led衬底选用
led 材料

led 材料LED材料。
LED(Light Emitting Diode)是一种半导体发光器件,具有节能、环保、寿命长等优点,被广泛应用于照明、显示、指示等领域。
LED的性能和品质受到材料的影响,下面将介绍LED材料的种类和特性。
1. 发光材料。
LED的发光材料主要包括氮化镓(GaN)、磷化铝(AlP)、碳化硅(SiC)等。
其中,氮化镓是目前用于LED的主要发光材料,具有较高的发光效率和稳定性。
磷化铝用于白光LED的发光材料,具有良好的色温调节性能。
碳化硅是一种新型的发光材料,具有较高的热稳定性和光电性能,适用于高温高压环境下的LED应用。
2. 衬底材料。
LED的衬底材料主要有蓝宝石、氮化镓、碳化硅等。
蓝宝石是LED的常用衬底材料,具有优良的热导性和光学性能,适用于蓝光LED的制备。
氮化镓衬底材料具有与LED发光层匹配的晶格结构,有利于提高LED的发光效率。
碳化硅衬底材料具有较高的耐高温性能和热导率,适用于高功率LED的制备。
3. 封装材料。
LED的封装材料主要包括环氧树脂、硅胶、陶瓷等。
环氧树脂是LED封装的常用材料,具有良好的绝缘性能和机械强度,适用于一般照明和显示LED的封装。
硅胶具有较好的耐高温性能和抗紫外线性能,适用于户外LED的封装。
陶瓷材料具有良好的导热性能和耐腐蚀性能,适用于高功率LED的封装。
4. 散热材料。
LED的散热材料主要包括铝基板、铜基板、陶瓷基板等。
铝基板具有良好的导热性能和加工性能,适用于一般LED的散热。
铜基板具有较高的导热性能和机械强度,适用于高功率LED的散热。
陶瓷基板具有良好的绝缘性能和耐腐蚀性能,适用于特殊环境下的LED的散热。
5. 封装胶。
LED的封装胶主要包括硅胶、环氧树脂等。
硅胶具有良好的耐高温性能和抗紫外线性能,适用于户外LED的封装。
环氧树脂具有良好的绝缘性能和机械强度,适用于一般照明和显示LED的封装。
总结。
LED材料是LED器件的重要组成部分,不同的材料对LED的性能和品质有着重要的影响。
LED芯片衬底材料

LED芯片衬底材料【摘要】衬底材料作为半导体照明产业的技术发展的基石,是半导体产业的核心,具有重要地位。
本文对适合于LED芯片衬底材料的蓝宝石,硅,碳化硅,氮化镓等从材料本身的特性出发,阐述了各种衬底材料的优缺点和未来发展趋势。
【关键词】LED照明蓝宝石衬底硅衬底碳化硅衬底氮化镓衬底1 引言LED照明即是发光二极管照明,是一种半导体固体发光器件。
它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。
LED照明产品就是利用LED作为光源制造出来的照明器具。
由于LED的寿命长,安全可靠,环保节能,色彩多样,所以自从LED发明以来,很快就获得世人的认可。
全球都投入了大量的人力、财力去研究和开发。
我国LED产业起步于20世纪70年代,经过40多年的发展,中国LED产业已初步形成了包括LED外延片的生产、LED芯片的制备、LED芯片的封装以及LED产品应用在内的较为完整的产业链。
在“国家半导体照明工程”的推动下,我国LED下游产业有了长足的发展,但是上游的LED产业仍然需要进一步的投入,以赶上日本,美国和欧洲。
2 衬底材料的要求当今大部分的芯片是GaN,GaN的生长方法有很多种,但是由于尚未解决单晶生产工艺,目前还是在衬底上进行外延生长,是依靠有机金属气象沉积法在相关的异型支撑衬底上生长的[1]。
这样,衬底材料的选用就是我们首要考虑的问题。
要想采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择[2]。
目前来说,好的衬底材料应该有以下九方面的特性:(1)结构特性好,晶圆材料与衬底的晶体结构相同或相近、晶格常数失配度小、结晶性能好、缺陷密度小。
(2)接口特性好,有利于晶圆料成核且黏附性强。
(3)化学稳定性好,在晶圆生长的温度和气氛中不容易分解和腐蚀。
(4)热学性能好,要具备良好的导热性。
(5)导电性好,有利于衬底电极的制备[3]。
发光二极管LED典型工艺流程

