动点问题--圆(含答案)初三数学

合集下载

动点问题--圆(含答案)初三数学

动点问题--圆(含答案)初三数学

2.如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(全等)(2)试用表示,并写出的取值范围;(相似)(3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)①②③3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.(讨论对称轴+全等+相似)【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE[来源:学,科,网]∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.3.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;(圆心距+勾股)方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;(相似+设半径)方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.(分类讨论)①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.4.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(相似)(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).(相似+切线)(数形结合+分类讨论)【考点】:圆的综合题.【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,[来源:学科网ZXXK]∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.5.如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y 轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(垂径定理+直线方程)(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.(相切+圆周角)【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,[来源:学科网]∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.6.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G 矩形ABCD的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,[来源:学。

与圆有关的动点问题[下学期]--浙教版

与圆有关的动点问题[下学期]--浙教版

2
2
(0≤x≤1).
F
若⊙O与CD相切必有OF OE AE
2
AE2=BE2+AB2 (2FO)2=BE2+AB2
F
(2-x)2=x2+12
4-4x+x2=x2+1
x 3 4
(3)从(2)可得F是CD的中点
2
1H
(4)作FH⊥AE于H
(1)t为何值时,四边形APQD为矩形/
(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么 t为何值时, ⊙P和⊙Q外切?
;图文快印 图文快印

别来无恙乎,挑帘入座,可对弈纵横、把盏擎歌,可青梅煮酒、红袖添香 国学大师陈寅恪,托十载光阴,毕暮年全部心血,著皇皇80万言《柳如是别传》。我想,灵魂上形影相吊,慰先生枯寂者,唯有这位300年前的秦淮女子了。其神交之深、之彻,自不待言。 6 古人尚神交古人,今 人当如何? 附庸风雅的虚交、名利市场的攀交、蜂拥而上的公交、为稻粱谋的业交,甚嚣尘上,尤其炒栗子般绽爆的“讲坛热”“国学热”“私塾热”“收藏热”“鉴宝热”“拍卖热”。但人生意味的深交、挚交,纯粹的君子之交、私人的精神之恋,愈发稀罕。 读闲书者少了,读古人 者少了,读古心者更少。 星转斗移,今心性已大变。 有朋友曾说过一句:为什么我们活得如此相似? 问得太好了。人的个体性、差异性越来越小。恰如生物多样性之锐减,人生多样性也急剧流失,精彩的生活个案、诗意的栖息标本,皆难搜觅。 某日,我半玩笑地对一同事说:“给我 介绍一两位闲人吧,有趣的人,和我们不一样的人,比我们有意思有意义 ”他长期做一档“讲述老百姓自己的故事”的节目,猎奇于民间旮旯,又兼话剧导演,脑筋活泛,当有这方面资源。他嘿嘿几声,皱眉半晌,摇头:“明白你的意思,但不骗你,这物种,还真绝迹了,恐怕得往古 时候找了。” 陋闻了

数学动点问题及练习题附答案

数学动点问题及练习题附答案

初中数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数提醒了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于*一个点或*图形的有条件地运动变化,引起未知量与量间的一种变化关系,这种变化关系就是动点问题中的函数关系.则,我们怎样建立这种函数解析式呢"下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。

〕动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

〔一〕点动问题。

〔二〕线动问题。

〔三〕面动问题。

二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三、专题二总结,本大类习题的共性:1.代数、几何的高度综合〔数形结合〕;着力于数学本质及核心容的考察;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考察学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。

(二)线动问题。

(三)面动问题。

二、解决动态几何问题的常见方法有:2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1以双动点为载体,探求函数图象问题。

2以双动点为载体,探求结论开放性问题。

3以双动点为载体,探求存在性问题。

4以双动点为载体,探求函数最值问题。

双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。

与圆有关的动点问题.doc题

与圆有关的动点问题.doc题

动点问题(4)------与圆有关的动点直线与圆相切1.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC 边相切时,OA 的长是 .2.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A B ,两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s .(1)求PQ 的长; (2)当t 为何值时,直线AB 与⊙O 相切?3如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ). (1)当t 为何值时,⊙P 与AB 相切;(2)作PD AC ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s=时,四边形PDBE 为平行四边形.4.(2012河北中考25)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO∠=45,CD AB ∥,90CDA = ∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.5.如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠ABC= 30°,BC=12cm。

