中考数学培优易错试卷(含解析)之圆的综合含答案解析
中考数学圆的综合(大题培优易错难题)含详细答案

中考数学圆的综合(大题培优 易错难题)含详细答案、圆的综合1.在平面直角坐标中,边长为 2的正方形OABC 的两顶点 A 、C 分别在y 轴、x 轴的正 半轴上,点O 在原点.现将正方形OABC 绕。
点顺时针旋转,当 A 点一次落在直线 y X 上 时停止旋转,旋转过程中,AB 边交直线y x 于点M , BC 边交x 轴于点N (如图).C(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当 MN 和AC 平行时,求正方形 OABC 旋转的度数;(3)设 MBN 的周长为p ,在旋转正方形 OABC 的过程中,P 值是否有变化?请证明 你的结论.【答案】(1) K 2 (2) 22.5。
(3)周长不会变化,证明见解析 【解析】试题分析:(1)根据扇形的面积公式来求得边OA 在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出/AOM 的度数;(3)利用全等把4MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1) ; A 点第一次落在直线 y=x 上时停止旋转,直线 y=x 与y 轴的夹角是 45°,,OA 旋转了 45 °.(2) 「MN //AC,/ BMN=Z BAC=45 ,° / BNM=Z BCA=45 : Z BMN=Z BNM,,BM=BN.又,. BA=BC, .1. AM=CN.又.. OA=OC, /OAM=/OCN, • . △ OAM^ △ OCN.Z AOM=ZCON=- (/AOC-/ MON) =- (90 -45°) =22.5 .2 2,旋转过程中,当 MN 和AC 平行时,正方形 OABC 旋转的度数为45 -22.5 =22.5 .(3)在旋转正方形 OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,贝U / AOE=45 -/ AOM , / CON=90 -45 °-Z AOM=45 -/ AOM ,/ AOE=Z CON.又••• OA=OC, / OAE=180 -90 =90° = / OCN.••.△OAE^AOCNI.・•・ OA 在旋转过程中所扫过的面积为45 22360,OE=ON, AE=CN又「 / MOE=Z MON=45 , OM=OM , ••.△OME^AOMN. .. MN=ME=AM+AE.MN=AM+CN ,.•尸MN+BN+BM=AM+CN+BN+BM=AB+BC=4.,在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图,A、B两点的坐标分别为(0, 6) , (0, 3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ, M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当。
中考数学 圆的综合 培优易错试卷练习(含答案)附答案解析

中考数学圆的综合培优易错试卷练习(含答案)附答案解析一、圆的综合1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.【答案】(1)答案见解析;(2)AB=3BE;(3)3.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为3.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.3.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)求CE的长;(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度.【详解】(1)如图1,连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC,∵OA=OB,∴OD∥AC,∵DE ⊥AC ,∴DE ⊥OD ,∴∠ODE=∠DEA=90°,∴DE 为⊙O 的切线;(2)如图2,连接BF ,∵AB 为⊙O 的直径,∴∠AFB=90°,∴BF ∥DE ,∵CD=BD ,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE , ∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴»BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.4.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(3)23 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD ,可求出∠BAD 的度数,再根据AD=BD ,可证得△ABD 是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD ,得出ID=BD ,再根据AB=BD ,即可证得结论;(3)连接DO ,延长DO 根据题意可知点I 随之运动形成的图形式以D 为圆心,DI 1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD 的长,再根据点E ,F 是 弧AB ⌢的三等分点,△ABD 是等边三角形,可证得∠DAI 1=∠AI 1D ,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I 是∠ABC 的内心∴CI 平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.5.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB2.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x5∴DE=5点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.6.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=12,求AB和FC的长.【答案】(1)见解析;(2) ⑵AB=20 ,403 CF【解析】分析:(1)连接OC,根据圆周角定理证明OC⊥CF即可;(2)通过正切值和圆周角定理,以及∠FCA=∠B求出CE、BE的长,即可得到AB长,然后根据直径和半径的关系求出OE的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE∽△CFE,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB是⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C在⊙O上∴CF是⊙O的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴»»AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.7.如图,一条公路的转弯处是一段圆弧»().AB ()1用直尺和圆规作出»AB 所在圆的圆心O ;(要求保留作图痕迹,不写作法)()2若»AB 的中点C 到弦AB 的距离为2080m AB m =,,求»AB 所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC 、BC ,分别作AC 和BC 的垂直平分线,两垂直平分线的交点为点O ,如图1;()2连接OA OC OC ,,交AB 于D ,如图2,根据垂径定理的推论,由C 为»AB的中点得到1OC AB AD BD AB 402⊥===,,则CD 20=,设O e 的半径为r ,在Rt OAD V 中利用勾股定理得到222r (r 20)40=-+,然后解方程即可.详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C Q 为»AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===, 设O e 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD V 中,222OA OD AD =+Q ,222(20)40r r∴=-+,解得50r=,即»AB所在圆的半径是50m.点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.8.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CF OF=12,求BFGF的值;(3)记△CFB,△DGO的面积分别为S1,S2,若CFOF=k,求12SS的值.(用含k的式子表示)【答案】(1)∠DGE=60°;(2)72;(3)12SS=211k kk+++.【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3,根据勾股定理求出BF的长度,再证得△FGO∽△FCB,进而求得BFGF的值;(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表示出12SS的值.【详解】解:(1)∵BC=OB=OC,∴∠COB=60°,∴∠CDB=12∠COB=30°,∵OC=OD,点E为CD中点,∴OE⊥CD,∴∠GED=90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HFHB =OB ﹣OH =2,在Rt △BHF 中,BF ==由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12,∴HF=,HB =OB ﹣OH =k+12, 在Rt △BHF 中,BF =由(2)得:△FGO ∽△FCB , ∴GO OFCB BF=,即1GO k =+, ∴GO=过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE=12CD,∴PC=DE,∵DE⊥OE,∴12SS=BFGO=2211k kk k++++=211k kk+++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.9.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(12;(2)AD﹣2BD;(3)2+1.【解析】【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,根据BED ∆为等腰直角三角形,得到2DE BD =, 再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案.【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌,∴AE=CD ,BE=BD ,∴CD+AD=AD+AE=DE ,∵BDE ∆是等腰直角三角形,∴DE=2BD ,∴DC+AD=2BD ,故答案为2.