初中数学动点问题及练习题附参考答案

合集下载

初中数学数轴动点问题含答案

初中数学数轴动点问题含答案

初中数学数轴动点问题含答案一.选择题(共10小题)1.如图,点A,P,Q,B在一条不完整的数轴上,点A表示数﹣3,点B表示数3.若动点P从点A出发以每秒1个单位长度向终点B匀速运动,同时动点Q从点B出发以每秒2个单位长度向终点A匀速运动,其中一点到达终点时,另一个点也随之停止运动.当BP =3AQ时,点P在数轴上表示的数是()A.2.4B.﹣1.8C.0.6D.﹣0.62.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB3.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对4.如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.4秒C.2秒或4秒D.2秒或6秒5.如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒6.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种7.分别表示数a和数b的点在数轴上的位置如图所示,下面4个结论中正确的个数为()①|a﹣b|=|a|+|b|②a向右运动时,|a﹣b|的值增大③当a向右运动时,|a﹣b|的值减小.④当a向右运动时,|a﹣b|的值先减小后增大.A.1个B.2个C.3个D.4个8.如图,数轴上点A,B表示的数分别为﹣40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为()A.15秒B.20秒C.15秒或25秒D.15秒或20秒9.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.现有一只机器狗从数轴的原点出发,沿数轴正方向运动,这只机器狗每前进6步后,将倒退2步,设该机器狗每秒前进或后退2步,并且每步的距离是1个单位长度,x n表示第n秒时机器狗在数轴上的位置所对应的数,下列结论:①x4=4;②x7=10;③x108<x107;④x2014<x2013,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知,如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,点B表示的数为7,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为4秒时,点M和点P之间的距离是6个单位长度,则当点P运动到点A时,动点Q所表示的数为______.12.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过______秒,点M、点N分别到原点O的距离相等.13.动点A,B分别从数轴上表示10和﹣2的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,______秒后,点A,B间的距离为3个单位长度.14.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过______秒后,M、N两点间的距离为12个单位长度.15.数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0.点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,P、Q分别为ME、ON 的中点.思考,在运动过程中,的值______.16.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为______.17.已知M,N为数轴上从原点O出发的两个动点,点M每秒1个单位,点N的速度为点M的2倍,则当运动时间为4秒时,OM和ON两条线段的中点相距______个单位.18.在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t 秒.在运动过程中,若点P,Q,O三点其中一个点恰好是另外两点为端点的线段的一个三等分点,则运动时间为______秒.19.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是______.20.数轴上有A、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为______单位长度.三.解答题(共10小题)21.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离______.数轴上表示﹣12和﹣6的两点之间的距离是______.(2)数轴上表示x和﹣4的两点之间的距离表示为______.(3)|x﹣2|+|x+4|的最小值为______时,能使|x﹣2|+|x+4|取最小值的所有整数x的和是______.(4)若数轴上两点A、B对应的数分别是﹣1、3,现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?22.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M对应的数.23.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动______秒时,点P到点E,点F的距离相等.24.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.25.一个动点M从一水平数轴上距离原点4个单位长度的位置向右运动2s,到达A后立即返回,向左运动7s到达点B,若动点M的运动速度为2.5个单位长度,求此时点B在数轴上所表示的数的相反数.26.数轴上点A对应的数是﹣1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停下的点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是x A、x E、x F、x B,当运动时间t不超过1秒时.