答案: B36. 关联规则分析中的“置信度”是指什么?A. 规则中的项集出现的频繁程度B. 一条规则被证实为真的次数C. 给定前件时后件出现的条件概率D. 数据集中项集的独立概率答案: C37. 数据挖掘中的“决策树”算法主要用于解决哪类问题?A. 聚类B. 分类和回归C. 关联规则学习D. 数据预处理答案: B38. “模型评估”在数据挖掘中的目的是什么?A. 选择最好的数据预处理方法B. 确定最合适的特征集C. 选择合适的算法D. 评价模型的预测性能答案: D39. 下面哪个是数据挖掘中的一种无监督学习方法?A. 逻辑回归B. 线性判别分析C. 聚类D. 决策树答案: C40. “文本挖掘”通常用于处理什么类型的数据?A. 数值型数据B. 类别数据C. 文本数据D. 时间序列数据答案: C41. 数据挖掘中的“关联分析”用于发现什么之间的关系?A. 数据特征和预测变量之间B. 不同数据库之间C. 数据项之间的频繁模式、关联或相关性D. 模型和算法之间答案: C42. 在数据挖掘中,哪种方法通常用于异常值检测?A. 分类B. 聚类C. 关联规则学习D. 神经网络答案: B43. 数据挖掘中的“Apriori”算法用于解决哪一类问题?A. 分类B. 聚类C. 关联规则挖掘D. 回归分析答案: C44. “数据归约”在数据挖掘中指的是什么?A. 减少数据集的大小,同时尽量保持数据的完整性B. 通过算法提高数据的质量C. 删除数据集中的重复项D. 对数据进行加密保护答案: A45. 在数据挖掘中,什么是“多层感知器”?A. 一种基于规则的分类方法B. 一种数据预处理技术C. 一种基于神经网络的学习算法D. 一种数据可视化工具答案: C46. 下面哪种技术不是用来处理不平衡数据集的?A. 过采样少数类B. 欠采样多数类C. 生成合成样本D. 使用回归分析答案: D47. 在数据挖掘中,“bagging”是用来做什么的?A. 减少模型的偏差B. 增加模型的方差C. 减少模型的方差D. 增加模型的偏差答案: C48. 下面哪个算法适合于大规模数据集?A. 支持向量机B. 朴素贝叶斯C. 线性回归D. K-最近邻答案: B49. “分层聚类”和“K-均值聚类”有什么不同?A. 分层聚类需要预先指定聚类数目B. K-均值聚类是一种分层聚类方法C. 分层聚类不需要预先指定聚类数目D. K-均值聚类可以处理任何形状的数据集答案: C50. 在数据挖掘中,下面哪个是评估聚类质量的指标?A. 准确率B. 召回率C. 轮廓系数D. 均方误差答案: C51. “逻辑回归”通常用于解决哪类数据挖掘问题?A. 聚类B. 分类C. 回归D. 关联规则学习答案: B52. 数据挖掘中的“时间序列分析”通常用于分析什么类型的数据?A. 空间数据B. 文本数据C. 时间相关的数据D. 图像数据答案: C53. 数据挖掘中的“特征工程”包括哪些任务?A. 特征选择、特征提取、特征构造B. 模型选择、模型评估、模型部署C. 数据清洗、数据集成、数据转换D. 模型训练、模型测试、模型优化答案: A54. “随机森林”是什么类型的数据挖掘算法?A. 聚类算法B. 分类和回归算法C. 关联规则挖掘算法D. 异常检测算法答案: B55. 数据挖掘中的“神经网络”可以用于处理哪些问题?A. 仅分类B. 仅回归C. 分类和回归D. 仅聚类答案: C56. 下面哪个不是数据挖掘中的关键挑战?A. 数据质量B. 数据量的大小C. 数据的可视化D. 选择打印机答案: D57. 数据挖掘中的“假设检验”用于什么?A. 验证模型的预测准确性B. 确定数据样本中观察到的模式是否具有统计意义C. 预测未来的数据趋势D. 检测数据集中的异常值答案: B58. 在数据挖掘中,“K-均值聚类”算法的主要缺点是什么?A. 无法处理非线性数据B. 需要预先确定聚类的数量C. 无法处理大规模数据集D. 只能用于二维数据答案: B59. 下面哪个术语描述了一个数据挖掘算法在未见过的数据上的泛化能力?A. 过拟合B. 训练误差C. 模型容量D. 泛化误差答案: D60. 数据挖掘中的“集成方法”通常包括哪些类型?A. Bagging、Boosting和StackingB. 分类、回归和聚类C. 关联、序列模式和预测D. 决策树、神经网络和支持向量机答案: A61. 下面哪个不是在数据挖掘中常用的数据变换技术?A. 平滑B. 聚合C. 泛化D. 分类答案: D62. 在数据挖掘中,如果一个数据集很“稀疏”,这意味着什么?A. 数据集中有很多缺失值B. 数据集非常小C. 数据集分布非常广泛D. 数据点非常接近答案: A63. 