(2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠,∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =,∴CDB AEB ∆∆≌,∴CD AE =,EB BD =,∴BD ∆为等腰直角三角形,2DE BD =. ∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH == ∴21BD AD ==+.【点睛】 本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.10.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,3PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,PD=3,∴0 tan30ODPD=,解得OD=1,∴22PO PD OD=+=2,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.11.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103π(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【详解】(1)∵tan∠AOB3,∴∠AOB=60°,∴S扇形AOB=23002103603ππ⋅⋅=(大于半圆的扇形),(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.∵PD 是⊙O 的切线, ∴OP ⊥PD , ∴∠OPD =90°,∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°,同法当DP ′与⊙O 相切时,∠BDP ′=30°, ∴∠PDB 的最大值为30°. 故答案为30.(3)①结论:AD =2PC . 理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∵BC =OC , ∴AC ⊥OB ,∵∠AOC =∠DOP =60°, ∴∠COP =∠AOD ,∵2AO ODOC OP==, ∴△COP ∽△AOD ,∴2AD AOPC OC ==, ∴AD =2PC .②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°, ∴△OPK 是等边三角形, ∵PD ∥OA ,∴∠AOP =∠OPD =90°, ∴∠POH +∠AOC =90°, ∵∠AOC =60°, ∴∠POH =30°, ∴PH =12OP =1,OH =3PH =3, ∴PC =2222PH CH 1(13)523+=++=+, ∵AD =2PC ,∴AD 2=4(5+23)=20+83.如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得:PC 2=12+(3﹣1)2=5﹣23,AD 2=4PC 2=20﹣83.③由题意1≤PC ≤3,∴在旋转过程中,点C 到PD 所在直线的距离d 的取值范围为1≤d ≤3. 【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.12.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴.CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==,226810AB ∴=+=,5OB OC ==.OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.13.如图,在Rt △ABC 中,∠ACB=60°,☉O 是△ABC 的外接圆,BC 是☉O 的直径,过点B 作☉O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作☉O 的切线AF ,与直径BC 的延长线交于点F. (1)连接EF ,求证:EF 是☉O 的切线;(2)在圆上是否存在一点P ,使点P 与点A ,B ,F 构成一个菱形?若存在,请说明理由.【答案】(1)见解析;(2)存在,理由见解析【解析】【分析】(1)过O作OM⊥EF于M,根据SAS证明△OAF≌△OBE,从而得到OE=OF,再证明EO平分∠BEF,从而得到结论;(2)存在,先证明△OAC为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF,再证明AB=AF=FP=BP,从而得到结论.【详解】(1)证明:如图,过O作OM⊥EF于M,∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,∴OE=OF,∵∠EOF=∠AOB=120°,∴∠OEM=∠OFM=30°,∴∠OEB=∠OEM=30°,即EO平分∠BEF,又∠OBE=∠OME=90°,∴OM=OB,∴EF为☉O的切线.(2)存在.∵BC为☉O的直径,∴∠BAC=90°,∵∠ACB=60°,∴∠ABC=30°,又∵∠ACB=60°,OA=OC,∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF为☉O的切线,∴∠OAF=90°,∴∠CAF=∠AFC=30°,∴∠ABC=∠AFC,∴AB=AF.当点P在(1)中的点M位置时,此时∠OPF=90°,∴∠OAF=∠OPF=90°,又∵OA=OP,OF为公共边,∴△OAF≌△OPF,∴AF=PF,∠BFE=∠AFC=30°.又∵∠FOP=∠OBP=∠OPB=30°,∴BP=FP,∴AB=AF=FP=BP,∴四边形AFPB是菱形.【点睛】考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.14.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CF×EG.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD,由DC AB⊥,C为AB的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论. 【详解】证明:()1连接BD ,Q 四边形BCDE 是正方形,45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,C Q 为AB 的中点,CD ∴是线段AB 的垂直平分线, AD BD ∴=,45DAB DBA ∴∠=∠=o , 90ADB ∴∠=o ,即BD AD ⊥,BD Q 为半径,AD ∴是B e 的切线;()2BD BG =Q ,BDG G ∴∠=∠, //CD BE Q , CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF V 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=o Q ,67.5BFD BDF ∴∠=∠=o ,22.5GDB ∠=o Q ,在Rt DEF V 与Rt GCD V 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,Rt DCF ∴V ∽Rt GED V , CF CD ED EG∴=, 又CD DE BC ==Q ,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当r =①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2,0)是否为⊙C 的“2相关依附点”. (2)若⊙C 上存在“k 相关依附点”点M , ①当r=1,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r 的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<.【解析】 【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQk CQ=计算即可解决问题;②根据定义求出k 的值即可判断;(2)①如图,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可;②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ =,推出2MQ NQ DQk DQ CQ CQ+===,可得当3k =3DQ =221CD CQ DQ -=,假设C e 经过点Q ,此时2r =,因为点Q 早C e 外,推出r 的取值范围是12r <…; (3)如图4中,由(2)可知:当3k =12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =3y x b=-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<. 【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C e 的切线,122222QA k QC ∴===. ②Q 2(12,0)A +在C e 上,2212122k -+++∴==,2A ∴是C e 的“2相关依附点”.故答案为:2,是;(2)①如图2,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -Q ,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQk CQ==; ②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =Q ,∴2MQ NQ DQk DQ CQ CQ+===,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C e 经过点Q ,此时2r =,Q 点Q 早C e 外,r ∴的取值范围是12r <….(3)如图4中,由(2)可知:当3k =12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C e 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。
中考数学培优易错试卷(含解析)之圆的综合含答案