发光二极管LED典型工艺流程
1.衬底选择
LED的衬底通常使用为硅(Si)或氮化镓(GaN)材料。
硅衬底主要用于制造低功率LED,而氮化镓衬底则用于制造高功率LED。
2.外延片生长
外延片生长是制造LED的核心步骤。
在这一步骤中,通过化学气相沉积(CVD)、分子束外延(MBE)或金属有机气相外延(MOCVD)等技术,将稀薄的GaN材料沉积在衬底上。
3.择优薄化
将生长完成的外延片剥离出衬底,通常使用化学机械研磨(CMP)或机械研磨等方法进行择优薄化,以减少缺陷密度并提高材料质量。
4.P型和N型掺杂
将外延片分别进行P型和N型掺杂。
通常使用离子注入或金属有机分解(MOCVD)等技术,在外延片表面扩散掺入P型或N型材料。
5.调制层和电极制备
在外延片上制备调制层和金属电极,调制层通常采用P型和N型材料的多层结构,金属电极则用于连接LED芯片和外界电源。
6.光刻和蚀刻
使用光刻技术对调制层进行图案化处理,以定义出LED芯片中发光区域。
然后使用干法或湿法蚀刻技术将不需要的材料去除,保留发光区域。
7.透明电极制备
制备透明导电氧化锡(ATO)或氧化锌(ZnO)等透明电极材料,并通过蚀刻或镀膜等方法将其覆盖在LED芯片的发光区域上。
8.金属电极制备
制备金属电极,通常使用电镀或蒸镀技术在LED芯片的非发光区域上形成金属电极,以提供电流输入和输出。
9.封装和封装后处理
将制备好的LED芯片进行封装,通常使用环氧树脂或硅胶等材料进行封装。
然后进行焊接、焊盘修整、完全固化等封装后处理步骤,以确保LED芯片的性能和可靠性。
三种LED衬底比较

对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。
应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。
目前市面上一般有三种材料可作为衬底:·蓝宝石(Al2O3)·硅 (Si)碳化硅(SiC)[/url]蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。
蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。
因此,大多数工艺一般都以蓝宝石作为衬底。
图1示例了使用蓝宝石衬底做成的LED芯片。
图1 蓝宝石作为衬底的LED芯片使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。
蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω·cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。
在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。
由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。
但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。
蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400nm减到100nm左右)。
添置完成减薄和切割工艺的设备又要增加一笔较大的投资。
蓝宝石的导热性能不是很好(在100℃约为25W/(m·K))。
因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。
LED芯片制作流程

LED芯片制作流程引言LED(Light Emitting Diode)芯片是一种能够将电能转化为可见光的电子器件。
随着LED技术的不断发展,LED芯片已成为照明、显示和通信等领域的重要组成部分。
本文将介绍LED芯片制作的流程,从材料准备、晶片制备、封装和测试等方面进行详细的说明。
材料准备LED芯片制作的第一步是准备所需的材料。
以下是常见的LED芯片制作所需材料:1.衬底材料:LED芯片通常以蓝宝石或硅基片作为衬底材料。