数据挖掘中的“朴素贝叶斯”分类器是基于什么原理?A. 支持向量机B. 贝叶斯定理C. 决策树D. 神经网络答案: B64. 下面哪个参数在决策树算法中非常关键?A. 学习率B. 聚类数量C. 树的深度D. 特征数量答案: C65. 数据挖掘中的“支持向量机”算法主要解决什么类型的问题?A. 聚类B. 分类和回归C. 时间序列分析D. 数据预处理答案: B66. 数据挖掘中的“模型选择”是基于什么原则?A. 模型的复杂度B. 训练时间的长短C. 预测的准确性D. 所有上述因素答案: D67. 在数据挖掘中,什么是“抽样”?A. 从一个大的数据集中选出一个代表性的子集B. 收集新的数据点C. 数据的分类D. 数据的排序答案: A68. 数据挖掘中的“关联规则”用于发现数据中的哪种模式?A. 预测模式B. 时间序列模式C. 频繁项集和它们之间的关联D. 回归线答案: C69. 下面哪个是度量分类模型性能的方法?A. 均方误差B. 准确率C. 轮廓系数D. 平均绝对误差答案: B70. 数据挖掘中的“深度学习”通常需要什么?A. 小量的标记数据B. 强大的计算资源C. 一维数据D. 无监督的学习方法答案: B71. 数据挖掘中的“过拟合”通常如何解决?A. 增加更多的数据B. 简化模型C. 增加模型的复杂度D. A和B都是答案: D72. 数据挖掘中的“主成分分析”(PCA)主要用于什么?A. 数据分类B. 降维C. 数据预测D. 数据清洗答案: B73. 在数据挖掘中,哪种算法适合处理文本挖掘?A. K-均值聚类B. 随机森林C. 支持向量机D. 朴素贝叶斯答案: D74. 数据挖掘中的“决策树”通常在哪个阶段剪枝?A. 在构建树的过程中B. 构建树之后C. 选择模型之前D. 在数据预处理阶段答案: B75. 下面哪个不是评价回归模型的指标?A. 均方误差(MSE)B. 决定系数(R²)C. 准确率D. 平均绝对误差(MAE)答案: C76. 在数据挖掘中,什么是“集成学习”?A. 单个模型的学习过程B. 一个学习算法的集合C. 多个模型的组合,用于提高预测性能D. 数据集的集合答案: C77. 数据挖掘中的“神经网络”中的“隐藏层”有什么作用?A. 直接处理输入数据B. 对输入数据进行分类C. 提取输入数据的特征D. 输出预测结果答案: C78. 下面哪个算法是基于树的模型?A. 逻辑回归B. 支持向量机C. 随机森林D. 主成分分析答案: C79. 数据挖掘中的“无监督学习”与“监督学习”有什么不同?A. 无监督学习不需要任何数据B. 监督学习不使用数据标签C. 无监督学习不使用数据标签D. 监督学习用于聚类分析答案: C80. 数据挖掘中,下面哪个方法适合于特征选择?A. 递归特征消除B. K-均值聚类C. 主成分分析D. 线性回归答案: A81. 数据挖掘中的“特征缩放”主要用于什么目的?A. 转换特征到相同的尺度B. 增加数据集的特征数量C. 减少每个特征的值域D. 创建新的特征组合答案: A82. 下面哪个方法通常用于减少一个模型的方差?A. 增加更多特征B. 增加数据点C. 减少模型复杂度D. 进行特征选择答案: B83. 在数据挖掘中,哪种算法可以处理非线性问题?A. 线性回归B. 朴素贝叶斯C. 决策树D. 主成分分析答案: C84. 数据挖掘中的“异常检测”主要用于发现什么?A. 频繁项集B. 数据集中的主要趋势C. 数据中的奇异点D. 数据集中的相关性答案: C85. 在数据挖掘中,“相似性度量”用于什么?A. 比较不同模型的性能B. 确定数据点之间的相似度C. 测量数据集的大小D. 评价算法的运行时间答案: B86. 数据挖掘中的“集群分析”是用来做什么的?A. 预测数据点的类别B. 将数据点分为不同的组C. 分析数据中的基本模式D. 评估分类模型的性能答案: B87. 下面哪个是数据挖掘中的一种预测建模技术?A. K-均值聚类B. Apriori算法C. 线性回归D. 主成分分析答案: C88. 数据挖掘中的“分类器的集成”指的是什么?A. 一个分类器的集合B. 多个分类器的组合用于提高整体性能C. 使用单个分类器进行多次训练D. 集成不同类型的数据挖掘算法答案: B89. 数据挖掘中的“数据压缩”有什么作用?A. 减少数据的存储空间B. 加快算法的运行速度C. 提高数据的质量D. A和B都是答案: D90. 在数据挖掘中,什么是“数据立方体”?A. 数据仓库中的一个三维数据模型B. 一个可视化工具C. 数据挖掘算法的一种D. 用于数据预处理的技术答案: A91. “梯度下降”在数据挖掘中用于什么?A. 数据分类B. 寻找最优的模型参数C. 数据的聚类D. 