中考数学培优易错试卷(含解析)之圆的综合含答案一、圆的综合1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即BF•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即B F•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD ﹣DM=3﹣3k , 在Rt △COM 中,由OM 2+MC 2=OC 2得(3﹣3k )2+(6k )2=32,解得:k=23或k=0(舍), ∴BC=26k=42;②设OM=d ,则MD=3﹣d ,MC 2=OC 2﹣OM 2=9﹣d 2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=36, ∴AB=96,此时32AB AC . 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.3.如图,以O 为圆心,4为半径的圆与x 轴交于点A ,C 在⊙O 上,∠OAC=60°. (1)求∠AOC 的度数;(2)P 为x 轴正半轴上一点,且PA=OA ,连接PC ,试判断PC 与⊙O 的位置关系,并说明理由;(3)有一动点M 从A 点出发,在⊙O 上按顺时针方向运动一周,当S △MAO =S △CAO 时,求动点M 所经过的弧长,并写出此时M 点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M 点坐标分别为:M 1(2,﹣3M 2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.4.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.5.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.6.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD ,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC 与AD 相交于点F, 证明△BCE ≌△ACF, 根据全等三角形的性质可得BE=AF=2AD ;(3)连接OD,交AC 于H.简要思路如下:设OH 为1,则BC 为2,OB=OD=2 ,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D 是的中点∴AD=DC∴∠CBD=∠ABD∴BD 平分∠ABC(2)提示:延长BC 与AD 相交于点F,证明△BCE ≌△ACF,BE=AF=2AD(3)连接OD,交AC 于H.简要思路如下:设OH 为1,则BC 为2,OB=OD=2 ,DH=21-, DE BE =DH BCDE BE =212-7.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠. ∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=8.已知A (2,0),B (6,0),CB ⊥x 轴于点B ,连接AC画图操作:(1)在y 正半轴上求作点P ,使得∠APB=∠ACB (尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,23)(3)(953 5-,125)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC=22AC AB=43,∴C(6,43),∴K(4,22),∴P(0,23).故答案为:(0,23).(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK=35,∴PK=1255,MK=95,∴OK=95﹣3,∴P(95﹣3,125).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.9.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
备战中考数学培优 易错 难题(含解析)之圆的综合含答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.2.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD平分∠ABC(2)提示:延长BC与AD相交于点F,证明△BCE≌△ACF,BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,2,21, DEBE=DHBCDE BE =2123.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=12,求AB和FC的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90° ∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE = 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.4.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC == AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC 2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC =2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323∴a1=3.(2)设△A1B1C1的高为h,则A2O=1-h,连结B2O,设B2C2与PQ交于点F,则有OF=2h-1.∵B2O2=OF2+B2F2,∴1=(2h-1)2+2212a⎛⎫ ⎪⎝⎭.∵h=32a2,∴1=(3a2-1)2+14a22,解得a2=83.(3)同(2),连结B n O,设B n C n与PQ交于点F,则有B n O2=OF2+B n F2,即1=(nh-1)2+2 12na⎛⎫ ⎪⎝⎭.∵h=3a n,∴1=14a n2+2312nna⎛⎫-⎪⎪⎝⎭,解得a n=43n.6.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,23)(3)(953-,125)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC22AC AB-3,∴C(6,3∴K(4,2),∴P(0,3案为:(0,3(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK=535,∴PK=1255,MK=955,∴OK=955﹣3,∴P(955﹣3,1255).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.7.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .【解析】试题分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.试题解析:(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).∴AE•BD=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.8.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M 为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC 的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,得到BE+CF=BM+CN,由BM=12BD,CN=12OC,得到BE+CF=12BC,即可判断BE+CF的值是定值,为等边△ABC边长的一半.试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=12∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)BE+CF的值是为定值.作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,∵∠DBM=60°,∴BM=12BD,同理可得CN=12OC,∴BE+CF=12OB+12OC=12BC,∴BE+CF的值是定值,为等边△ABC边长的一半.考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.9.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析; 【解析】 【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=, PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.10.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ;(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)22;(2)224r ≤≤;(3)25252t --<<--或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB =22442+=22; (2)如图,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB,则OE=22,OB=OA=4, ∵⊙O 与线段AB 的“非常距离”为0, ∴224r ≤≤;(3)当⊙T 在△ABC 左侧时,如图,当⊙T 与BC 相切时,d=0,BC=2236+=35,过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,∴TF TH BE BC=, 即2=635, ∴TH=5,∵HO ∥CE,∴△BHO ∽△BEC,∴HO=2,此时T(-5-2,0);当d=2时,如图,同理可得,此时T (252-);∵0<d <2,∴25252t -<<-;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8; 综上,25252t -<<或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.。
初三数学圆的综合的专项培优易错试卷练习题(含答案)含答案

初三数学圆的综合的专项培优易错试卷练习题(含答案)含答案一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.已知▱ABCD 的周长为26,∠ABC=120°,BD 为一条对角线,⊙O 内切于△ABD ,E ,F ,G 为切点,已知⊙O 的半径为3▱ABCD 的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·OG)=3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴S=3(13+BD);连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.3.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若AB=4,∠C=30°,求劣弧»BE的长.【答案】(1)证明见解析(2)4 3【解析】分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE=2∠BAE,∴∠BOE=120°,∴=·4π=π.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.4.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.5.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD 平分∠ABC(2)提示:延长BC 与AD 相交于点F,证明△BCE ≌△ACF,BE=AF=2AD(3)连接OD,交AC 于H.简要思路如下:设OH 为1,则BC 为2,OB=OD=2 , DH=21-, DE BE =DH BCDE BE =212-6.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=7.