2.外延材料:外延材料是在衬底上生长的材料,通常为GaAs(镓砷化镓)或InP(磷化铟)。
3.掺杂剂:为了调节LED芯片的发光功率和光谱特性,需要添加适量的掺杂剂,如硅、锌、镁等。
4.金属线:用于提供电流给LED芯片的金属线,通常为金或铜线。
5.光学材料:用于封装LED芯片的透明材料,如环氧树脂或硅胶。
晶片制备外延生长外延生长是制作LED芯片的关键步骤之一。
外延生长是指在衬底材料上生长外延材料。
这一过程通常通过分子束外延(MBE)或金属有机化学气相沉积(MOCVD)等方法进行。
1.清洗衬底:首先,将衬底材料进行清洗,以确保表面干净,无杂质。
2.磊晶:在清洗后的衬底表面,通过外源原子束或气相反应的方式,使外延材料逐层生长在衬底上,形成结晶的外延层。
晶圆加工在外延层生长完毕后,需要对晶圆进行加工和处理,以制作成最终的LED芯片。
1.剥离:将衬底材料从外延层上剥离,通常采用机械剥离或化学剥离的方法。
2.制造PN结:在外延层上通过掺杂剂添加,形成PN结,即正负电荷的结合面。
3.打孔:通过化学腐蚀或机械打孔等方式,形成电极接触孔。
4.极性标记:在晶圆上标记正负极性。
封装为了保护晶片并提供适当的电气和光学性能,LED芯片需要进行封装。
1.胶水应用:将LED晶片粘贴在塑料或金属基底上,并使用胶水固定。
2.金属线焊接:使用金属线将LED芯片的电极与封装基底连接。
3.导光板安装:安装导光板,以提高光的效果,并引导光线发射。
LED生产工艺及封装步骤

LED生产工艺及封装步骤LED(Light Emitting Diode)是一种半导体器件,能够将电能转化为光能的能量转换器。
LED的生产工艺及封装步骤是一个复杂的过程,下面将详细介绍LED的生产工艺及封装步骤。
1.衬底选材LED的衬底选材通常采用氮化镓(GaN)材料。
GaN材料具有优良的导电性和热特性,能够满足LED工作时需要的高温和高电流。
2.薄膜生长在衬底上生长多个层次的半导体材料薄膜。
通常包括衬底的缺陷层、n型导电层、活性层和p型导电层。
这些薄膜的顺序和厚度会影响LED的电性能和光性能。
3.芯片制备将薄膜衬底切割成小块,形成独立的LED芯片。
每个芯片都要经过电性能测试和光性能测试,以确保符合要求。
4.金属电极制备在LED芯片上制备金属电极。
金属电极一般是由金属薄膜或金属线制成,用于引出电流和控制电池的正负极性。
5.封装材料选择在LED芯片上方涂覆一层透明的封装材料。
这种封装材料通常选择有机树脂或硅胶,能够保护LED芯片并提高光的折射率,提高光的输出效率。
6.色温和亮度校正根据需要,对LED的色温和亮度进行校正。
通过调整封装材料的混合比例和制造工艺,可以使LED发出不同颜色和亮度的光。
7.封装将LED芯片放置在封装材料内,利用封装设备将封装材料固化。
这一步骤可以选择多种封装方式,如晶粒封装、敞口封装和有灯泡的封装等。
8.电性能测试对封装好的LED进行电性能测试,包括电压、电流、电阻和功率等参数的测量。
确保封装后的LED与设计要求一致,并具有稳定的电性能。
9.光性能测试对封装好的LED进行光性能测试,包括颜色、亮度、发光角度和光衰等参数的测量。
确保封装后的LED具有稳定的光性能,并满足应用需求。
10.温度老化测试将封装好的LED放置在高温环境中进行老化测试。
通过长时间高温老化测试,可以评估LED的长期稳定性和寿命,并提前筛选出潜在的缺陷。
11.出货检验对符合要求的LED进行出货检验,保证质量和性能的一致性。
LED复习

只要通过各色芯片的电流稳定、散热较好, 那么这种方法产生的白光比上述产生的白 光稳定且制作简单。 光衰问题:驱动方法要考虑到不同芯片的 光衰不一样。采用不同的电流进行补偿, 使之发出的光比例控制在3: 6:1。这样 可以保持混合的白光稳定,从而达到理想 的效果。
一、制作白光LED的几种方法
普通二极管和发光二极管(LED)的相同点与不同点。
相同点: (1)都具有单向导电性,即正向导通,反向截至; (2)都具有PN结形式的结构特征; (3)具有类似的I-V特性曲线。