关联规则的挖掘答案: B92. 在数据挖掘中,“半监督学习”是什么?A. 使用未标记数据进行学习B. 使用一小部分标记数据和大量未标记数据进行学习C. 不使用任何标记数据进行学习D. 仅使用标记数据进行学习答案: B93. 下面哪个是数据挖掘中的一种分类算法?A. 主成分分析B. 决策树C. K-均值聚类D. 均方误差答案: B94. 数据挖掘中的“数据集成”有什么目的?A. 将来自不同源的数据合并在一起B. 分离数据集C. 创建数据的备份D. 增加数据的维度答案: A95. 数据挖掘中的“数据规约”技术包括哪些?A. 数据归一化和标准化B. 数据清洗和数据集成C. 数据压缩和特征提取D. 数据转换和数据平滑答案: C96. 下面哪个概念与“数据挖掘”最不相关?A. 数据可视化B. 大数据C. 数据加密D. 机器学习答案: C97. 数据挖掘中的“数据变换”可能包括哪些操作?A. 平滑、聚合、泛化B. 分类、回归、聚类C. 训练、测试、验证D. 编码、解码、压缩答案: A98. 数据挖掘中的“预处理”是为了什么?A. 提高算法的准确性B. 减少计算时间C. 提高数据的质量D. 所有上述答案: D99. 下面哪个不是数据挖掘中的挑战?A. 数据的多样性B. 数据的质量C. 数据的存储D. 数据的颜色答案: D100. 数据挖掘中的“模型部署”指的是什么?A. 选择合适的模型B. 构建数据挖掘模型C. 在实际环境中实施数据挖掘模型D. 评估数据挖掘模型答案: C101. 在数据挖掘中,“标准化”和“归一化”有什么区别?A. 标准化是缩放到0和1之间,归一化是缩放到特定的平均和标准差B. 标准化是缩放到特定的平均和标准差,归一化是缩放到0和1之间C. 标准化和归一化是同一个概念D. 标准化是数据清洗过程,归一化是数据转换过程答案: B102. 数据挖掘中的“偏差-方差权衡”是什么意思?A. 增加模型的偏差会减少方差B. 减少模型的偏差会增加方差C. 增加模型的方差会减少偏差D. 增加偏差和方差可以提高模型的准确率答案: A103. 下面哪个是时间序列数据挖掘中的一个关键任务?A. 分类B. 聚类C. 预测D. 关联规则挖掘答案: C104. 数据挖掘中的“聚类分析”和“分类”有什么不同?A. 聚类是监督学习,分类是无监督学习B. 聚类和分类都是监督学习C. 聚类是无监督学习,分类是监督学习D. 聚类和分类都是无监督学习答案: C105. 在数据挖掘中,“多维缩放”主要用于什么?A. 降维B. 特征提取C. 数据可视化D. 数据清洗答案: C106. 数据挖掘中的“熵”通常与哪个概念相关?A. 关联规则的强度B. 聚类的紧密度C. 决策树的信息增益D. 回归分析的系数答案: C107. 下面哪个不是构建数据挖掘模型时考虑的因素?A. 数据的质量B. 数据的数量C. 模型的颜色D. 算法的选择答案: C108. 数据挖掘中的“序列模式挖掘”主要用于发现什么?A. 数据中的异常值B. 时间序列数据中的重复模式C. 数据集中的分类标签D. 数据属性之间的相关性答案: B109. 下面哪个技术是处理缺失数据的有效方法?A. 数据删除B. 数据插补C. 数据变换D. A和B都是答案: D110. 数据挖掘中的“关联规则挖掘”用于解决哪类问题?A. 预测问题B. 分类问题C. 聚类问题D. 市场篮子分析答案: D111. 在数据挖掘中,“深度学习”主要用于处理哪种类型的数据?A. 小规模数据集B. 结构化数据集C. 非结构化或半结构化数据集D. 一维数据答案: C112. 下面哪个是度量聚类质量的指标?A. 支持度B. 置信度C. Davies-Bouldin指数D. 平均绝对误差答案: C113. 数据挖掘中的“决策树”用于哪些类型的数据?A. 仅数值型数据B. 仅分类数据C. 数值型和分类数据D. 时间序列数据答案: C114. 数据挖掘中的“神经网络”与“深度学习”有什么关系?A. 完全不相关B. 深度学习是神经网络的一个子集C. 神经网络是深度学习的一个子集D. 完全相同答案: C115. 在数据挖掘中,“梯度提升”算法主要用于什么?A. 数据预处理B. 特征选择C. 预测建模D. 数据可视化答案: C116. 下面哪个算法适用于大规模数据集的分类问题?A. 随机森林B. 支持向量机C. 神经网络D. 逻辑回归答案: A117. 数据挖掘中的“协同过滤”是用于推荐系统的哪个部分?A. 用户界面设计B. 数据存储C. 预测用户偏好D. 数据清洗答案: C118. 在数据挖掘中,什么是“文本挖掘”?A. 从文本数据中提取有用信息的过程B. 创建新文本数据C. 对文本数据进行归类D. 