求|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|的值.27.已知数轴有A、B两点,分别表示的数为a、b,且|a+12|+|b﹣18|=0.(1)a=______,b=______,点A和点B之间的距离为______;(2)如图1,动点P沿线段AB自点A向点B以2个单位长度/秒的速度运动,同时动点Q沿线段BA自点B向点A以4个单位/秒的速度运动,经过______秒,动点P,Q两点能相遇;(3)如图1,点P沿线段AB自点A向点B以2个单位/秒的速度运动,点P出发3秒后,点Q沿线段BA自点B向A以4个单位/秒的速度运动,问再经过几秒P,Q两点相距6个单位长度;(4)如图2,AO=4厘米,PO=2厘米,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自点B向点A运动,假若点P,Q两点能相遇,直接写出点Q运动的速度.28.“阳光向上,跑动青春”,为营造阳光运动的校园氛围,培养学生热爱体育、崇尚运动的健康观念和良好习惯,学校利用课间进行趣味跑操活动,其中有两名学生课间在操场上沿着直线进行折返跑,往返一次;将这条直线看成数轴,起点记为M,折返点记为N,主席台记为点O,两位同学分别记为点P,Q;若动点P、Q从M点同时出发向N点运动,到达N点后折返到M点;已知:数轴上点M、N对应的数分别为m、n,且满足|m+20|+(n﹣40)2=0,点O对应的数为k,k的相反数等于本身.(1)直接写出m、n、k的值;(2)设点P在数轴上对应的数为x,那么当x为多少时能使得PO+PN=50?(3)已知点P的速度为3个单位长度/秒,点Q的速度为2个单位长度/秒,当动点P到达点N后,点Q开始改变速度,以a个单位长度/秒继续折返跑,4秒后,P、Q两点相距2个单位长度,求a的值.29.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q 到点C的距离相等.30.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?初中数学数轴动点问题含答案参考答案与试题解析一.选择题(共10小题)1.解:设运动的时间为t秒,则点Q所表示的数为3﹣2t,点P所表示的数为﹣3+t,∴BP=3﹣(﹣3+t)=6﹣t,AQ=3﹣2t﹣(﹣3)=6﹣2t,∵BP=3AQ,∴6﹣t=3(6﹣2t),解得,t=2.4,∴点P所表示的数为﹣3+2.4=﹣0.6,故选:D.2.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.3.解:∵点A表示的数为﹣10,OB=3OA,∴OB=3OA=30.则B对应的数是30,设经过x秒,点M、点N分别到原点O的距离相等,①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.故选:C.4.解:设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.5.解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.6.解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选:D.7.解:由数a和数b在数轴上的位置可知:a<0,b>0,且|a|>|b|,|a﹣b|表示a与b两点之间的距离,由于a<0,b>0,因此|a﹣b|=|a|+|b|,故①正确,根据①的结论,当a在b的左侧向右运动时,|a﹣b|的值逐渐减小,当a在b的右侧向右运动时,|a﹣b|逐渐增大,因此②③均不正确,而④则正确,故选:B.8.解:设运动的时间为t秒,P、Q相遇前,依题意有50﹣(﹣40)﹣3t=3[50﹣(﹣40)﹣2t﹣3t],解得t=15;P、Q相遇后,依题意有50﹣(﹣40)﹣3t=3[2t+3t﹣50+(﹣40)],解得t=20.故运动的时间为15秒或20秒.故选:D.9.解:∵数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),∴质点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选项A错误,选项B错误,选项C错误,选项D正确.故选:D.10.解:根据题意得:x1=2,x2=4,x3=6,x4=4,x5=6,x6=8,x7=10,x8=8,根据此规律可推导出,x108=7×15+3=108,x107=7×15+5=110,2014=7×287+5,故x2014=287×4+6=1154.x2013=287×4+4=1152故①x4=4,②x7=10;③正确,④错误.故选:C.二.填空题(共10小题)11.解:由题意得,点M的速度是点Q速度的,设点Q的速度为x,则点M的速度为,∵运动时间为4秒时,点M和点P之间的距离是6个单位长度,∴,解得,x=2,即Q点的速度是每秒2个单位长度,又A、B两点间的距离为:7﹣(﹣5)=12,12÷4=3(秒),故点P从点B到点A需要3秒,点Q运动的距离为:2×3=6,∴点Q表示的数为:7﹣6=1,故答案为:1.12.解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.13.解:设运动的时间为t秒,则运动后A所表示的数为(10﹣7t),B所表示的数为(﹣2﹣4t),由题意得,|10﹣7t﹣(﹣2﹣4t)|=3,解得,t=3或t=5.故答案为:3或5.14.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.15.解:∵|a+2|+(b﹣8)2020=0∴a=﹣2,b=8,∴A表示﹣2,B表示8;设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣7t,点N对应的数是8+10t.∵P是ME的中点,∴P点对应的数是=﹣1﹣3t,又∵Q是ON的中点,∴Q点对应的数是=4+5t,∴MN=(8+10t)﹣(﹣2﹣7t)=10+17t,OE=t,PQ=(4+5t)﹣(﹣1﹣3t)=5+8t,∴==2(定值).故答案为:2.16.