如图1,在Rt △ABC 中,AC=8cm ,BC=6cm ,D 、E 分别为边AB 、BC 的中点,连结DE ,点P 从点A 出发,沿折线AD ﹣DE 运动,到点E 停止,点P 在AD 上以5cm/s 的速度运动,在DE 上以1cm/s 的速度运动,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN .设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为_____cm .(用含t 的代数式表示) (2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S 与t 的函数关系式,并写出t 的取值范围.(3)如图2,若点O 在线段BC 上,且CO=1,以点O 为圆心,1cm 长为半径作圆,当点P 开始运动时,⊙O 的半径以0.2cm/s 的速度开始不断增大,当⊙O 与正方形PQMN 的边所在直线相切时,求此时的t 值.【答案】(1)t ﹣1;(2)S =﹣38t 2+3t +3(1<t <4);(3)t =103s . 【解析】分析:(1)根据勾股定理求出AB ,根据D 为AB 中点,求出AD ,根据点P 在AD 上的速度,即可求出点P 在AD 段的运动时间,再求出点P 在DP 段的运动时间,最后根据DE 段运动速度为1c m/s ,即可求出DP ;(2)由正方形PQMN 与△ABC 重叠部分图形为五边形,可知点P 在DE 上,求出DP =t ﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形DHQP ,列出S 与t 的函数关系式即可;(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.详解:(1)由勾股定理可知:AB =22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,∴DE =12AC =4,AD =12AB =5, ∴点P 在AD 上的运动时间=55=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s . ∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm .故答案为t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=103s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.8.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3【答案】(1)见解析(2)见解析(3)12105 【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论. (3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠= ,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°.∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD .(2)连接BE .∵BG =BG ,∴∠GAB =∠BEG .∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF .∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°.∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α.∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°.∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG . 在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α.设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m =655,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL 2AH 12109.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3333 3.r +≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点, 当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3,∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a︒=-,解得333.2a -= ∴ 点A 的横坐标为33333111.x a --=+=+= ∴331.x -≤ 综上 3311.2x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5,则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:OE=332, ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.10.已知:BD 为⊙O 的直径,O 为圆心,点A 为圆上一点,过点B 作⊙O 的切线交DA 的延长线于点F ,点C 为⊙O 上一点,且AB =AC ,连接BC 交AD 于点E ,连接AC .(1)如图1,求证:∠ABF =∠ABC ;(2)如图2,点H 为⊙O 内部一点,连接OH ,CH 若∠OHC =∠HCA =90°时,求证:CH =12DA ; (3)在(2)的条件下,若OH =6,⊙O 的半径为10,求CE 的长.【答案】(1)见解析;(2)见解析;(3)215. 【解析】【分析】 ()1由BD 为O e 的直径,得到D ABD 90∠∠+=o ,根据切线的性质得到FBA ABD 90∠∠+=o ,根据等腰三角形的性质得到C ABC ∠∠=,等量代换即可得到结论;()2如图2,连接OC ,根据平行线的判定和性质得到ACO COH ∠∠=,根据等腰三角形的性质得到OBC OCB ∠∠=,ABC CBO ACB OCB ∠∠∠∠+=+,根据相似三角形的性质即可得到结论;()3根据相似三角形的性质得到AB BD 2OH OC==,根据勾股定理得到22AD BD AB 16=-=,根据全等三角形的性质得到BF BE =,AF AE =,根据射影定理得到212AF 916==,根据相交弦定理即可得到结论. 【详解】()1BD Q 为O e 的直径,90BAD ∴∠=o ,90D ABD ∴∠+∠=o ,FB Q 是O e 的切线,90FBD ∴∠=o ,90FBA ABD ∴∠+∠=o ,FBA D ∴∠=∠,AB AC =Q ,C ABC ∴∠=∠,C D ∠=∠Q ,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=o Q ,//AC OH ∴,ACO COH ∴∠=∠,OB OC =Q ,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=o Q ,ABD ∴V ∽HOC V ,2AD BD CH OC∴==, 12CH DA ∴=; ()3由()2知,ABC V ∽HOC V ,2AB BD OH OC∴==, 6OH =Q ,O e 的半径为10, 212AB OH ∴==,20BD =,2216AD BD AB ∴=-=,在ABF V 与ABE V 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩o , ABF ∴V ≌ABE V ,BF BE ∴=,AF AE =,90FBD BAD ∠=∠=o Q ,2AB AF AD ∴=⋅,212916AF ∴==, 9AE AF ∴==,7DE ∴=,2215BE AB AE =+=,AD Q ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. 【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.11.如图,⊙O 的直径AB =26,P 是AB 上(不与点A 、B 重合)的任一点,点C 、D 为⊙O 上的两点,若∠APD =∠BPC ,则称∠CPD 为直径AB 的“回旋角”. (1)若∠BPC =∠DPC =60°,则∠CPD 是直径AB 的“回旋角”吗?并说明理由;(2)若»CD 的长为134π,求“回旋角”∠CPD 的度数; (3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.【答案】(1)∠CPD 是直径AB 的“回旋角”,理由见解析;(2)“回旋角”∠CPD 的度数为45°;(3)满足条件的AP 的长为3或23.【解析】【分析】(1)由∠CPD 、∠BPC 得到∠APD ,得到∠BPC =∠APD ,所以∠CPD 是直径AB 的“回旋角”;(2)利用CD 弧长公式求出∠COD =45°,作CE ⊥AB 交⊙O 于E ,连接PE ,利用∠CPD 为直径AB 的“回旋角”,得到∠APD =∠BPC ,∠OPE =∠APD ,得到∠OPE+∠CPD+∠BPC =180°,即点D ,P ,E 三点共线,∠CED =12∠COD =22.5°, 得到∠OPE =90°﹣22.5°=67.5°,则∠APD =∠BPC =67.5°,所以∠CPD =45°;(3)分出情况P 在OA 上或者OB 上的情况,在OA 上时,同理(2)的方法得到点D ,P ,F 在同一条直线上,得到△PCF 是等边三角形,连接OC ,OD ,过点O 作OG ⊥CD 于G ,利用sin ∠DOG ,求得CD ,利用周长求得DF ,过O 作OH ⊥DF 于H ,利用勾股定理求得OP ,进而得到AP ;在OB 上时,同理OA 计算方法即可【详解】∠CPD 是直径AB 的“回旋角”,理由:∵∠CPD =∠BPC =60°,∴∠APD =180°﹣∠CPD ﹣∠BPC =180°﹣60°﹣60°=60°,∴∠BPC =∠APD ,∴∠CPD 是直径AB 的“回旋角”;(2)如图1,∵AB =26,∴OC =OD =OA =13,设∠COD =n°,∵»CD 的长为134π, ∴13131804n ππ=n ∴n =45,∴∠COD =45°,作CE ⊥AB 交⊙O 于E ,连接PE ,∴∠BPC =∠OPE ,∵∠CPD 为直径AB 的“回旋角”,∴∠APD =∠BPC ,∴∠OPE =∠APD ,∵∠APD+∠CPD+∠BPC =180°,∴∠OPE+∠CPD+∠BPC =180°,∴点D ,P ,E 三点共线,∴∠CED =12∠COD =22.5°, ∴∠OPE =90°﹣22.5°=67.5°,∴∠APD =∠BPC =67.5°,∴∠CPD =45°,即:“回旋角”∠CPD 的度数为45°,(3)①当点P 在半径OA 上时,如图2,过点C 作CF ⊥AB 交⊙O 于F ,连接PF , ∴PF =PC ,同(2)的方法得,点D ,P ,F 在同一条直线上,∵直径AB 的“回旋角”为120°,∴∠APD =∠BPC =30°,∴∠CPF =60°,∴△PCF 是等边三角形,∴∠CFD =60°,连接OC ,OD ,∴∠COD=120°,过点O作OG⊥CD于G,∠COD=60°,∴CD=2DG,∠DOG=12√∴DG=ODsin∠DOG=13×sin60°=1332∴CD=133√,∵△PCD的周长为24+133√,∴PD+PC=24,∵PC=PF,∴PD+PF=DF=24,过O作OH⊥DF于H,∴DH=1DF=12,2在Rt△OHD中,OH=225-=OD DH在Rt△OHP中,∠OPH=30°,∴OP=10,∴AP=OA﹣OP=3;②当点P在半径OB上时,同①的方法得,BP=3,∴AP=AB﹣BP=23,即:满足条件的AP的长为3或23.