(完整版)小学奥数-还原问题(教师版)
四年级奥数——还原问题

四年级(上) 教师: 胡老师 学生:还原问题一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。
对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
例1、一个数减24加上15,再乘以8得432,求这个数。
【思路分析】我们可以从最后结果432出发倒着推理。
最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。
【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。
【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋? 【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。
【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。
竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。
小学奥数知识讲解-第十三讲 还原问题

第十三讲还原问题还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.典型例题例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.解第1天借书后还剩的本数:32+43=75(本)原有图书的本数:75×2=150(本)综合算式:(32+43)×2=150(本)答:小图书箱原有图书150本.例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.解 5×5=2525+5=3030÷5=66-5=1答:所求的数为1.例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.解一 123-39+85=84+85=169解二 9-5=480-30=50123+50-4=169答:正确的答案是169.例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.解(19+12)×2=62(吨)(62-12)×2=100(吨)答:这个仓库原有大米100吨.小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。
(完整版)小学奥数-还原问题(教师版)

还原问题还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。
解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。
列综合算式时,要特别注意运算顺序,为此要正确使用括号。
如小莉要把一个包装精美的盒子打开。
她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。
妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。
小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。
小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。
这是生活中常会遇到的“还原问题”。
在数学中,还原问题也很多。
【例1】★小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?【解析】从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
【小试牛刀】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?【解析】从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
(完整版)第九讲还原问题(三年级奥数)

第九讲还原问题1、一个数的5倍加上6,减去10,再除以9,得4。
这个数是多少?2、某数加上2,乘以5,除以11,再减去8,结果是1。
求这个数。
3、老奶奶卖鸡蛋,上午卖了总数的一半,中午卖了剩下的一半,下午再卖了剩下的一半,晚上将剩下的5只煮成荷包蛋。
那么老奶奶原有鸡蛋多少个?4、小明妈妈给家里买了一些水果,第一天他们一家三口吃了全部的一半,第二天又吃了剩下的一半,第三天吃了剩下的一半还多一个,这时只剩下2个桃子。
问:小明妈妈买了多少个桃子。
5、小明看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,还剩下15页没看。