提高文本数据的质量答案: A119. 下面哪个是衡量数据挖掘模型泛化能力的方法?A. 交叉验证B. 决策树C. 特征选择D. 神经网络答案: A120. 数据挖掘中的“支持向量机”主要用于解决什么类型的问题?A. 数据可视化B. 数据预处理C. 分类和回归问题D. 聚类问题答案: C121. 在数据挖掘中,“项集”的概念最常用于哪种分析?A. 聚类分析B. 分类分析C. 关联规则分析D. 回归分析答案: C122. 数据挖掘中的“过采样”和“欠采样”技术用于处理什么问题?A. 缺失数据B. 高维数据C. 不平衡数据集D. 大规模数据集答案: C123. 在数据挖掘中,一条“规则”的“提升度”(lift)指的是什么?A. 规则的支持度与预期支持度的比值B. 规则的支持度与置信度的比值C. 规则的置信度与预期置信度的比值D. 规则的准确率答案: C124. 数据挖掘中的“属性选择”是什么意思?A. 从数据集中选取有用的属性进行分析B. 修改属性的类型C. 删除数据集中的某些属性D. 重命名属性答案: A125. 下面哪个算法是一种基于树的回归方法?A. 线性回归B. 逻辑回归C. 随机森林D. 支持向量机答案: C126. 在数据挖掘中,“模型过度复杂”可能导致什么问题?A. 欠拟合B. 过拟合C. 更快的训练时间D. 更好的用户体验答案: B127. 数据挖掘中的“自编码器”通常用于哪种任务?A. 分类B. 回归C. 数据降维D. 数据增强答案: C128. 在数据挖掘中,“分箱”技术用于什么?A. 数据分类B. 数据聚类C. 将连续变量转换为离散变量D. 预测模型的输出答案: C129. 数据挖掘中的“交叉售卖”是基于哪种分析?A. 聚类分析B. 分类分析C. 关联规则分析D. 时间序列分析答案: C130. 下面哪个是度量模型性能的时间复杂度的方法?A. AUC-ROC曲线B. 计算模型训练时间C. 均方误差D. 准确率答案: B131. 数据挖掘中的“Gini指数”用于评估什么?A. 回归模型的性能B. 关联规则的强度C. 决策树分裂的纯度D. 聚类的质量答案: C132. 在数据挖掘中,什么是“集合外估计”?A. 使用测试集以外的数据评估模型的方法B. 估计模型的准确率C. 使用模型预测集合中没有的数据D. 在数据集之外收集新数据答案: A133. 数据挖掘中的“学习曲线”展示了什么?A. 不同算法的性能比较B. 训练集大小对模型性能的影响C. 特征数量对模型性能的影响D. 不同参数设置对模型性能的影响答案: B134. 下面哪个是数据挖掘中的非线性模型?A. 线性回归B. 朴素贝叶斯C. 决策树D. 线性判别分析答案: C135. 在数据挖掘中,什么是“验证数据集”?A. 用来训练模型的数据集B. 用来测试模型的数据集C. 在模型训练过程中用来调整模型参数的数据集D. 用于最终评估模型性能的数据集答案: C136. 数据挖掘中的“层次聚类”有哪些类型?A. 顺序聚类和并行聚类B. 聚合聚类和分裂聚类C. K-均值聚类和谱聚类D. 监督聚类和无监督聚类答案: B137. 数据挖掘中的“ROC曲线”用于评估哪种类型的模型?A. 聚类模型B. 分类模型C. 回归模型D. 关联规则模型答案: B138. 下面哪个是评估数据挖掘模型“泛化能力”的好方法?A. 增加模型的复杂度B. 减少训练集的大小C. 使用多个测试集D. 使用交叉验证答案: D139. 在数据挖掘中,“强化学习”通常用于解决什么类型的问题?A. 数据分类B. 数据预处理C. 决策过程中的序列化问题D. 数据集成答案: C140. 数据挖掘中的“特征哈希”是用于什么?A. 减少数据的维度B. 加密数据C. 增强数据的特征D. 创建数据的哈希表答案: A141. 数据挖掘中的“时间序列分析”主要用于分析哪种类型的数据?A. 文本数据B. 图像数据C. 音频数据D. 有时间戳的数据答案: D142. 在数据挖掘中,“正则化”用于解决什么问题?A. 缺失数据B. 不平衡数据集C. 过拟合D. 高维数据答案: C143. 下面哪个是数据挖掘中的一种用于减少特征数量的技术?A. 特征增强B. 特征提取C. 特征识别D. 特征映射答案: B144. 数据挖掘中的“聚类”方法通常用于什么?A. 为每个数据点分配一个类别标签B. 预测数值型的目标变量C. 发现数据中的自然分组D. 找出数据中的异常点答案: C145. 数据挖掘中“多元线性回归”主要用于解决什么类型的问题?A. 分类B. 聚类C. 回归D. 关联规则发现答案: C146. 下面哪个是数据挖掘中用于分类任务的算法?A. 主成分分析(PCA)B. K-均值聚类C. 决策树D. 