【点睛】本题是新定义问题,同时涉及到三角函数、勾股定理、等边三角形性质等知识点,综合程度比较高,前两问解题关键在于看懂题目给到的定义,第三问关键在于P点的分类讨论12.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数13.如图,AB为⊙O的直径,DA、DC分别切⊙O于点A,C,且AB=AD.(1)求tan∠AOD的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②22 CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB ,且∠ACB=90°,∴∠BEC=45°=∠EBC ,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE ,∴AE=EC=BC=1,∴BE 2=. ∵AD=AB ,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC ,且∠BAC=∠CHB ,∴△ABE ∽△HBC ,∴BC CH EB AE =,即12CH =,∴CH 22=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.14.(问题情境)如图1,点E 是平行四边形ABCD 的边AD 上一点,连接BE 、CE .求证:BCE 1S 2=V S 平行四边形ABCD .(说明:S 表示面积) 请以“问题情境”为基础,继续下面的探究 (探究应用1)如图2,以平行四边形ABCD 的边AD 为直径作⊙O ,⊙O 与BC 边相切于点H ,与BD 相交于点M .若AD =6,BD =y ,AM =x ,试求y 与x 之间的函数关系式.(探究应用2)如图3,在图1的基础上,点F 在CD 上,连接AF 、BF ,AF 与CE 相交于点G ,若AF =CE ,求证:BG 平分∠AGC . (迁移拓展)如图4,平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,E 是AB 的中点,F 在BC 上,且BF :FC =2:1,过D 分别作DG ⊥AF 于G ,DH ⊥CE 于H ,请直接写出DG :DH 的值.【答案】【问题情境】见解析;【探究应用1】18y x=;【探究应用2】见解析;【迁移1927【解析】【分析】(1)作EF ⊥BC 于F ,则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,即可得出结论; (2)连接OH ,由切线的性质得出OH ⊥BC ,OH =12AD =3,求出平行四边形ABCD 的面积=AD×OH =18,由圆周角定理得出AM ⊥BD ,得出△ABD 的面积=12BD×AM =12平行四边形的面积=9,即可得出结果; (3)作BM ⊥AF 于M ,BN ⊥CE 于N ,同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,得出12AF×BM =12CE×BN ,证出BM =BN ,即可得出BG 平分∠AGC . (4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =12AB =2x ,BQ =12BE ,AP =BP =,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ x ,PF =4x ,QF =3x ,QC =4x ,由勾股定理求出AF =x ,CE,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果.【详解】(1)证明:作EF ⊥BC 于F ,如图1所示:则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF , ∴12BCE ABCD S S =V Y . (2)解:连接OH ,如图2所示:∵⊙O 与BC 边相切于点H ,∴OH ⊥BC ,OH =12AD =3, ∴平行四边形ABCD 的面积=AD×OH =6×3=18,∵AD 是⊙O 的直径,∴∠AMD =90°,∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9, 即12xy =9, ∴y 与x 之间的函数关系式y =18x ;(3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积, ∴12AF×BM =12CE×BN , ∵AF =CE ,∴BM =BN ,∴BG 平分∠AGC . (4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示:∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP =3BP =23x , ∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1,∴BE =2x ,BF =2x ,∴BQ =x , ∴EQ =3x ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =22AP PF +=27x ,CE =22EQ QC +=19x ,连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积, ∴AF×DG =CE×DH , ∴DG :DH =CE :AF =19x :27x 19:27=.【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.15.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=228+(4)x-=2880x x-+,DA=25x,则BD=45﹣25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ5,sinβ5,EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点, ∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ5DG 5AG =2r , 5=52r 51+, 则:DG 550﹣5 相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.。
中考数学圆的综合(大题培优 易错 难题)及详细答案

中考数学圆的综合(大题培优易错难题)及详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.【答案】发现: 90°,102;思考:(1)103π=;(2)25π−1002+100;(3)点O到折痕PQ的距离为30.【解析】分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt△B'OP中,OP2+(102−10)2=(10-OP)2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩形,由勾股定理求O′B,从而求出OO′的长,则OM=12OO′=30.详解:发现:∵P是半径OB上一动点,Q是AB上的一动点,∴当PQ取最大时,点Q与点A重合,点P与点B重合,此时,∠POQ=90°,PQ=22OA OB+=102;思考:(1)如图,连接OQ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102,在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2解得OP=102−10,S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,226425-=在Rt △OBO′K ,2210(25)=230-,∴OM=12OO ′=12×23030 即O 到折痕PQ 30点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.3.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴935535AM MP ==,355PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.4.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=5.如图,AB 是⊙O 的直径,PA 是⊙O 的切线,点C 在⊙O 上,CB ∥PO .(1)判断PC 与⊙O 的位置关系,并说明理由;(2)若AB=6,CB=4,求PC 的长.【答案】(1)PC是⊙O的切线,理由见解析;(2)35 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.6.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.7.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.8.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角AGM,AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC53,∴设NG=3,可得AN=11m,AG22-14m,AG AM∵∠ACG=60°,∴CN=5m,AM3,MG22-m=1,AG AM∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.9.问题发现.(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为______.(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM+MN 的最小值.(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152【解析】试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则ADCACGAGCD S SS=+四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由AEM ACB ∽求得GM 的值,再由ACDACGAGCD S SS=+四边形 求解即可.试题解析:(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,22ABCCD AB AC BCS ⋅⋅==,∴341255AC BC CD AB ⋅⨯===,(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,则CM MN +的最小值为C N '的长, 设CC '与BD 交于H ,则CH BD ⊥, ∴BMC BCD ∽,且125CH =, ∴C CB BDC ∠=∠',245CC '=, ∴C NC BCD '∽,∴244965525CC BC C N BD ⨯⋅==='', 即CM MN +的最小值为9625.