这本故事书一共有多少页?6、有一箱图书,小红拿走了一半多1本,小丽拿走剩下的一半多2本,小强拿走再剩下的一半多3本,箱里还剩2本,问这箱图书共有多少本?7、一堆桔子,甲取走一半,放回一个;乙接着取走余下的一半,放回一个;丙最后取走余下的一半,放回一个,这时剩下7个。
那么原有多少个桔子?8、粮店库存面粉若干袋,第一天卖出库存的一半多4袋,第二天卖出剩下的一半少3袋,第三天运进30袋,这时粮店里共有面粉50袋。
求粮店里原有面粉多少袋。
9、粮库内有一批面粉,第一次运出总数的一半多20吨,第二次运出剩下的一半少6吨,第三次运出剩下的一半少12吨,最后剩40吨。
问:粮库里原有面粉多少吨?10、一捆电线,第一次用去全长的一半少5米,第二次用去余下的一半少10米,第三次用去15米,最后还剩35米。
这捆电线原有多少米?11、三只笼子里共养24只兔子,如果从第一只笼子里取出4只放到第二只笼子里,再从第二只笼里取出3只放到第三只笼子里,最后从第三只笼子取出4只放到第一只笼子里,那么三只笼里的兔子就一样多。
原来三只笼里各养了多少只兔子?12、四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整:把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋。
这时,四个袋子的棋子一样多。
小学三年级奥数《还原问题》倒推法省公开课获奖课件说课

进行新课
总结词:逐步引导、深入探究
教师引导学生用倒推法逐步解决孙悟空变桃子的数学问题,并详细说明倒推法的 思路和步骤。
通过练习和讨论,教师引导学生深入探究,发现规律,并逐步完善自己的知识体 系。
3
右侧包括:两道例题的解题过程和三道练习题 的题目及解题思路提示。
部分板书设计
倒推法的概念
倒推法的公式
倒推法是一种通过逆向思维解决问题的方法 ,即从最后一步开始逐步向前推算,通过还 原问题得到答案。
通过简单的代数运算来解决问题,公式为: a × b+c=d,倒推法公式为:d÷b-c=a。
倒推法的解题步骤
教具准备
PPT课件
通过精心设计的PPT课件,辅 助教学,提高教学效果。
实物教具
准备实际物品作为教具,如水果 、文具等,帮助学生更好地理解 问题。
板书设计
通过合理的板书设计,突出教学重 点、难点,帮助学生更好地掌握知 识。
04
说教学程序
导入新课
总结词
激发兴趣、建立联系
用西游记小故事视频引入,教师提问
教学难点
让学生理解倒推法的思路和步骤,并能够熟练运用倒推法解决较为复杂的问 题。
03
说教法
教学方法
倒推法
通过反向倒推的方式,引导学生从已知结果反推 出原来的数量或情况。
情境创设
通过设置具体的情境,帮助学生更好地理解问题 ,激发学习兴趣。
小组合作
组织学生进行小组合作,互相交流、讨论、解决 问题,培养学生的协作能力。
倒推法的应用
(完整版)小学四年级奥数还原问题

还原问题(一)还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
例1.某数加上6,乘以6,减去6,除以6,其结果等于6,求某数。
例2.有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?例3.在做一道加法式题时,某学生把个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?例4.工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了余下了一半还少1千米,还剩20千米没有修完。
公路的全长是多少千米?练习与思考1.某数加上10,乘以10,减去10,除以10,结果等于10。
这个数是多少?2.《小学生数学报》少年数学爱好者俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
这个俱乐部成立于哪一年?3.有一个说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人多少岁?4.小明在做一道加法计算题时,把个位上的4看作7,十位上的8看作2,结果和是306。
正确的答案应该是多少?5.王大爷去粮站买米,粮站的陈叔叔因粗心,错把一袋米少算了20千克,把另一袋米多算了3千克,合计卖给王大爷60千克米。
王大爷实际购买了多少千克米?6.一捆电线,第一次用去全长了一半多3米,第二次用去余下的一半多5米,还剩下7米。
这捆电线原来长多少米?7.有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次拿出8个,篮里还剩2个鸡蛋。
篮里原来有多少个鸡蛋?8.小刚买毛巾用去所带钱的一半,买手帕用去2元钱,买香皂用去剩余钱的一半,这时还剩4元钱。
小刚买毛巾用去多少钱?一共带了多少钱?9.某仓库运出三次原料,第一次运出总数的一半,第二次运出余下的一半,第三次运出前两次运完后余下的一半,最后把剩下的原料分给甲、乙两个工厂,甲厂得6吨,是乙厂的2倍。