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.17.解:设线段OM的中点为G,线段ON的中点为H,分两种情况:①M,N同向时,如图1,H与M重合,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH﹣OG=4﹣2=2;②M,N反向时,如图2,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH+OG=4+2=6;综上,当运动时间为4秒时,OM和ON两条线段的中点相距2或6个单位.故答案为:2或6.18.解:当点O在PQ之间,则3(15﹣3t)=9+t﹣(﹣15+3t)解得:t=3当P在OB之间,则3(3t﹣15)=9+t解得:t=或3t﹣15=(9+t)解得:t=9当Q在OP之间,则(3t﹣15)=9+t,方程无解或(3t﹣15)=9+t解得:t=19故答案为:3或9或或19秒19.解:∵将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,∴圆滚动的距离为:π,∵点A从原点运动至数轴上的点B,∴点B表示的数是:﹣π.故答案为:﹣π.20.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.三.解答题(共10小题)21.解:(1)1和3两点之间的距离3﹣1=2,数轴上表示﹣12和﹣6的两点之间的距离是﹣6﹣(﹣12)=6;故答案为:2,6;(2)x与﹣4之间的距离表示为|x﹣(﹣4)|=|x+4|;故答案为:|x+4|;(3)当x≥2,原式=x﹣2+x+4=2x+2;最小值为2×2+2=6;当﹣4<x<2,原式=2﹣x+x+4=6;当x≤﹣4,原式=2﹣x﹣x﹣4=﹣2x﹣2,最小值为﹣2×(﹣4)﹣2=6;∴|x﹣2|+|x+4|最小值为6;∵要使代数式|x﹣2|+|x+4|取最小值时,相应的x的取值范围是﹣4≤x≤2,∴能使|x﹣2|+|x+4|取最小值的所有整数x的值为:﹣4,﹣3,﹣2,﹣1,0,1,2,它们的和为:﹣4﹣3﹣2﹣1+0+1+2=﹣7;故答案为:6,﹣7;(4)点A在点B的左边,(4﹣3)÷(2﹣0.5)×2+(﹣1)=.点A所对应的数是点A在点B的右边,(4+3)÷(2﹣0.5)×2+(﹣1)=8.点A所对应的数是8.故点A所对应的数是或8.22.解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.23.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.24.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.25.解:①点M距原点4个单位长度,且位于原点的右侧,∴M=4,∴B=4+2.5×2﹣2.5×7=﹣8.5,∴此时点B在数轴上所表示的数的相反数是8.5,②点M距原点4个单位长度,且位于原点的左侧,∴M=﹣4,∴B=﹣4+2.5×2﹣2.5×7=﹣16.5,∴此时点B在数轴上所表示的数的相反数是16.5.26.解:(1)设C点表示的数为x,根据题意得x﹣1+x+1=4×4,解得x=8,所以C点表示的数为8;(2)﹣1+2﹣4+6﹣8+10﹣12+14﹣16+18﹣20=﹣11,所以它第10次爬行所停下的点所对应的数为﹣9;(3)因为t<1,所以点E在A点左侧,F点在A、B之间,所以|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|=x A﹣x E﹣x E﹣x F+x F﹣x B=x A﹣x B=﹣1﹣1=﹣2.27.解:(1)∵|a+12|+|b﹣18|=0,∴a+12=0,b﹣18=0,解得,a=﹣12,b=18,∴AB=|﹣12﹣18|=30,故答案为:﹣12,18,30;(2)30÷(2+4)=5(秒),故答案为:5;(3)设再经过x秒后点P、点Q相距6个单位长度,当P点在Q点左边时,2(x+3)+4x+6=30,解得,x=3;当点P在点Q右边时,2(x+3)+4x﹣6=30,解得,x=5;所以,再经过3或5秒后,点P、Q两点相距6个单位长度;(4)设点Q的运动速度为xcm,当P、Q两点在点O左边相遇时,120÷60x=30﹣6,解得,x=14;当P、Q两点在点O右边相遇时,240÷60x=30﹣2,解得,x=6;所以,点P,Q两点能相遇,则点Q的运动速度为每秒14cm或6cm.28.解:(1)∵|m+20|+(n﹣40)2=0,且|m+20|≥0,(n﹣40)2≥0,∴|m+20|=0,(n﹣40)2=0,∴m=﹣20,n=40.∵k的相反数等于本身,∴k=0.∴m=﹣20,n=40,k=0;(2)∵点P在数轴上对应的数为x,点N对应的数为40,∴PO=|x|,PN=40﹣x,∴PO+PN=|x|+40﹣x=50,解得:x=﹣5;(3)设动点P到达点N所用的时间为t1,∵点P的起始点位于数轴上的﹣20处,点N位于数轴上的40处,∴PN=60,∴t1===20(秒),∵动点P、Q从M点同时出发向N点运动,∴在t1=20(秒)时,Q运动的距离为20×2=40个单位长度,4秒后,点P运动的距离为3×4=12个单位长度,点Q运动的距离为4a个单位长度,∴点P共运动了60+12=72个单位长度,点Q共运动了(40+4a)个单位长度,∵P、Q两点相距2个单位长度,∴PQ=|72﹣(40+4a)|=2,解得:a=或a=.29.解:(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=,答:经过或10秒,点P、点Q到点C的距离相等.30.解:(1)AB的中点M所对应的数为=30(2)①如图1,设点C所表示的数为x,则AC=x+20,BC=80﹣x,由题意得,=,解得,x=40,答:点C在数轴上所表示的数为40;②分两种情况进行解答,设运动的时间为t秒Ⅰ)如图2,相遇前相距15个单位长度,则3t+2t=80﹣(﹣20)﹣15,解得,t=17(秒),Ⅱ)如图3,相遇后相距15个单位长度则3t+2t=80﹣(﹣20)+15,解得,t=23(秒)答:当两只蚂蚁运动17秒或23秒时,两只电子蚂蚁在数轴上相距15个单位长度.。