半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC 上。

设运动时间为t (s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm。

(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC 三边围成的区域有重叠部分,求重叠部分的面积。

2023年中考九年级数学高频考点拔高训练--圆的动点问题

2023年中考九年级数学高频考点拔高训练--圆的动点问题

2023年中考九年级数学高频考点拔高训练--圆的动点问题1.如图AB为⊙O的直径,C为⊙O上半圆的一个动点,CE⊙AB于点E,⊙OCE的角平分线交⊙O 于D点.(1)当C点在⊙O上半圆移动时,D点位置会变吗?请说明理由;(2)若⊙O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.2.如图.在Rt△ABC中,BC=4,∠BAC=30°,点E,F为边AB上的动点,点D是EF的中点,以点D为圆心,DE长为半径在△ABC内作半圆D.(1)若EF=2,P为半圆D的中点,在半圆D移动的过程中,求CP的最小值.(2)当半圆D同时与Rt△ABC的两直角边相切时,请求出EF的长.3.如图,在每个小正方形的边长为1的网格中,△ABO的顶点A,B,O均落在格点上,OB为⊙O的半径.(1)∠AOB的大小等于(度);(2)将△ABO绕点O顺时针旋转,得△A′B′O,点A,B旋转后的对应点为A′,B′.连接AB′,设线段AB′的中点为M,连接A′M.当A′M取得最大值时,请在如图所示的网格中,用无刻度的直尺画出点B′,并简要说明点B′的位置是如何找到的(不要求证明).4.一块含有30°角的三角板ABC如图所示,其中∠C=90°,∠A=30°,BC=3cm.将此三角板在平面内绕顶点A旋转一周.(1)画出边BC旋转一周所形成的图形;(2)求出该图形的面积.5.如图,已知AB是⊙O中一条固定的弦,点C是优弧AB上一个动点(点C不与A,B重合).(1)设⊙ACB的角平分线与劣弧AB交于点P,试猜想点P在AB⊙上的位置是否会随点C的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O的半径为5,在(1)的条件下,四边形ACBP的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.6.如图,在ΔABC中,∠ACB=90°,∠ABC=45°,BC=12cm,半圆O的直径DE=12cm.点E 与点C重合,半圆O以2cm/s的速度从左向右移动,在运动过程中,点D、E始终在BC所在的直线上.设运动时间为x(s),半圆O与ΔABC的重叠部分的面积为S(cm2).(1)当x=0时,设点M是半圆O上一点,点N是线段AB上一点,则MN的最大值为;MN的最小值为.(2)在平移过程中,当点O与BC的中点重合时,求半圆O与ΔABC重叠部分的面积S;(3)当x为何值时,半圆O与ΔABC的边所在的直线相切?7.如图,在△ABE中,BE>AE,延长BE到点D,使DE=BE,延长AE到点C,使CE=AE.以点E为圆心,分别以BE、AE为半径作大小两个半圆,连结CD.(1)求证:AB=CD;(2)设小半圆与BD相交于点M,BE=2AE=4.①当S△ABE取得最大值时,求其最大值以及CD的长;②当AB恰好与小半圆相切时,求弧AM的长.8.如图,在半径为5的扇形AOB中,⊙AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊙BC,OE⊙AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在⊙DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.9.如图,四边形ABCD中,AD∥BC,⊙ABC=90°,⊙C=30°,AD=3,AB=2√3,DH⊙BC 于点H.将⊙PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中⊙Q=90°,⊙QPM=30°,PM=4√3.(1)求证:⊙PQM⊙⊙CHD;(2)⊙PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且BK=9−4√3.若⊙PQM右移的速度为每秒1个单位长,绕点D 旋转的速度为每秒5°,求点K在⊙PQM区域(含边界)内的时长;③如图3.在⊙PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).10.对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(−2,√2)的垂点距离分别为,,;(2)点P在以Q(√3,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=√3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.11.