不同点:
(1)普通二极管材料一般为Si,Ge等间接带隙半导 体材料,不能发光; 发光二极管材料一般为GaAs/GaN/AlGaInP等直 接带隙半导体材料,电子-空穴可以复合发光。 (2)普通二极管的结构为一般的PN结,LED的结 构一般采取多采用(双)异质结、(多)量子阱等 结构。 (3)开启电压不同。
2.SMD的特点
2、特点: 1:发光角度大,发光效率高,无光斑; 2:产品体积缩小 ; 3:可靠性高、抗振能力强 ; 4:易于实现自动化,提高生产效率。
________________________________________________________________________________
一、制作白光LED的几种方法
2、LED紫外光芯片上涂覆RGB荧光粉
基本原理 这种方法利用紫外光激发荧光粉产生三基 色光来混合形成白光。
一、制作白光LED的几种方法
2、涂覆RGB荧光粉特点
缺点:其出光效率较低,而且用于封装的 环氧树脂在紫外光照射下易分解老化,从 而使透光率下降。 解决的好,突破瓶颈,就可以获得创新发 展。
中高端大功率LED品牌供应商
led芯片的原材料

led芯片的原材料
LED芯片的原材料包括以下几种:
1. 衬底材料:通常采用蓝宝石(sapphire)或硅(silicon)作为衬底材料,其具有高热导性和良好的电绝缘性能,用于支持LED芯片的构造。
2. 流片材料:通常使用砷化镓(Gallium Arsenide,GaAs),砷化铟镓(Indium Gallium Arsenide,InGaAs)和砷化铟镓镓(Indium Gallium Nitride,InGaN)等半导体材料来制造LED 芯片。
3. 推向材料:LED芯片的推向材料主要是高纯度的红磷(Phosphor),用于将基础的蓝色LED发出的蓝光转换为其他颜色的光,例如白光LED中常用的黄磷。
4. 金属电极材料:常用的LED芯片电极材料是金属合金,如多元合金(alloy)和银(silver),用于提供电子和空穴注入的电流路径。
5. 封装材料:封装材料主要用于保护LED芯片以及提供灯泡的外壳。
常见的封装材料有环氧树脂(epoxy resin)和硅胶(silicone),它们具有良好的电绝缘性和耐热性能。
以上是LED芯片的一些常见原材料,不同类型的LED芯片可能使用不同的材料组合来实现不同的发光特性和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED衬底-LED衬底材料选用的比较关键字:LED衬底,LED衬底材料添加时间:2010-4-19 在LED晶圆(LED外延片)制程方面,不同的衬底材料,需要不同的磊晶(晶圆生长)技术、芯片加工技术和封装技术,LED衬底材料决定了半导体照明技术的发展路线。
LED灯衬底材料的选择主要取决于以下9个方面,衬底的选择要同时满足全部应该有的好特性。
所以,目前只能通过外延生长技术的变更和器件加工制程的调整来适应不同衬底上的半导体发光器件的研发和生产。
用于氮化镓研究的衬底材料比较多,但是能用于生产的衬底目前只有二种,即蓝宝石Al2O3和碳化硅SiC衬底。
如果我们来看LED衬底材料,好的材料应该有的特性如下:1、结构特性好,晶圆材料与衬底的晶体结构相同或相近、晶格常数失配度小、结晶性能好、缺陷密度小。
2、接口特性好,有利于晶圆料成核且黏附性强。
3、化学稳定性好,在晶圆生长的温度和气氛中不容易分解和腐蚀。
4、热学性能好,包括导热性好和热失配度小。
5、导电性好,能制成上下结构。
6、光学性能好,制作的器件所发出的光被衬底吸收小。
7、机械性能好,器件容易加工,包括减薄、抛光和切割等。
8、价格低廉。
9、大尺寸,一般要求直径不小于2英吋。
一般说来,LED衬底还有哪些呢?1、氮化镓衬底用于氮化镓生长的最理想的衬底自然是氮化镓单晶材料,这样可以大大提高晶圆膜的晶体质量,降低位错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。
可是,制备氮化镓体单晶材料非常困难,到目前为止尚未有行之有效的办法。