小学奥数基础教程之还原问题

还原问题(一)例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
问:正确的结果应是多少?例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?例4甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。
问:甲、乙、丙三个组原来各有多少本图书?例6一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?1.某数加上11,减去12,乘以13,除以14,其结果等于26,这个数是多少?2.某数加上6,乘以6,减去6,其结果等于36,求这个数。
3.在125×□÷3×8—1=1999中,□内应填入什么数?4.小乐爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100。
问:小乐爷爷今年多少岁?5.粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半少7吨,还剩4吨。
问:粮库里原有面粉多少吨?6.有一筐梨,甲取一半又一个,乙取余下的一半又一个,丙再取余下的一半又一个,这时筐里只剩下一个梨。
这筐梨共值8.80元,那么每个梨值多少钱?7.某人去银行取款,第1次取了存款的一半还多5元,第二次取了余下的一半还多10元,这时存折上还剩125元。
问:此人原有存款多少元?。
(完整版)四年级奥数-还原问题讲义(附答案)

还原问题【知识梳理】还原问题是逆解应用题,一般特点是:已知对某个数按照一定的顺序进行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。
【例题精讲】【例1】某数加上3,乘以5,再减去8,等于12,求某数。
( 1 )【例2】有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?( 76 )【例3】马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111,问正确答案是多少?( 57 )【例4】某数加上5,再增加7,结果等于61,这个数是?( 49 )1、某数减去4,再减少6,结果为2,这个数是?( 12 )2、小明把某数减去5,再增加6,结果是12,这个数是多少?( 11 )【例5】某数扩大3倍,再缩小4倍,正好是6,这个数是?( 8 )【试一试】1、一捆电线,第一次用了一半,第二次又用了剩下的一半,还有6米,这捆电线长多少米?( 24 )2、小红对小明说:“你的年龄是11岁,你的年龄是我的2倍少9岁,你知道我的年龄吗?”( 10 )【例6】小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁,小刚的奶奶今年多少岁?( 79 )1、在□里填上适当的数。
20×□÷8+16=26 ( 4 )2、一个数的3倍加上6,再减去9,最后乘以2,结果得60,求这个数。
( 11 )【例7】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?( 480 )【试一试】1、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?( 42 )2、爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,还剩下1个,问爸爸买了多少个橘子?( 22 )【例8】小明、小强和小勇三个人共有故事书60本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
还原问题还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。
解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。
列综合算式时,要特别注意运算顺序,为此要正确使用括号。
如小莉要把一个包装精美的盒子打开。
她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。
妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。
小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。
小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。
这是生活中常会遇到的“还原问题”。
在数学中,还原问题也很多。
【例1】★小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?【解析】从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