(3)连接AC ,则ADCACGAGCD S SS=+四,321GB EB AB AE ==-=-=,∴点G 的轨迹为以E 为圆心,1为半径的一段弧. 过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB ∽, ∴EM AEBC AC=, ∴24855AE BC EM AC ⋅⨯===, ∴83155GM EM EG =-=-=,∴ACDACGAGCD S SS=+四边形,113345225=⨯⨯+⨯⨯,152=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.10.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3. 【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=12AC=32,∴OI=AI=3230ADcos DAI cos∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•3=23nπ.故答案为23nπ.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.11.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.12.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析; 【解析】 【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论. 【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=, 90EDF DFE ∴∠=-∠,OD OA =, ()111809022ODA AOD AOD ∴∠=-∠=-∠,190902DFE AOD ∴-∠=-∠,12DEF AOD ∴∠=∠,DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠;()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=, OA OD =,ADO OAD ∴∠=∠, PA 切O 于点A ,90PAO ∴∠=,90OAD DAP ∴∠+∠=,PFA DFE ∠=∠, 90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠, PA PF ∴=. 【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.13.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高. (2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析. 【解析】 【分析】(1)连接AC 交圆于一点F ,连接PF 交AB 于点E,连接CE 即为所求. (2)连接OF 交BC 于Q ,连接PQ 即为所求. 【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。
2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .18552245951252.如图,在以AB 为直径的半圆O 中,C 是它的中点,若AC=2,则△ABC 的面积是( )A .1.5B .2C .3D .43.如图, 、 分别是 的直径和弦,且 , ,交 于点AD AC ⊙O ∠CAD =30°OB ⊥AD AC B ,若 ,则 的长为( )OB =3BCA .B .3C .D .3233334.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,若⊙O 的直径为5,CD=4,则弦AC 的长为( )A .4B .C .5D .6255.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( )A .88°B .92°C .106°D .136°6.如图,AB 是⊙O 的直径, ,∠COD =38°,则∠AEO 的度数是( )BC =CD =DEA .52°B .57°C .66°D .78°7.将圆心角为90°,面积为4π的扇形围成一个圆锥的一个侧面,所围成圆锥的底面半径为( )A .1B .2C .3D .48.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A .3个B .2个C .1个D .0个9.如图,已知点A ,B 在⊙O 上,⊙O 的半径为3,且△OAB 为正三角形,则 的长为( )ABA .B .π2C .D .3π2x 1=−163(舍去),x 2=010.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC的度数为( )A.30°B.45°C.60°D.90°AB=AC11.如图所示,在⊙O中,,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°⊙O ABCDE AE CD∠AOC12.如图,与正五边形的两边,相切于A,C两点,则的度数是( )108°120°144°150°A.B.C.D.二、填空题13.如图,已知∠OCB=20°,则∠A= 度.14.如图①,在边长为8的等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,若将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC,BC相切,则图①中CE的长为 cm.15.如图,△ABC 内接于⊙O ,D 是弧BC 的中点,OD 交BC 于点H ,且OH=DH ,连接AD ,过点B 作BE ⊥AD 于点E ,连接EH ,BF ⊥AC 于M ,若AC=5,EH= ,则AF= .3216.如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在 ⊙O 上运动,则正方形面积最大时,正方形与⊙O 重叠部分的面积是 .17.已知⊙O 是以坐标原点为圆心,半径为1,函数y=x 与⊙O 交与点A 、B ,点P (x ,0)在x 轴上运动,过点P 且与OA 平行的直线与⊙O 有公共点,则x 的范围是 .18.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为144°的扇形,则该圆锥的底面半径为 cm .三、综合题19.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.21.如图,已知ʘO是Rt△ABC的外接圆,点D是ʘO上的一个动点,且C,D位于AB的两侧,联结AD,BD,过点C作CE⊥BD,垂足为E。
中考数学培优易错试卷(含解析)之圆的综合及答案

中考数学培优易错试卷(含解析)之圆的综合及答案一、圆的综合1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵»»BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣O),C,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124+;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD 与AD 的关系,再利用勾股定理可求得BD 的长; (2)如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,根据垂径定理得出MN=2MH ,PM=PN ,再利用勾股定理求出PH 、AH 、MH 、MN 的长,从而求出AM 、NC 的长,然后求出AM MP 、PN NC 的值,得出AM MP =PN NC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD ⊥AC ,垂足为点D ,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA= 1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =,∴AMMP =PN NC,又∵PM=PN,∴∠PMN=∠PNM,∴∠AMP=∠PNC,∴△AMP∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.4.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值5,5【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P点与E点重合时,PB取最小值.由(2)可知:OD=3,DB=6,∴OB=223635+=.∴PB=OB-OE=353-.当P点与F点重合时,PB去最大值,PB=OP+OB=3+35.点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=12,求AB和FC的长.【答案】(1)见解析;(2) ⑵AB=20 ,403 CF=【解析】分析:(1)连接OC,根据圆周角定理证明OC⊥CF即可;(2)通过正切值和圆周角定理,以及∠FCA=∠B求出CE、BE的长,即可得到AB长,然后根据直径和半径的关系求出OE的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE∽△CFE,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB是⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C在⊙O上∴CF是⊙O的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴»»AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.如图,⊙O 是△ABC 的外接圆,AC 为直径,BD =BA ,BE ⊥DC 交DC 的延长线于点E(1) 求证:BE 是⊙O 的切线(2) 若EC =1,CD =3,求cos ∠DBA【答案】(1)证明见解析;(2)∠DBA35=【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552 OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.7.如图1,延长⊙O的直径AB至点C,使得BC=12AB,点P是⊙O上半部分的一个动点(点P不与A、B重合),连结OP,CP.(1)∠C的最大度数为;(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.8.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=12DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.【答案】(1)见解析;(2)见解析;(3)215.