有研究人员通过HVPE方法在其它衬底(如Al2O3、SiC、LGO)上生长氮化镓厚膜,然后通过剥离技术实现衬底和氮化镓厚膜的分离,分离后的氮化镓厚膜可作为外延用的衬底。
这样获得的氮化镓厚膜优点非常明显,即以它为衬底外延的氮化镓薄膜的位错密度,比在Al2O3、SiC上外延的氮化镓薄膜的位错密度要明显低;但价格昂贵。
因而氮化镓厚膜作为半导体照明的衬底之用受到限制。
2、Al2O3衬底目前用于氮化镓生长的最普遍的衬底是Al2O3,其优点是化学稳定性好、不吸收可见光、价格适中、制造技术相对成熟;不足方面虽然很多,但均一一被克服,如很大的晶格失配被过渡层生长技术所克服,导电性能差通过同侧P、N电极所克服,机械性能差不易切割通过雷射划片所克服,很大的热失配对外延层形成压应力因而不会龟裂。
但是,差的导热性在器件小电流工作下没有暴露出明显不足,却在功率型器件大电流工作下问题十分突出。
3、SiC衬底除了Al2O3衬底外,目前用于氮化镓生长衬底就是SiC,它在市场上的占有率位居第2,目前还未有第三种衬底用于氮化镓LED的商业化生产。
它有许多突出的优点,如化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但不足方面也很突出,如价格太高、晶体质量难以达到Al2O3和Si那么好、机械加工性能比较差。
另外,SiC衬底吸收380 nm以下的紫外光,不适合用来研发380 nm 以下的紫外LED。
由于SiC衬底优异的的导电性能和导热性能,不需要像Al2O3衬底上功率型氮化镓LED器件采用倒装焊技术解决散热问题,而是采用上下电极结构,可以比较好的解决功率型氮化镓LED 器件的散热问题。
目前国际上能提供商用的高质量的SiC衬底的厂家只有美国CREE公司。
4、Si衬底在硅衬底上制备发光二极管是本领域中梦寐以求的一件事情,因为一旦技术获得突破,晶圆生长成本和器件加工成本将大幅度下降。
Si片作为GaN材料的衬底有许多优点,如晶体质量高,尺寸大,成本低,易加工,良好的导电性、导热性和热稳定性等。
然而,由于GaN外延层与Si衬底之间存在巨大的晶格失配和热失配,以及在GaN的生长过程中容易形成非晶氮化硅,所以在Si 衬底上很难得到无龟裂及器件级质量的GaN材料。
另外,由于硅衬底对光的吸收严重,LED节能灯出光效率低。
5、ZnO衬底之所以ZnO作为GaN晶圆的候选衬底,是因为他们两者具有非常惊人的相似之处。
两者晶体结构相同、晶格失配度非常小,禁带宽度接近(能带不连续值小,接触势垒小)。
但是,ZnO作为GaN外延衬底的致命的弱点是在GaN外延生长的温度和气氛中容易分解和被腐蚀。
目前,ZnO半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料质量达不到器件水平和P型掺杂问题没有真正解决,适合ZnO基半导体材料生长的设备尚未研制成功。
今后研发的重点是寻找合适的生长方法。
但是,ZnO本身是一种有潜力的发光材料。
ZnO的禁带宽度为3.37 eV,属直接带隙,和GaN、SiC、金刚石等宽禁带半导体材料相比,它在380 nm附近紫光波段发展潜力最大,是高效紫光发光器件、低阈值紫光半导体激光器的候选材料。
ZnO材料的生长非常安全,可以采用没有任何毒性的水为氧源,用有机金属锌为锌源。
在LED 晶圆(LED 外延片)制程方面,不同的衬底材料,需要不同的磊晶(晶圆生长)技术、芯片加工技术和封装技术,衬底材料决定了半导体照明技术的发展路线。
衬底材料的选择主要取决于以下9 个方面,衬底的选择要同时满足全部应该有的好特性。
所以,目前只能通过外延生长技术的变更和器件加工制程的调整来适应不同衬底上的半导体发光器件的研发和生产。
用于氮化镓研究的衬底材料比较多,但是能用于生产的衬底目前只有二种,即蓝宝石Al2O3 和碳化硅SiC 衬底。
如果我们来看LED 衬底材料,好的材料应该有的特性如下:1、结构特性好,晶圆材料与衬底的晶体结构相同或相近、晶格常数失配度小、结晶性能好、缺陷密度小。
2、接口特性好,有利于晶圆料成核且黏附性强。