相关系数分析答案: C147. 数据挖掘中的“模型融合”是什么意思?A. 使用不同类型的模型处理不同的数据集B. 将多个模型的预测结果结合起来以改善性能C. 在同一个数据集上训练多个模型D. 合并两个不同的数据集答案: B148. 下面哪个是用于在数据挖掘中评估聚类算法性能的指标?A. 准确率B. 召回率C. Jaccard指数D. F1分数答案: C149. 数据挖掘中的“AdaBoost”算法主要用于什么?A. 数据降维B. 异常检测C. 分类和回归任务D. 关联规则挖掘答案: C150. 在数据挖掘中,“文本预处理”可能包括哪些步骤?A. 词干提取B. 停用词去除C. 词袋模型创建D. 所有上述答案: D151. 数据挖掘中的“特征选择”和“特征提取”有什么区别?A. 特征选择是选择重要的特征,特征提取是创建新的特征B. 特征选择是创建新的特征,特征提取是选择重要的特征C. 它们是同一个概念的不同名称D. 它们都用于降低模型的复杂度答案: A152. 数据挖掘中的“决策边界”是用于哪种类型的任务?A. 聚类。
《数据挖掘》试题与答案(2021年整理精品文档)

《数据挖掘》试题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《数据挖掘》试题与答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《数据挖掘》试题与答案的全部内容。
一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。
流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。
2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值.若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。
(完整版)数据挖掘考试题库

1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
相关的名称有知识发现、数据分析、数据融合、决策支持等。
数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。
2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构3.简述数据仓库设计的三级模型及其基本内容。
概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。
逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。
物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。
在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。
提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。
4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。
为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。
5.简述数据预处理方法和内容。
①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。
②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。
数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
数据挖掘基础题库

数据挖掘基础题库
以下是一些关于数据挖掘基础的常见问题,可以用作题库的一部分。
这些问题涵盖了数据挖掘的基本概念、技术和应用。
可以根据需要进行修改或扩展。
1.数据挖掘的定义是什么?它在实际应用中起到什么作用?
2.请解释数据挖掘的主要任务和目标。
3.什么是数据预处理,为什么在数据挖掘中它是一个重要的步骤?
4.解释数据挖掘中的特征选择和特征提取的区别。
5.什么是关联规则,在数据挖掘中如何应用关联规则?
6.解释聚类和分类在数据挖掘中的用途,并提供它们之间的区别。
7.什么是决策树,如何使用决策树进行分类?
8.请解释支持向量机(SVM)在数据挖掘中的作用。