【解析】【分析】()1由BD为Oe的直径,得到D ABD90∠∠+=o,根据切线的性质得到FBA ABD90∠∠+=o,根据等腰三角形的性质得到C ABC∠∠=,等量代换即可得到结论;()2如图2,连接OC ,根据平行线的判定和性质得到ACO COH ∠∠=,根据等腰三角形的性质得到OBC OCB ∠∠=,ABC CBO ACB OCB ∠∠∠∠+=+,根据相似三角形的性质即可得到结论;()3根据相似三角形的性质得到AB BD 2OH OC==,根据勾股定理得到22AD BD AB 16=-=,根据全等三角形的性质得到BF BE =,AF AE =,根据射影定理得到212AF 916==,根据相交弦定理即可得到结论. 【详解】()1BD Q 为O e 的直径,90BAD ∴∠=o ,90D ABD ∴∠+∠=o ,FB Q 是O e 的切线,90FBD ∴∠=o ,90FBA ABD ∴∠+∠=o ,FBA D ∴∠=∠,AB AC =Q ,C ABC ∴∠=∠,C D ∠=∠Q ,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=o Q ,//AC OH ∴,ACO COH ∴∠=∠,OB OC =Q ,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=o Q ,ABD ∴V ∽HOC V ,2AD BD CH OC∴==, 12CH DA ∴=; ()3由()2知,ABC V ∽HOC V ,2AB BD OH OC∴==, 6OH =Q ,O e 的半径为10, 212AB OH ∴==,20BD =,16AD ∴==,在ABF V 与ABE V 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩o , ABF ∴V ≌ABE V ,BF BE ∴=,AF AE =,90FBD BAD ∠=∠=o Q ,2AB AF AD ∴=⋅,212916AF ∴==, 9AE AF ∴==,7DE ∴=,15BE ==,AD Q ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. 【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.9.如图,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE,求图中阴影部分的面积.【答案】(1)详见解析;(2)93﹣2π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt △DEP 中,∵PD=3,DE=7, ∴PE=22(7)(3)- =2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1:7 ,∴AE=577∵BE ∥DF ,∴△ABE ∽△AFD ,∴BE AE DF AD= ,即5757125DF = , 解得DF=12,在Rt △BDH 中,BH=12BD=3, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π. 【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.10.如图,AC 是⊙O 的直径,OB 是⊙O 的半径,PA 切⊙O 于点A ,PB 与AC 的延长线交于点M ,∠COB =∠APB .(1)求证:PB 是⊙O 的切线;(2)当MB =4,MC =2时,求⊙O 的半径.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)根据题意∠M +∠P =90°,而∠COB =∠APB ,所以有∠M +∠COB =90°,即可证明PB 是⊙O 的切线.(2)设圆的半径为r ,则OM =r +2,BM=4,OB =r ,再根据勾股定理列方程便可求出r .【详解】证明:(1)∵AC 是⊙O 的直径,PA 切⊙O 于点A ,∴PA ⊥OA∴在Rt △MAP 中,∠M +∠P =90°,而∠COB =∠APB ,∴∠M +∠COB =90°,∴∠OBM =90°,即OB ⊥BP ,∴PB 是⊙O 的切线;(2)设⊙O 的半径为r ,2OM r ∴=+ ,OB r = ,4BM =OBM ∆Q 为直角三角形∴222OM OB BM =+ ,即222(2)+4r r +=解得:r =3,∴⊙O 的半径为3.【点睛】本题主要考查圆的切线问题,证明圆的切线有两种思路一种是证明连线是半径,另一种是证明半径垂直.11.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,(1)求证:OD =OP ;(2)求证:FE 是⊙O 的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE ≌△ADO 可得DO=EO ;(3)连接AE ,BE ,证出△APE ≌△AFE 即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90° ∠EOP=∠BODOE=OB∴△OPE ≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM 上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数13.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若CD=2,AC=4,BD=6,求⊙O的半径.【答案】(1)详见解析;(2)35 2.【解析】【分析】(1)解答时先根据角的大小关系得到∠1=∠3,根据直角三角形中角的大小关系得出OD⊥AD ,从而证明AD为圆O的切线;(2)根据直角三角形勾股定理和两三角形相似可以得出结果【详解】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)过点O作OF⊥BC,垂足为F,∵OF⊥BD∴DF=BF=12BD=3∵AC=4,CD=2,∠ACD=90°∴AD=22AC CD+=25∵∠CAD=∠B,∠OFB=∠ACD=90°∴△BFO∽△ACD∴BFAC = OB AD即34=25∴OB=35∴⊙O的半径为352.【点睛】此题重点考查学生对直线与圆的位置关系,圆的半径的求解,掌握勾股定理,两三角形相似的判定条件是解题的关键14.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=2,BC=2,求⊙O的半径.【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O6【解析】【分析】(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程2223)6)x x-=,解此方程即可求得⊙O的半径.【详解】解:(1)直线CE 与⊙O 相切.…理由:连接OE ,∵四边形ABCD 是矩形,∴∠B =∠D =∠BAD =90°,BC ∥AD ,CD =AB ,∴∠DCE +∠DEC =90°,∠ACB =∠DAC ,又∠DCE =∠ACB ,∴∠DEC +∠DAC =90°,∵OE =OA ,∴∠OEA =∠DAC ,∴∠DEC +∠OEA =90°,∴∠OEC =90°,∴OE ⊥EC ,∵OE 为圆O 半径,∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB ,∴△CDE ∽△CBA ,∴ BC AB DC DE =, 又CD =AB =2,BC =2,∴DE =1根据勾股定理得EC =3,又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-,解得6x =, ∴⊙O 的半径为6.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.15.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1)求证:EF 与⊙O 相切;(2)若AE =6,sin ∠CFD =35,求EB 的长.【答案】(1)见解析(2)32【解析】【分析】 ()1如图,欲证明EF 与O e 相切,只需证得OD EF ⊥.()2通过解直角AEF V 可以求得AF 10.=设O e 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2===,所以153EB AB AE 622=-=-=. 【详解】(1)如图,连接OD ,OC OD =Q ,OCD ODC ∠∠∴=.AB AC =Q ,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥Q ,ODF AEF 90∠∠∴==o ,OD EF ∴⊥,OD Q 是O e 的半径,EF ∴与O e 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF V 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB Q ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O e 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,∴
BG=
1 2
AB=2
2.
设 OR=x,则 RG=2 5 ﹣x.
∵ BR⊥OG,∴ ∠ BRO=∠ BRG=90°,∴ BR2=OB2﹣OR2=BG2﹣RG2,
∴ (2 5 )2﹣x2=(2 2 )2﹣(2 5 ﹣x)2.
解得:x= 8 5 ,∴ BR2=OB2﹣OR2=(2 5 )2﹣( 8 5 )2= 36 ,∴ BR= 6 5 .
∵ GF⊥OA,BD⊥OA,∴ GF∥ BD,∴ △ AFG∽ △ ADB,
∴ AF = GF = AG = 1 ,∴ AF= 1 AD=2,GF= 1 BD=2,∴ OF=4,
AD BD AB 2
2
2
Hale Waihona Puke ∴ OG= OF 2 GF 2 = 42 22 =2 5 .
同理可得:OB=2
5 ,AB=4
2
(2)由 sinA= 3 且 BC=6 可知,AB=10 且 cosA= 4 ,然后求出 OD 的长度即可.
5
5
(3)由三角形的三边关系,可知当连接 OB 交⊙O 于点 E、F,当点 P 分别于点 E、F 重合
时,BP 分别取最小值和最大值.
详解:(1)如图:连接 OD、OB.
在△ ODB 和△ OCB 中: OD=OC,OB=OB,BC=BD; ∴ △ ODB≌ △ OCB(SSS). ∴ ∠ ODB=∠ C=90°. ∴ AB 为⊙O 的切线. (2)如图:
点 D 以相同的速度,从点 B 沿折线 B﹣C﹣O 向点 O 运动.当点 P 到达点 A 时,两点同时
停止运动.过点 P 作直线 PE∥ OC,与折线 O﹣B﹣A 交于点 E.设点 P 运动的时间为 t
(秒).求当以 B、D、E 为顶点的三角形是直角三角形时点 E 的坐标.
【答案】(1)4;(2) 3 ;(3)点 E 的坐标为(1,2)、( 5 , 10 )、(4,2).
∵ BC∥ OA,∴ 四边形 OCBH 是矩形,∴ OC=BH,BC=OH.
∵ OA=6,BC=2,∴ AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵ ∠ BHA=90°,∠ BAO=45°,
∴ tan∠ BAH= BH =1,∴ BH=HA=4,∴ OC=BH=4. HA
故答案为 4.
(2)过点 B 作 BH⊥OA 于 H,过点 G 作 GF⊥OA 于 F,过点 B 作 BR⊥OG 于 R,连接
(3+ 5 ,1+ 5 ),代入直线 y=﹣x+m,可得 m=4+2 5 ,即可得出 x+y 的最大值为 4+2 5 .