【小试牛刀】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?【解析】从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
【例2】★小明、小强和小勇三个人共有故事书60本。
如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?【解析】不管这三个人如何借来借去,故事书的总本数是60本,根据结果三个人故事书本数相同,可以求最后三个人每人都有故事书60÷3=20本。
如果小强不借给小勇5本,那么小强有20+5=25本,小勇有20-5=15本;如果小强不向小明借3本,那么小强有25-3=22本,小明有20+3=23本。
【小试牛刀】甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
问两桶油原来各有多少千克?【解析】如果后来乙桶不倒出和甲桶同样多的油放入甲桶,甲桶内应有油36÷2=18千克,乙桶应有油36+18=54千克;如果开始不从甲桶倒出和乙桶同样多的油倒入乙桶,乙桶原有油应为54÷2=27千克,甲桶原有油18+27=45千克。
【例3】★两只猴子拿26个桃,甲猴眼急手快,抢先得到,乙看甲猴拿得太多,就抢去一半;甲猴不服,又从乙猴那儿抢走一半;乙猴不服,甲猴就还给乙猴5个,这时乙猴比甲猴多5个。
问甲猴最初准备拿几个?【解析】先求出两个猴现在各拿多少,根据“有26个桃”和“这时乙猴比甲猴多2个”,可知乙猴现在拿(26+2)÷2=14个,甲猴现在拿26-14=12个。
甲猴从乙猴那儿抢走一半,又还给乙猴5个后有12个,如果甲猴不还给乙猴,那么甲猴有12+5=17个;如果甲猴不抢乙猴一半,那么乙猴现在有(26-17)×2=18个。
乙猴看甲猴拿得太多,抢去甲猴的一半后有18个,如果不抢,那么甲猴最初准备拿(26-18)×2=16个。
【例4】★小马虎在做一道加法题时,把一个加数个位上的9看作6,十位上的6看作9,结果和是174,那么正确的结果应该是多少呢?【解析】我们可以这样理解这道题的意思:一个数(正确答案),由于小马虎两次错误的计算,变成了另一个数(错误结果),我们知道引起这种变化的原因是:①把个位上的9看作6,这就相当于把正确答案减少了963-=②把十位上的6看作9,这就相当于把正确答案增加了:109630()⨯-=这样原题就变成了“一个数减去3,再加上30,所得结果是174,求这个数.”我们只要把少加的加上,多加的减去,就可以求出正确的结果()()+--⨯-=+-=174961096174330147【小试牛刀】淘气在做一道减法时,把减数个位上的9看成了3,把十位上的4看成了7,得到的结果是164,请你帮淘气算算正确的答案应该是多少呢?【解析】164(7349) 188+-=或164630188-+=.【例5】★学学看到太上老君正在用一根绳子拴宝葫芦,第一次用去全长的一半还多2米,第二次用去余下的一半少10米,第三次用去15米,最后还剩9米,那么这根绳子原来有多少米呢?【解析】根据题意,画图倒推分析:+=(米)15924()(米)2410228-⨯=()(米)282260+⨯=所以,这根绳子全长60米.【小试牛刀】一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。
这捆电线原来有多少米?【解析】为了帮助同学们分析数量关系,可依照题意画出右图。
从线段图上可以看出:(1)(米),就是第一次用去后余下的一半。
(2)(米),就是余下的电线长度。
(3)(米),就是全长的一半。
(4)(米),就是原来电线的长度。
综合列式计算:()71510232+-⨯+⨯⎡⎤⎣⎦(1223)2=⨯+⨯272=⨯(米)【例6】★★桃园里来了第一群猴子,吃去桃子总数的一半又半个;第二群猴子又来吃掉剩下桃子的一半又半个;第三群猴子又来吃掉剩下桃子数的一半又半个.这时桃园里还只有100个桃了.那么园中原有多少桃?【解析】第三群猴没吃,相应有桃(1000.5)2201+⨯=(个)第二群猴没吃,相应有桃(2010.5)2403+⨯=(个)第一群猴没吃,相应有桃(即桃园中原有桃)(4030.5)2807+⨯=(个)【小试牛刀】山顶上有棵桃数,一只猴子偷吃桃子,第一天偷吃了总数的一半多2个,第二天又偷吃了剩下的一半多2个,这时还剩1个,问:树上原来有多少个桃子?【解析】2[1222]16⨯+⨯+=()(个).【例7】★★袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球。
问:袋中原有多少个球?【解析】利用逆推法从第5次操作后向前逆推。
第5次操作后有3个,第4次操作后有(3—1)×27151012+-=12224⨯=24327+=27254⨯=54=余下的一半第一次用去的3米 图2 10米第二次用去的 全长的一半7米 第三次用去的15米全长?米=4(个),第3次……为了简洁清楚,可以列表逆推如下:所以原来袋中有34个球。