如图,在⊙O中,OA=2,AB=2√3,将弦AB与AB⌢所围成的弓形(包括边界的阴影部分)绕点B顺时针旋转α(0°≤α≤360°),点A的对应点为A′.(1)点O到线段AB的距离是;∠AOB=°;当点O落在阴影部分(包括边界)时,α的取值范围是;(2)若线段A′B与优弧ACB的交点为D,当∠A′BA=90°时,点D AO的延长线上(填“在”或“不在”);(3)当直线..A′B与⊙O相切时,求α的值并求此时点A′运动路径的长度.12.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C、D分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.13.如图,已知▱ABCD,AB=4√3,BC=8√3,∠B=60°,其内有一个圆心角为240°扇形EOF,半径OE=r.(1)发现:如图1,当E、F在BC边上,扇形EOF与AD相切时,①优弧EF上的点与BC的最大距离为,r=,S扇形EOF=;②当BE=CF时,优弧EF⌢上的点与点D的最小距离为;(2)思考:如图2,当r=2时,扇形EOF在▱ABCD内自由运动①当扇形EOF与▱ABCD的两条边同时相切时,求此时两切点之间的距离是多少?②OE与AD垂直时,扇形EOF▲ (填“有可能”或“不可能”)与▱ABCD的边切于点F;(3)拓展:如图3,将扇形的圆心O放在BC的中点处,点E在线段OB上运动,点F在▱ABCD外,当优弧EF⌢与▱ABCD的边有六个交点时,直接写出r的取值范围:.14.小航在学习中遇到这样一个问题:⌢于C,如图,点F是线段AB上一动点,线段AB=8cm,AB的垂直平分线交AB⌢于E,连接AE.若△AEF是等腰三角取线段CD的中点O,连接FO并延长交AB形,求线段AF的长度.小航结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1)根据点F在线段AB上的不同位置,画出相应的图形,测量线段AF,EF,AE的长度,得到下表的几组对应值.填空:m的值为,n的值为;(2)将线段AF的长度作为自变量x,EF和AE的长度都是x的函数,分别记为y W和y,并在平面直角坐标系xOy中画出了函数y kx的图象,如图所示.请在同一坐标系中画出函数kxy的图象;w(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△AEF为等腰三角形时,线段AF长度的近似值(结果保留一位小数).15.如图1,扇形AOB的半径为4,圆心角为90°,点C为AB⌢上任意一点(不与点A,B 重合),且CD⊥BO于点D,点P为△COD的内心,连接OP,BP,CP.(1)求∠OPB的度数;⌢上运动.(2)如图2,⊙ M为△BOP的外接圆,点C在AB①当CD=OD时,判断OC与⊙ M的位置关系,并加以证明;②设⊙ M的半径为r,若r的值不随点C的运动而改变,请直接写出r的值;若随着点C 的运动而在一个范围内变化,请直接写出这个变化范围.16.如图,在⊙O中,AB为弦,CD为直径,且AB⊙CD,垂足为E,P为AC⌢上的动点(不与端点重合),连接PD.(1)求证:⊙APD=⊙BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:⊙AIP+⊙DAI=180°;(3)在(2)的条件下,连接IC、IE,若⊙APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.答案解析部分1.【答案】(1)解:当C点在⊙O上半圆移动时,D点位置不会变;理由如下:连接OD.∵CD平分⊙OCE,∴⊙1=⊙3,而OC=OD,∴⊙1=⊙2,∴⊙2=⊙3,∴CE⊙OD,∵CE⊙AB,∴OD⊙AB,∴AD̂= BD̂,即点D为半圆AB的中点.(2)解:∵在直角⊙AOD中,OA=OD=5,∴AD=5√2.过点A作CD的垂线,垂足为G,∵∠ACD=12∠AOD=45°,∴⊙AGC是等腰直角三角形,∵AC=6,∴AG=CG=3√2.在直角⊙AGD中,DG=√(5√2)2−(3√2)2=4√2,∴CD=CG+DG=3√2+4√2=7√2,∴线段AD的长度为5√2,线段CD的长度为7√2.2.【答案】(1)解:在Rt⊙ABC中,BC=4,⊙BAC=30°∴AC=4√3,AB=8∵EF=2∴半圆半径为1∴DP=1如图,当D、C、P三点共线时,CP最小∵P为半圆D的中点,⊙CBA=60°∴CD⊙AB,CD=2√3∴CP的最小值是2√3−1(2)解:∵半圆D同时与两直角边相切,如图∴DM⊙AC,DN⊙BC,设半圆的半径为r,则CN=DM=DN=r∴BN=4-r,∵⊙CAB=⊙NDB=30°∴tan30°=4−rr=√3 3∴r=123+√3∴EF=2r=3+√3=12−4√33.