详解:(1)6; (2)由题可得,点 C 在以 AB 为直径的⊙D 上运动,点 C 坐标为(x,y),可构造新的函 数 x+y=m,则函数与 y 轴交点最高处即为 x+y 的最大值,此时,直线 y=﹣x+m 与⊙D 相 切,交 x 轴与 E,如图所示,连接 OD,CD.
m=4+2 5 ,∴ x+y 的最大值为 4+2 5 .故答案为:4+2 5 .
∴ DH= OD OH = 2r 4 .
在 Rt△ BHD 中,∵ ∠ BHD=90°,∴ BD2=BH2+DH2,∴ (2r)2=42+(2r﹣4)2.
解得:r=2,∴ DH=0,即点 D 与点 H 重合,∴ BD⊥0A,BD=AD.
∵ BD 是⊙M 的直径,∴ ∠ BGD=90°,即 DG⊥AB,∴ BG=AG.
点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定 义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数
学思想,有一定的综合性.
2.如图,已知 Rt△ ABC 中,C=90°,O 在 AC 上,以 OC 为半径作⊙O,切 AB 于 D 点,且 BC=BD. (1)求证:AB 为⊙O 的切线;
【答案】(Ⅰ)60°;(Ⅱ) 3 3 2
【解析】 分析:(Ⅰ)连接 AO,根据切线的性质和切线长定理,得到 OA⊥AP,OP 平分∠ APB,然 后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ ACB 的 度数; (Ⅱ)根据 30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角 形的面积即可. 详解:(Ⅰ)连接 OA,如图,
(2)若 BC=6,sinA= 3 ,求⊙O 的半径; 5
(3)在(2)的条件下,P 点在⊙O 上为一动点,求 BP 的最大值与最小值.
【答案】(1)连 OD,证明略;(2)半径为 3;(3)最大值 3 5 +3 ,3 5 -3.
【解析】
分析:(1)连接 OD,OB,证明△ ODB≌ △ OCB 即可.
4.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。 (1)如图 1,在平面直角坐标系中,已知点 A、B 的坐标分别为 A(6,0)、B(0,2), 点 C(x,y)在线段 AB 上,计算(x+y)的最大值。小明的想法是:这里有两个变量 x、 y,若最大值存在,设最大值为 m,则有函数关系式 y=-x+m,由一次函数的图像可知,当 该直线与 y 轴交点最高时,就是 m 的最大值,(x+y)的最大值为 ; (2)请你用(1)中小明的想法解决下面问题: 如图 2,以(1)中的 AB 为斜边在右上方作 Rt△ ABM.设点 M 坐标为(x,y),求(x+y) 的最大值是多少?
5
5
5
5
在
Rt△
ORB
中,sin∠
BOR=
BR OB
=
65 5
3
=
5
.
25
故答案为 3 . 5
(3)①当∠ BDE=90°时,点 D 在直线 PE 上,如图 2.
此时 DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有 2t=2.
解得:t=1.则 OP=CD=DB=1.
∵ DE∥ OC,∴ △ BDE∽ △ BCO,∴ DE = BD = 1 ,∴ DE=2,∴ EP=2, OC BC 2
【答案】(1)6(2)4+2 5
【解析】 分析:(1)根据一次函数的性质即可得到结论; (2)根据以 AB 为斜边在右上方作 Rt△ ABC,可知点 C 在以 AB 为直径的⊙D 上运动,根据 点 C 坐标为(x,y),可构造新的函数 x+y=m,则函数与 y 轴交点最高处即为 x+y 的最大 值,此时,直线 y=﹣x+m 与⊙D 相切,再根据圆心点 D 的坐标,可得 C 的坐标为
MN=MB=MD=r.在 Rt△ BHD 中运用勾股定理可求出 r=2,从而得到点 D 与点 H 重合.易证
△ AFG∽ △ ADB,从而可求出 AF、GF、OF、OG、OB、AB、BG.设 OR=x,利用 BR2=OB2﹣
OR2=BG2﹣RG2 可求出 x,进而可求出 BR.在 Rt△ ORB 中运用三角函数就可解决问题.
(3)由于△ BDE 的直角不确定,故需分情况讨论,可分三种情况(①∠ BDE=90°,
②∠ BED=90°,③∠ DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立
关于 t 的方程就可解决问题.
详解:(1)过点 B 作 BH⊥OA 于 H,如图 1(1),则有∠ BHA=90°=∠ COA,∴ OC∥ BH.
一、圆的综合 真题与模拟题分类汇编(难题易错题)
1.如图 1,直角梯形 OABC 中,BC∥ OA,OA=6,BC=2,∠ BAO=45°.
(1)OC 的长为 ;
(2)D 是 OA 上一点,以 BD 为直径作⊙M,⊙M 交 AB 于点 Q.当⊙M 与 y 轴相切时,
sin∠ BOQ= ;
(3)如图 2,动点 P 以每秒 1 个单位长度的速度,从点 O 沿线段 OA 向点 A 运动;同时动
∴ OE = OP , OE = t ,∴ OE= OB BC 2 5 2
5 t.
∵ OE+BE=OB=2 5, 5 t+ 5 t=2 5 . 5
解得:t= 5 ,∴ OP= 5 ,OE= 5 5 ,∴ PE=
3
3
3
OE2
OP2
10
=
3
,
∴ 点 E 的坐标为( 5 ,10 ). 33
③当∠ DBE=90°时,如图 4. 此时 PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
MN、DG,如图 1(2).
由(1)得:OH=2,BH=4. ∵ OC 与⊙M 相切于 N,∴ MN⊥OC. 设圆的半径为 r,则 MN=MB=MD=r. ∵ BC⊥OC,OA⊥OC,∴ BC∥ MN∥ OA.
∵ BM=DM,∴ CN=ON,∴ MN= 1 (BC+OD),∴ OD=2r﹣2, 2
∵ sinA= 3 ,∴ CB 3 , 5 AB 5
∵ BC=6,∴ AB=10,
∵ BD=BC=6,
∴ AD=AB-BD=4,
∵ sinA= 3 ,∴ cosA= 4 ,
5
5
∴ OA=5,∴ OD=3,
即⊙O 的半径为:3.
(3)如图:连接 OB,交⊙O 为点 E、F,
由三角形的三边关系可知: 当 P 点与 E 点重合时,PB 取最小值. 由(2)可知:OD=3,DB=6,
∵ PA、PB 是⊙O 的切线, ∴ OA⊥AP,OP 平分∠ APB,
∴ ∠ APO= 1 ∠ APB=30°, 2
∴ ∠ AOP=60°, ∵ OA=OC, ∴ ∠ OAC=∠ OCA,
∴ ∠ ACO= 1 AOP=30°, 2
同理可得∠ BCP=30°, ∴ ∠ ACB=60°; (Ⅱ)在 Rt△ OPA 中,∵ ∠ APO=30°,