【小试牛刀】三堆苹果共48个。
先从第一堆中拿出与第二堆个数相等的苹果并入第二堆;再从第二堆中拿出与第三堆个数相等的苹果并入第三堆;最后又从第三堆中拿出与这时第一堆个数相等的苹果并入第一堆。
这时,三堆苹果数恰好相等。
问:三堆苹果原来各有多少个?【解析】由题意知,最后每堆苹果都是48÷3=16(个),由此向前逆推如下表:原来第一、二、三堆依次有22,14,12个苹果。
【例8】★★★甲、乙两班各要种若干棵树,如果甲班拿出与乙班同样多的树给乙班,乙班再从现有的树中也拿出与甲班同样多的树给甲班,这时两班恰好都有28棵树,问甲、乙两班原来各有树多少棵?【解析】如果后来乙班不给与甲班同样多的树,甲班应有树28214+=(棵),÷=(棵),乙班有281442如果开始不从甲班拿出与乙班同样多的树,乙班原有树42221÷=(棵),甲班原有树142135+=(棵).列表倒推如下:【小试牛刀】一班、二班、三班各有不同数目的图书.如果一班拿出本班的一部分图书分给二班、三班,使这两个班的图书各增加一倍;然后二班也拿出一部分图书分给一班、三班,使这两个班的图书各增加一倍;接着三班也拿出一部分图书分给一班、二班,使这两个班的图书各增加一倍.这时,三个班的图书数目都是48本.求三个班原来各有图书多少本?【解析】我们可采用倒推法,再结合列举法进行分析推理.在每一次重新变化后,三个班的图书总数目是一个不变的数,由此,可从最后三个班的图书数目都是48本出发进行倒推,求每一次重新变化以前三个班各自的图书数目,逐步倒推出原有的图书数目.依据题意可知,一班、二班的图书数目各增加一倍才是48本,因此增加前各应有24本,所以一班、二班的图书数目各应减半,还给三班.其余各次,以此类推,把倒推解答的过程用下表表示:【例9】★★★3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了多少只鹦鹉?【解析】3个笼子里的鹦鹉不管怎样取,78只的总数始终不变.变化后“3个笼子里的鹦鹉一样多”,可以求出现在每个笼里的是78326÷=(只).根据“从第1个笼子里取出8只放到第2个笼子里”,可以知道第1个笼子里原来养了26834+=(只);再根据“从第2个笼子里取出6只放到第3个笼子里”,得出第2个笼子里有:266824+-=(只),第3个笼子里原有26620-=(只).【小试牛刀】甲、乙、丙3人共有192张邮票.从甲的邮票中取出乙那么多给乙后,再从乙的邮票中取出丙那么多给丙,最后从丙的邮票中取出甲那么多给甲,这时甲、乙、丙3人邮票数相同,甲、乙、丙原来各有多少张?【解析】甲、乙、丙原共有192张邮票,经过三次交换后,甲乙丙三人仍有邮票192张,而且三人邮票数相同,即3人各有邮票:192364÷=(张).第三次交换从丙的邮票中取出甲那么多给甲,说明这次交换前甲有邮票64232+=(张),依此类推,就可以推出答÷=(张),丙有邮票:643296案了.最后相等时各有192364÷=(张),列表倒推如下:【例10】★★一群小神仙玩扔沙袋游戏,他们分为甲、乙两个组,共有140只沙袋.如果甲组先给乙组5只,乙组又给甲组8只,这时两组沙袋数相等.两个组原来各有沙袋多少只?【解析】甲乙两组的沙袋经历了两次交换.第二次交换后两组沙袋相等,又知沙袋总数为140只,所以这时两组各有沙袋70只.解答时可以从70开始倒推.列表倒推如下:解决此类问题的关键是找到从哪里开始倒推.因为甲乙两组的沙袋经历了两次交换后数量相等,所以应从两组各有沙袋70只开始倒推.【小试牛刀】科学课上,老师说:“土星直径比地球直径的9倍多4800千米,土星直径除以24等于水星直径,水星直径加上2000千米是火星直径,火星直径除以2减去500千米等于月亮的直径,月亮直径是3000千米.”请你算一算,地球的直径是多少?【解析】先求土星直径:[(3000500)22000]24120000+⨯-⨯=(千米)再求地球直径:(1200004800)912800-÷=(千米),即:地球的直径是12800千米.【例11】★★★有甲、乙两堆棋子,其中甲堆棋子多于乙堆.现在按如下方法移动棋子:第一次从甲堆中拿出和乙堆一样多的棋子放到乙堆;第二次从乙堆中拿出和甲堆剩下的同样多的棋子放到甲堆;第三次又从甲堆中拿出和乙堆同样多的棋子放到乙堆.照此移法,移动三次后,甲、乙两堆棋子数恰好都是32个.问甲、乙两堆棋子原来各有多少个?【解析】我们从最后一步倒着分析.因为第三次是从甲堆拿出棋子放到乙堆,这样做的结果是两堆棋子都是32个,因此,在未进行第三次移动之前,乙堆只有32216÷=(个)棋子,而甲堆的棋子数是321648+=(个),这样再逆推下去,逆推的过程可以用下表来表示,表中的箭头表示逆推的方向.所以,甲堆原有44个棋子;乙堆原有20个棋子.采用列表法非常清楚.1.某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。