【答案】(1)45(2)解:取OB′的中点N,连接MN,A′N,构成△A′MN,延长AO交⊙O于点H,如图,根据三角形三边关系,A′M≤A′N+MN,当点A′,N,M三点共线时,A′M取最大值,在Rt△A′B′N中,tan∠A′NB′=A ′B′B′N=2,∵点M,N分别是AB′,OB′的中点,∴A′M∥AH,作∠A′NB′=∠HOB′,由网格图的特点可得,在OH上取格点G,取格点C,连接OC与⊙O交于B′,如图所示,OG=√2,CG=2√2,此时tan∠HOB′=2,∠A′NB′=∠HOB′,故连接OC与⊙O交于B′,点B′即为所求.4.【答案】(1)解:∵三角板ABC,∠C=90°,∠A=30°,BC=3cm,∴AB=2BC=6cm,∴由勾股定理:AC= √AB2−BC2=√36−9=3√3,边BC在平面内绕顶点A旋转一周.图形是以AB为半径的圆去掉以AC为半径的圆,所形成的圆环,如图所示:(2)解:BC扫过的面积S圆环= πAB2−πAC2=36π−27π=9π5.【答案】(1)解:如图,结论:点P在弧AB上的位置不会随点C的运动而发生变化∵CP平分⊙ACB∴ACP=⊙BCP (角平分线将这个角分为两个相等的角)∴AP⌢= BP⌢(在同圆或等圆中,相等的圆周角所对的弧相等)即点P为劣弧AB的中点(2)解:四边形A′C′B′P′的面积不是定值.当C′P′经过圆心时,点C′到A′B′的距离最大,故四边形A′C′B′P′的面积最大,此时C′P′垂直平分A′B′:设C′P′交A′B′于M∵A′M=4,A′O′=5 O′M⊙ A′B′∴O′M=3 (直角三角形勾股定理求值)∴M P′=2 C′=8∵C′M=8 M P′=2 C′P′⊙ A′B′A′B′=8 ;∴△A′B′C′的最大面积= 12×A′B′×C′M=32,△A′B′P′的面积= 12×A′B′×MP′=8∵点C在优弧上运动,且不与A、B重合∴8 <四边形ACBP的面积≤406.【答案】(1)24cm;(9√2−6)cm(2)解:当点O与BC的中点重合时,如图②,点O移动了12cm,设半圆与AB交于点H,连接OH、CH.∵BC为直径,∴∠CHB=90°,∵∠ABC=45°∴∠HCB=45°,∴HC=HB,∴OH⊥BC,OH=OC=OB=6,S阴影=S扇形HOC+SΔBOH=90360π⋅62+12×6×6=9π+18;(3)解:当半圆O与直线AC相切时,运动的距离为0或12,∴x=0(秒)或6(秒);当半圆O与直线AB相切时,如图③,连接OH,则OH⊥AB,OH=6∵∠B=45°,∠OHB=90°,∴OB=√2OH=6√2,OC=BC−OB=12−6√2,移动的距离为6+12−6√2=18−6√2(cm),运动时间为x=18−6√22=9−3√2(秒),综上所述,当x为0或6或9−3√2时,半圆O与ΔABC的边所在的直线相切.7.【答案】(1)证明:在△ABE和△CDE中,{BE=DE∠AEB=∠CEDAE=CE,∴△ABE≌△CDE;∴AB=CD(2)解:①当AE⊥BE时,S△ABE取得最大值,S△ABE最大值=12×BE×AE=12×4×2=4,在Rt△ABE中,AB=√BE2+CE2=√42+22=2√5,∴CD=AB=2√5;②当AB恰好与小半圆相切时,AB⊥AE,∵在Rt△ABE中,BE=2AE=4,∴AE=2,∴∠ABE=30°,∴∠BEA=60°,∴∠AEM=120°,∴弧AM的长=120π×2180=4π38.【答案】(1)解:如图(1),∵OD⊙BC,∴BD= 12BC=12×6=3,∵⊙BDO=90°,OB=5,BD=3,∴OD= √OB2−BD2=4,即线段OD的长为4.(2)解:存在,DE保持不变.理由:连接AB,如图(2),∵⊙AOB=90°,OA=OB=5,∴AB= √OB2+OA2=5 √2,∵OD⊙BC,OE⊙AC,∴D和E分别是线段BC和AC的中点,∴DE= 12AB=5√22,∴DE保持不变.9.【答案】(1)证明:∵AD∥BC,DH⊥BC∴DH⊥AD则在四边形ABHD中∠ABH=∠BHD=∠HDA=90°故四边形ABHD为矩形DH=AB=2√3,BH=AD=3在Rt△DHC中,∠C=30°∴CD=2DH=4√3,CH=√3DH=6∵{∠DHC=∠Q=90°∠C=∠QPM=30°CD=PM=4√3∴△CHD≌△PQM(AAS);(2)解:①过点Q作QS⊥AM于S由(1)得: AQ =CH =6 在 Rt △AQS 中, ∠QAS =30°∴AS =√32AQ =3√3平移扫过面积: S 1=AD ⋅AS =3×3√3=9√3 旋转扫过面积: S 2=50°360°⋅π⋅PQ 2=50°360°⋅π⋅62=5π故边PQ 扫过的面积: S =S 1+S 2=9√3+5π ②运动分两个阶段:平移和旋转 平移阶段:KH =BH −BK =3−(9−4√3)=4√3−6t 1=KH v =(4√3−6)s旋转阶段:由线段长度得: PM =2DM取刚开始旋转状态,以PM 