9.数据挖掘中常用的评估指标有哪些,它们分别用于什么场景?
10.什么是异常检测,为什么在数据挖掘中它是一个重要的任务?
11.解释交叉验证在数据挖掘中的作用。
12.数据挖掘与机器学习的关系是什么?它们有哪些相似之处和区别?
13.什么是时间序列分析,在数据挖掘中如何应用时间序列分析?
14.请解释朴素贝叶斯分类器的基本原理。
15.解释深度学习在数据挖掘中的作用,并提供一些常见的深度学习模型。
这些问题旨在涵盖数据挖掘的基础知识和技术。
数据挖掘考试题库完整

一、名词解释1. 数据仓库:是一种新的数据处理体系结构 .是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化 (不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。
2. 孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。
3. OLAP:OLAP 是在OLTP 的基础上发展起来的.以数据仓库为基础的数据分析处理 .是共享多维信息的快速分析.是被专门设计用于支持复杂的分析操作 .侧重对分析人员和高层管理人员的决策支持。
4. 粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小 .同时影响数据仓库所能回答查询问题的细节程度。
5. 数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如 0-1) 以提高数据挖掘效率的方法。
规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。
6. 关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。
如果两项或多项属性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。
7. 数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
8. OLTP:OLTP 为联机事务处理的缩写.OLAP 是联机分析处理的缩写。
前者是以数据库为基础的.面对的是操作人员和低层管理人员 .对基本数据进行查询和增、删、改等处理。
9. ROLAP:是基于关系数据库存储方式的 .在这种结构中.多维数据被映像成二维关系表.通常采用星型或雪花型架构.由一个事实表和多个维度表构成。
10. MOLAP:是基于类似于“超立方”块的OLAP 存储结构.由许多经压缩的、类似于多维数组的对象构成.并带有高度压缩的索引及指针结构 .通过直接偏移计算进行存取。
11. 数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要 .并且能够得到和原始数据相同的分析结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释1.数据仓库:是一种新的数据处理体系结构,是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。
2.孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。
3.OLAP:OLAP是在OLTP的基础上发展起来的,以数据仓库为基础的数据分析处理,是共享多维信息的快速分析,是被专门设计用于支持复杂的分析操作,侧重对分析人员和高层管理人员的决策支持。
4.粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
5.数据规范化:指将数据按比例缩放(如更换大单位),使之落入一个特定的区域(如0-1)以提高数据挖掘效率的方法。
规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。
6.关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。
如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。
7.数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
8.OLTP:OLTP为联机事务处理的缩写,OLAP是联机分析处理的缩写。
前者是以数据库为基础的,面对的是操作人员和低层管理人员,对基本数据进行查询和增、删、改等处理。