3、化学稳定性好,在晶圆生长的温度和气氛中不容易分解和腐蚀。
4、热学性能好,包括导热性好和热失配度小。
5、导电性好,能制成上下结构。
6、光学性能好,制作的器件所发出的光被衬底吸收小。
7、机械性能好,器件容易加工,包括减薄、抛光和切割等。
8、价格低廉。
9、大尺寸,一般要求直径不小于2 英吋。
一般说来,LED 衬底还有哪些呢?1、氮化镓衬底用于氮化镓生长的最理想的衬底自然是氮化镓单晶材料,这样可以大大提高晶圆膜的晶体质量,降低位错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。
可是,制备氮化镓体单晶材料非常困难,到目前为止尚未有行之有效的办法。
有研究人员通过HVPE 方法在其它衬底(如Al2O3、SiC、LGO)上生长氮化镓厚膜,然后通过剥离技术实现衬底和氮化镓厚膜的分离,分离后的氮化镓厚膜可作为外延用的衬底。
这样获得的氮化镓厚膜优点非常明显,即以它为衬底外延的氮化镓薄膜的位错密度,比在Al2O3、SiC 上外延的氮化镓薄膜的位错密度要明显低;但价格昂贵。
因而氮化镓厚膜作为半导体照明的衬底之用受到限制。
2、Al2O3 衬底目前用于氮化镓生长的最普遍的衬底是Al2O3,其优点是化学稳定性好、不吸收可见光、价格适中、制造技术相对成熟;不足方面虽然很多,但均一一被克服,如很大的晶格失配被过渡层生长技术所克服,导电性能差通过同侧P、N 电极所克服,机械性能差不易切割通过雷射划片所克服,很大的热失配对外延层形成压应力因而不会龟裂。
但是,差的导热性在器件小电流工作下没有暴露出明显不足,却在功率型器件大电流工作下问题十分突出。
3、SiC 衬底除了Al2O3 衬底外,目前用于氮化镓生长衬底就是SiC,它在市场上的占有率位居第2,目前还未有第三种衬底用于氮化镓LED 的商业化生产。
它有许多突出的优点,如化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但不足方面也很突出,如价格太高、晶体质量难以达到Al2O3 和Si 那么好、机械加工性能比较差。
另外,SiC 衬底吸收380 nm 以下的紫外光,不适合用来研发380 nm 以下的紫外LED。
由于SiC 衬底优异的的导电性能和导热性能,不需要像Al2O3 衬底上功率型氮化镓LED 器件采用倒装焊技术解决散热问题,而是采用上下电极结构,可以比较好的解决功率型氮化镓LED 器件的散热问题。
目前国际上能提供商用的高质量的SiC 衬底的厂家只有美国CREE 公司。
4、Si 衬底在硅衬底上制备发光二极管是本领域中梦寐以求的一件事情,因为一旦技术获得突破,晶圆生长成本和器件加工成本将大幅度下降。
Si 片作为GaN 材料的衬底有许多优点,如晶体质量高,尺寸大,成本低,易加工,良好的导电性、导热性和热稳定性等。
然而,由于GaN 外延层与Si 衬底之间存在巨大的晶格失配和热失配,以及在GaN 的生长过程中容易形成非晶氮化硅,所以在Si 衬底上很难得到无龟裂及器件级质量的GaN 材料。
另外,由于硅衬底对光的吸收严重,LED 出光效率低。
5、ZnO 衬底之所以ZnO 作为GaN 晶圆的候选衬底,是因为他们两者具有非常惊人的相似之处。
两者晶体结构相同、晶格失配度非常小,禁带宽度接近(能带不连续值小,接触势垒小)。
但是,ZnO 作为GaN 外延衬底的致命的弱点是在GaN 外延生长的温度和气氛中容易分解和被腐蚀。
目前,ZnO 半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料质量达不到器件水平和P型掺杂问题没有真正解决,适合ZnO 基半导体材料生长的设备尚未研制成功。
今后研发的重点是寻找合适的生长方法。
但是,ZnO 本身是一种有潜力的发光材料。
ZnO 的禁带宽度为 3.37 eV,属直接带隙,和GaN、SiC、金刚石等宽禁带半导体材料相比,它在380 nm附近紫光波段发展潜力最大,是高效紫光发光器件、低阈值紫光半导体激光器的候选材料。
ZnO 材料的生长非常安全,可以采用没有任何毒性的水为氧源,用有机金属锌为锌源。