为直径作圆,则H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作 GT ⊥DM 于T设 ∠KDH =θ ,则 ∠GHM =2θ 在 Rt △DKH 中:KH =BH −BK =3−(9−4√3)=4√3−6=2√3×(2−√3)DK=√DH2+KH2=√(2√3)2+(4√3−6)2=4√3×√2−√3设t=√2−√3,则KH=2√3t2,DK=4√3t,DH=2√3tanθ=KHDH=t 2,sinθ=KHDK=t2,cosθ=DHDK=12t∵DM为直径∴∠DGM=90°在Rt△DGM中:DG=DM⋅cosθ=4√3×12t=2√3 t在Rt△DGT中:GT=DG⋅sinθ=2√3t×t2=√3在Rt△HGT中:sin2θ=GTGH=√32√3=12∴2θ=30°,θ=15°PQ转过的角度:30°−15°=15°t2=15°5°=3s总时间:t=t1+t2=4√3−6+3=(4√3−3)s③CF=60−12d9−d10.【答案】(1)ℎA=2;ℎB=4√2;ℎC=√6(2)解:如图,过点P作PM⊥x轴于点M,PN⊥y轴于点N.∵∠PMO=∠PNO=∠MON=90°,∴四边形PMON是矩形.∴OP=MN.∵Q点坐标为(√3,1),∴OQ=2.∵PQ−OQ⩽OP⩽PQ+OQ,∴3−2≤OP⩽3+2.∴1⩽ℎ⩽5(3)解:如图,设直线l与x轴,y轴的交点分别为A,B,过点O作OM⊥直线l于点M,以OA为半径作⊙O,交直线l于点N.∵∠BAO=60°,AO=2√3,∴AM=√3.过点M,N分别作x轴的垂线,垂足分别为C,D,则AC=√32,即OC=3√32.∵△AON是等边三角形,∴OD=12AO=√3.∴t=−3√32或−√3⩽t<0.11.【答案】(1)1;120;30°≤α≤60°(2)在(3)解:①当A′B与⊙O相切,∴⊙OBA′=90°,此时α=⊙ABA′=90°+30°=120°,或α=120°+180°=300°;②当α=120°时,A′运动路径的长度= 120π⋅2√3180=4√33π.当α=300°时,A′运动路径的长度= 300π⋅2√3180=10√33π.综上可知,α=120°或α=300°;A′运动路径的长度为4√33π或10√33π.12.【答案】(1)解:如图1中,∵AB是直径,∴⊙ACB=90°,∵AC=4,BC=4 √3,∴AB =√AC2+BC2=√42+(4√3)2=8,∴⊙O的半径为4.(2)如图1中,连接OC,OD.∵CD=4 √2,OC=OD=4,∴CD2=OC2+OD2,∴⊙COD=90°,∴⊙OCD=45°,∵AC=OC=OA,∴⊙AOC是等边三角形,∴⊙ACO=60°,∴⊙ACD=⊙ACO﹣⊙DCO=60°﹣45°=15°.(3)如图2中,连接OM,OC.∵AM=MD,∴OM⊙AD,∴点M的运动轨迹以AO为直径的⊙J,连接CJ,JM.∵⊙AOC是等边三角形,AJ=OJ,∴CJ⊙OA,∴CJ =√AC2−AJ2=2 √3,∵CM≤CJ+JM=2 √3+2,∴CM的最大值为2 √3+2.13.【答案】(1)6;4;32π3;2√31−4(2)解:①2或者2√3理由:(i)如图当扇形与AB、AD边相切时(当扇形与CB、CD边相切时),过点O做OM⊥AD,ON⊥AB,连接AO,易证Rt△AMO≌Rt△ANO,∠ONA=∠OMA=60°,∠NOM=60°,∴ΔOMN为等边三角形,∴MN=2(ii)当扇形与DC、AD边相切时(当扇形与AB、BC边相切时),同理可求得∠NOM= 120°,MN=2√3②有可能(3)6<r<4√314.【答案】(1)3.0;5.6(2)解:如图,描点连线:(3)解:如图,作直线y=x,△AEF为等腰三角形有三种情况:①AE=EF时,即AF=x为y kx与y w的交点横坐标,如图,AF=5.4cm,②当AF=EF时,即求y=x与y w的交点横坐标,如图,AF=3.3cm,③当AE=AF时,即求y kx与y=x的交点横坐标,如图,AF=4.6cm,综上所述,当⊙AEF为等腰三角形时,AF的长为3.3cm,4.6cm,或5.4cm. 15.【答案】(1)解:∵点P为△COD的内心,∴∠COP=∠BOP.又∵PO=PO,CO=BO,∴△COP≌△BOP.∵CD⊥BO于点D,∴∠OCD+∠COD=90°.∴12∠OCD+12∠COD=45°.∴∠OPC=135°.∴∠OPB=∠OPC=135°.(2)解:①当CD=OD时,OC与⊙M相切.证明如下:如图,在优弧OB上取一点Q,连接OQ,BQ.∵点P在劣弧OB上,且∠OPB=135°,∴∠OQB=45°.∴∠OMB=90°.连接MO,MB.∴OM=BM.∴∠BOM=∠OBM=45°.而当CD=OD时,∠COD=∠OCD=45°,∴∠COD+∠BOM=90°.∴当CD=OD时,OC与⊙M相切.②r的值是定值;r=2√2.理由如下:⌢上运动时,由(2)证得∠OMB=90°,OM=MB=r,⊙OBM为等腰直角三角形,而当点C在ABOB=4,故OM=MB= r=2√2.16.