(完整word版)初中数学动点问题专题复习及答案

(完整word版)初中数学动点问题专题复习及答案

初中数学动点问题练习题1、佇夏回族自治区)已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B 时运动终止),过点M、N分别作AB边的垂线,与△ ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.1、线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t .求四边形MNQP的面C积S随运动时间t变化的函数关系式,并写岀自变量t的取值范围.QPAM N B2、如图,在梯形ABCD中,AD // BC,AD 3,DC 5,AB 4. 2,Z B 45 .动点M 从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD 以每秒1个单位长度的速度向终点D运动•设运动的时间为t秒.(1)求BC的长.(2)当MN // AB时,求t的值.(3)试探究:t为何值时,△ MNC为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC是梯形,OA// BC,点A的坐标为(6,0),点B 的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN // OC?⑵设△ CMN的面积为S,求S与t之间的函数解析式, 并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?x(3)连接AC,那么是否存在这样的 t ,使MN 与AC 互相垂直? 若存在,求出这时的t 值;若不存在,请说明理由.4、(河北卷)如图,在 Rt A ABC 中,/ C = 90°, AC = 12, BC = 16,动点P 从点A 出发沿 AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P, Q 分别从点A , C 同时出发,当其中一点到达端点时,另一点也随之 停止运动.在运动过程中,△ PCQ 关于直线PQ 对称的图形是△ PDQ.设运动时间为t (秒). (1 )设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2) t 为何值时,四边形 PQBA 是梯形?(3) 是否存在时刻t ,使得PD // AB ?若存在,求出t 的值;若不存在,请说明理由; (4) 通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD 丄AB ?若存在,请估计t 的值在括号中的哪个时间段内( O W t < 1 ; 1 v t w 2 ; 2v t w 3; 3 v t < 4);若不存在,请简要说明理由.5、(山东济宁)如图, A 、B 分别为x 轴和y 轴正半轴上的点。

初中数学几何的动点问题专题练习附答案版(供参考)

初中数学几何的动点问题专题练习附答案版(供参考)