9.ROLAP:是基于关系数据库存储方式的,在这种结构中,多维数据被映像成二维关系表,通常采用星型或雪花型架构,由一个事实表和多个维度表构成。
10.MOLAP:是基于类似于“超立方”块的OLAP存储结构,由许多经压缩的、类似于多维数组的对象构成,并带有高度压缩的索引及指针结构,通过直接偏移计算进行存取。
11.数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
12.广义知识:通过对大量数据的归纳、概括和抽象,提炼出带有普遍性的、概括性的描述统计的知识。
13.预测型知识:是根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。
14.偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离常规的异常现象,如标准类外的特例,数据聚类外的离群值等。
15.遗传算法:是一种优化搜索算法,它首先产生一个初始可行解群体,然后对这个群体通过模拟生物进化的选择、交叉、变异等遗传操作遗传到下一代群体,并最终达到全局最优。
16.聚类:是将物理或抽象对象的集合分组成为多个类或簇(cluster)的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。
17.决策树:是用样本的属性作为结点,用属性的取值作为分支的树结构。
它是分类规则挖掘的典型方法,可用于对新样本进行分类。
18.相异度矩阵:是聚类分析中用于表示各对象之间相异度的一种矩阵,n个对象的相异度矩阵是一个nn维的单模矩阵,其对角线元素均为0,对角线两侧元素的值相同。
19.频繁项集:指满足最小支持度的项集,是挖掘关联规则的基本条件之一。
20.支持度:规则A→B的支持度指的是所有事件中A与B同地发生的的概率,即P(A∪B),是AB同时发生的次数与事件总次数之比。
支持度是对关联规则重要性的衡量。
21.可信度:规则A→B的可信度指的是包含A项集的同时也包含B 项集的条件概率P(B|A),是AB同时发生的次数与A发生的所有次数之比。
可信度是对关联规则的准确度的衡量。
22.关联规则:同时满足最小支持度阈值和最小可信度阈值的规则称之为关联规则。
二、综合题1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
相关的名称有知识发现、数据分析、数据融合、决策支持等。
数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。
2.何谓数据仓库?为什么要建立数据仓库?数据仓库是一种新的数据处理体系结构,是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合,为企业决策支持系统提供所需的集成信息。
建立数据仓库的目的有3个:一是为了解决企业决策分析中的系统响应问题,数据仓库能提供比传统事务数据库更快的大规模决策分析的响应速度。
二是解决决策分析对数据的特殊需求问题。
决策分析需要全面的、正确的集成数据,这是传统事务数据库不能直接提供的。
三是解决决策分析对数据的特殊操作要求。
决策分析是面向专业用户而非一般业务员,需要使用专业的分析工具,对分析结果还要以商业智能的方式进行表现,这是事务数据库不能提供的。
3.列举操作型数据与分析型数据的主要区别。
操作型数据分析型数据当前的、细节的历史的、综合的面向应用、事务驱动面向分析、分析驱动频繁增、删、改几乎不更新,定期追加操作需求事先知道分析需求事先不知道生命周期符合SDLC 完全不同的生命周期对性能要求高对性能要求宽松一次操作数据量小一次操作数据量大支持日常事务操作支持管理决策需求4.何谓OLTP和OLAP?它们的主要异同有哪些?OLTP即联机事务处理,是以传统数据库为基础、面向操作人员和低层管理人员、对基本数据进行查询和增、删、改等的日常事务处理。
OLAP即联机分析处理,是在OLTP基础上发展起来的、以数据仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支持服务。
OLTP和OLAP的主要区别如下表:OLTP OLAP数据库数据数据库或数据仓库数据细节性数据综合性数据当前数据历史数据经常更新不更新,但周期性刷新一次性处理的数据量小一次处理的数据量大对响应时间要求高响应时间合理用户数量大用户数据相对较少面向操作人员,支持日常操作面向决策人员,支持管理需要面向应用,事务驱动面向分析,分析驱动5.粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构6.简述数据仓库设计的三级模型及其基本内容。