【答案】(1)证明:∵直径CD⊙弦AB,⌢=BD⌢,∴AD∴⊙APD=⊙BPD;(2)解:如图,作⊙BAP的平分线,交PD于I,证:∵AI平分⊙BAP,∴⊙PAI=⊙BAI,∴⊙AID=⊙APD+⊙PAI=⊙APD+BAI,⌢=BD⌢,∵AD∴⊙DAB=⊙APD,∴⊙DAI=⊙DAB+⊙BAI=⊙APD+⊙BAI,∴⊙AID=⊙DAI,∵⊙AIP+⊙DAI=180°,∴⊙AIP+⊙DAI=180°;(3)解:如图2,连接BI,AC,OA,OB,∵AI平分⊙BAP,PD平分⊙APB,∴BI平分⊙ABP,⊙BAI=12⊙BAP,∴⊙ABI=12⊙ABP,∵⊙APB=60°,∴⊙PAB+⊙PBA=120°,∴⊙BAI+⊙ABI=12(⊙BAP+⊙ABP)=60°,∴⊙AIB=120°,∴点I的运动轨迹是AB⌢,∴DI=DA,∵⊙AOB=2⊙APB=120°,∵AD⊙AB,∴AD⌢=BD⌢,∴⊙AOB=⊙BOD=60°,∵OA=OD,∴⊙AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴⊙DAC=90°,∵CD⊙AB,∴⊙AED=90°,∴⊙AED=⊙CAD,∵⊙ADC=⊙ADE,∴⊙ADE⊙⊙CDA,∴ADCD=DEAD,∴AD2=DE•CD,∵DI′=DI=AD,∴DI2=DE•CD,∵⊙I′DE是公共角,∴⊙DIE⊙⊙DCI,∴ICIE=CDDI=2.。

人教版九年级数学中考动点问题专项练习及参考答案

人教版九年级数学中考动点问题专项练习及参考答案

人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(全等)(2)试用表示,并写出的取值围;(相似)(3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)①②③3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.(讨论对称轴+全等+相似)【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE [来源:学,科,网]∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.3.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;(圆心距+勾股)方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;(相似+设半径)方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.(分类讨论)①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.【解答】:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O 与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.4.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(相似)(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值围(解答时可以利用备用图画出相关示意图).(相似+切线)(数形结合+分类讨论)【考点】:圆的综合题.【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,[来源:学科网ZXXK]∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值围是:2﹣<t<2+2.【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.5.如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y 轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值围;(垂径定理+直线方程)(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.(相切+圆周角)【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,[来源:学科网]∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.6.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的围就可求出S矩形ABCD的围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,[来源:学。

相关文档
最新文档