动点问题专题训练一、如图,已知ABC==厘米,8BC=厘米,点D为AB的中点.AB AC△中,10(1)若是点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①假设点Q的运动速度与点P的运动速度相等,通过1秒后,BPD△与CQP△是不是全等,请说明理由;②假设点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与△全等?CQP(2)假设点Q以②中的运动速度从点C动身,点P以原先的运动速度从点B同时动身,都逆时针沿ABC△三边运动,求通过量长时刻点P与点Q第一次在ABC△的哪条边Array上相遇?P二、直线364y x =-+与坐标轴别离交于A B 、两点,动点P Q 、同时从O 点动身,同时抵达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿线路O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时刻为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为极点的平行四边形的第四个极点M 的坐标.3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,现在AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,现在AD 的长为 ; (2)当90α=°时,判定四边形EDBC 是不是为菱形,并说明理由.xAO QPBy O E CDA α lOCA(备用图)4、如图,在平面直角坐标系中,直线l:y=-2x-8别离与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,假设P A=PB,试判定⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为极点的三角形是正三角形?五、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点动身沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点动身沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时刻为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探讨:t 为何值时,MNC △为等腰三角形.六、如图①,正方形 ABCD 中,点A 、B 的坐标别离为(0,10),(8,4),点C 在第一象限.动点PC在正方形 ABCD 的边上,从点A 动身沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点抵达D 点时,两点同时停止运动,设运动的时刻为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时刻t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及极点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求现在P 点的坐标;(4)若是点P 、Q 维持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 可否相等,假设能,写出所有符合条件的t 的值;假设不能,请说明理由.7、数学课上,张教师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .通过试探,小明展现了一种正确的解题思路:取AB 的中点M ,连接ME ,那么AM =EC ,易证AME ECF △≌△,因此AE EF =.在此基础上,同窗们作了进一步的研究:(1)小颖提出:如图2,若是把“点E 是边BC 的中点”改成“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你以为小颖的观点正确吗?若是正确,写出证明进程;若是不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你以为小华的观点正确吗?若是正确,写出证明进程;若是不正确,请说明理由.八、已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)假设折叠后使点B 与点A 重合,求点C 的坐标;ADFC GE B图1ADF C GE B 图2 ADFGB图3(Ⅱ)假设折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确信y 的取值范围;(Ⅲ)假设折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求现在点C 的坐标.1.解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米,∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,那么45BP PC CQ BD ====,, ∴点P ,点Q 运动的时刻433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ·································································· (7分) (2)设通过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴通过803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.解(1)A (8,0)B (0,6) ·············· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时刻是881=(秒) ∴点P 的速度是61028+=(单位/秒) ·· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ········································································································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ····························· 1分 21324255S OQ PD t t ∴=⨯=-+ ······································································ 1分(自变量取值范围写对给1分,不然不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE 33. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,∴332,45AO PE AB PB PB =即, ∴315PB =∴3158PO BO PB =-= ∴3158)P -, ∴3158k =. 当圆心P 在线段OB 延长线上时,同理可得P (0,315-8), ∴k =315-8,∴当k=315-8或k=-315-8时,以⊙P与直线l的两个交点和圆心P为极点的三角形是正三角形.4.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 现在∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.现在∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 通过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 通过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC ∴AO =12AC ……………………8分P图4图5在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 别离作AK BC ⊥于K ,DH BC ⊥于H ,那么四边形ADHK 是矩形∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,那么四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ··················································································· 5分 即10257t t -= 解得,5017t = ···················································································· 6分(3)分三种情形讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·························································································· 7分 (图①) A D C B K H (图②) A D C B G MNADNAD N②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方式同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC = 即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分(图⑤)A DCBH N MF8.解(1)如图1,过点E 作EG BC ⊥于点G . ··················· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··········· 2分∴112BG BE EG ====, 即点E 到BC····································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,那么MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.现在,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN=时,如图4,这时MC MN MP ===现在,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图1A D E BF CG图2A D EBF CPNMG H则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.现在,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ···················· 10分 9解:(1)Q (1,0) ····················································································· 1分 点P 运动速度每秒钟1个单位长度. ································································ 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,那么BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB == 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ················································ 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ························· 6分 现在P 的坐标为(9415,5310) . ····································································· 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ················································ 9分10.解:(1)正确. ················································ (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.A DF CGEBM90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)正确. ····················································· (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ·································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ·································································· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ·················································································· 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,A D F GB Ny ∴的取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,那么02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ···································································· 10分。

(完整word版)初中数学几何的动点问题专题练习-附答案版

(完整word版)初中数学几何的动点问题专题练习-附答案版

动点问题专题训练1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD△与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M 的坐标.5、在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ; A C BQED图16OE CDAα lOCA (备用图)②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中C点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;ADFCGB图1ADF C GB 图2ADFC GE B图3(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD=时,求AM BN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN的值等于 ;方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(1)ABCD EFMN若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)12..如图所示,在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =12,BC =21,AD=16。