概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。
逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。
物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。
在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。
提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。
7.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。
为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。
8.简述数据预处理方法和内容。
①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。
②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。
需要注意不同数据源的数据匹配问题、数值冲突问题和冗余问题等。
③数据变换:将原始数据转换成为适合数据挖掘的形式。
包括对数据的汇总、聚集、概化、规范化,还可能需要进行属性的重构。
④数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
9.简述数据清理的基本内容。
①尽可能赋予属性名和属性值明确的含义;②统一多数据源的属性值编码;③去除无用的惟一属性或键值(如自动增长的id);④去除重复属性(在某些分析中,年龄和出生日期可能就是重复的属性,但在某些时候它们可能又是同时需要的)⑤去除可忽略字段(大部分为空值的属性一般是没有什么价值的,如果不去除可能造成错误的数据挖掘结果)⑥合理选择关联字段(对于多个关联性较强的属性,重复无益,只需选择其中的部分用于数据挖掘即可,如价格、数据、金额)⑦去掉数据中的噪音、填充空值、丢失值和处理不一致数据。
10.简述处理空缺值的方法。
①忽略该记录;②去掉属性;③手工填写空缺值;④使用默认值;⑤使用属性平均值;⑥使用同类样本平均值;⑦预测最可能的值。
11. 常见的分箱方法有哪些?数据平滑处理的方法有哪些?分箱的方法主要有:①统一权重法(又称等深分箱法)②统一区间法(又称等宽分箱法)③最小熵法④自定义区间法数据平滑的方法主要有:平均值法、边界值法和中值法。
12. 何谓数据规范化?规范化的方法有哪些?写出对应的变换公式。
将数据按比例缩放(如更换大单位),使之落入一个特定的区域(如0.0~1.0),称为规范化。
规范化的常用方法有:(1) 最大-最小规范化: (2) 零-均值规范化:(3) 小数定标规范化:x =x 0/10α13. 数据归约的方法有哪些?为什么要进行维归约?①数据立方体聚集②维归约③数据压缩④数值压缩⑤离散化和概念分层维归约可以去掉不重要的属性,减少数据立方体的维数,从而减少数据挖掘处理的数据量,提高挖掘效率。
14. 何谓聚类?它与分类有什么异同?聚类是将物理或抽象对象的集合分组成为多个类或簇(cluster)的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。
聚类与分类不同,聚类要划分的类是未知的,分类则可按已知规则进行;聚类是一种无指导学习,它不依赖预先定义的类和带类标号的训练实例,属于观察式学习,分类则属于有指导的学习,是示例式学习。
15. 举例说明聚类分析的典型应用。
①商业:帮助市场分析人员从客户基本库中发现不同的客户群,并且用不同的()()0000max min x x min min max min -=-+-0XXx x σ-=购买模式描述不同客户群的特征。
②生物学:推导植物或动物的分类,对基于进行分类,获得对种群中固有结构的认识。
③WEB 文档分类④其他:如地球观测数据库中相似地区的确定;各类保险投保人的分组;一个城市中不同类型、价值、地理位置房子的分组等。
⑤聚类分析还可作为其他数据挖掘算法的预处理:即先进行聚类,然后再进行分类等其他的数据挖掘。
聚类分析是一种数据简化技术,它把基于相似数据特征的变量或个案组合在一起。
16. 聚类分析中常见的数据类型有哪些?何谓相异度矩阵?它有什么特点?常见数据类型有区间标度变量、比例标度型变量、二元变量、标称型、序数型以及混合类型等。