完整版)七年级上期末动点问题专题(附答案)

完整版)七年级上期末动点问题专题(附答案)

完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。

1) 求线段AB的长度。

解:由定义可得,AB的长度为|a-b|。

2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。

解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。

解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。

1) PA=|x-(-1)|=|x+1|,PB=|x-3|。

2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

(中考数学)动点问题专题训练(含答案)

(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。

(完整版)初二动点问题(含答案)

(完整版)初二动点问题(含答案)

动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。

利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。

分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。

动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1
个单位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动;
(2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC .
例2. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在
BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△;
(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;
(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.
例3.如图,在梯形ABCD
中,3545AD BC AD DC AB B ====︒∥,,,.
动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (09年济南中考) (1)求BC 的长。

(2)当MN AB ∥时,求t 的值.
(3)试探究:t 为何值时,MNC △为等腰三角形.
例1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t .
∵ED ∥BC ,∴△FED ∽△FBC .∴
FD ED
FC BC
=. ∴
2428
t t
t -=.解得t =4.
A
B
C
D E F
O
C
D
M
A B
C
N
图2
A
B
C
D
E
F
∴当t =4时,两点同时停止运动;……(3分)
(2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF =
12×8×4+1
2
×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分)
(3)①若EF=EC 时,则点F 只能在CD 的延长线上,
∵EF 2=2
2
2
(24)51616t t t t -+=-+,
EC 2=222416t t +=+,∴251616t t -+=2
16t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴2
16t +=4t 2
.∴t =; ③若EF=FC 时,∵EF 2=2
2
2
(24)51616t t t t -+=-+,FC 2=4t 2,
∴2
51616t t -+=4t 2.∴t 1
=16+,t 2
=16-.
∴当t 的值为4
16-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分)
(4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,
2BC CF
CD ED
==, ∴Rt △BCF ∽Rt △CED .∴∠BFC =∠CED .………………………………………(10分) ∵AD ∥BC ,∴∠BCE =∠CED .若∠BEC =∠BFC ,则∠BEC =∠BCE .即BE =BC . ∵BE 2=2
1680t t -+,∴2
1680t t -+=64. ∴t 1
=16+,t 2
=16-.
∴当t
=16-BEC =∠BFC .……………………………………………(12分)
例2. 解:(1)在正方形ABCD 中,
490AB BC CD B C ===∠=∠=,°, AM MN Q ⊥, 90AMN ∴∠=°,
90CMN AMB ∴∠+∠=°,
在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠,
Rt Rt ABM MCN ∴△∽△,
(2)Rt Rt ABM MCN Q △∽△, 44AB BM x MC CN x CN
∴=∴=-,, 244
x x CN -+∴=,
N
D
A
C
B
M
()22
2141144282102422ABCN
x x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭
梯形·, 当2x =时,y 取最大值,最大值为10. (3)90B AMN ∠=∠=Q °,
∴要使ABM AMN △∽△,必须有
AM AB
MN BM
=
, 由(1)知
AM AB
MN MC
=
, BM MC ∴=,
∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.
例3.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形
∴3KH AD ==.
在Rt ABK △
中,sin 454AK AB =︒==g
cos 4542
BK AB =︒==g g
在Rt CDH △
中,由勾股定理得,3HC ==
∴43310BC BK KH HC =++=++=
(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-=
由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥
∴NMC DGC =∠∠ 又C C =∠∠
∴MNC GDC △∽△
(图①) A D C B K H (图②) A D C B G M
N

CN CM
CD CG =
即10257
t t -= 解得,50
17
t =
(3)分三种情况讨论:
①当NC MC =时,如图③,即102t t =- ∴103
t =
②当MN NC =时,如图④,过N 作NE MC ⊥于E ∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△

NC EC
DC HC =
即553t t -= ∴258
t =
③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122
FC NC t =
=
∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△
∴FC MC
HC DC
= 即1
102235t
t
-=
∴6017
t =
综上所述,当10
3
t =、258t =或6017t =时,MNC △为等腰三角形
A D
C
B M N (图③) (图④) A D C
B M N
H E
(图⑤) A
D
C
B H N M
F。

相关文档
最新文档