高一数学子集全集补集3

合集下载

高一数学必修1-子集、全集、补集-课件

高一数学必修1-子集、全集、补集-课件

高一数学集合子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A” .(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,Q R.A B可以用图1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x ∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1,2.2.真子集(1)定义:如果A B ,并且A≠B,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C.③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ” “ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.解题提示: 根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合中. 2.写出集合A ={p ,q ,r ,s }的所有子集.解题提示: 根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉. 解:集合A 的子集分为5类,即评 点(1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m个,真子集有(2m-1)个,非空真子集有(2m-2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.解题提示: 从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集.求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A.(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A.4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .解题提示: 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m.若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-2.要点二 补集、全集[重点]评点 评点 评点1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2中的阴影部分来表示.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U. (2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A.该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .另外,原题若是无限集,在实数范围内求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题例2 不等式组⎩⎨⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<xx ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1). C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A.解题提示: 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,122122结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍. 6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}. (1)判断A 、B 的关系; (2)求C U B 、C U C ,并判断其关系.解题提示: 根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A.若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B.若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A.解题提示: 要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论. 解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B. 解题提示: 紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 A Ba5x(2)ABa5x(1)(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系. 解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P. 解法二:对任意的x 0∈M ,有x 0=a 2 0+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P.而1<1+ a 2 0+1=(a 0∈N *),∴1 M ,从而M P.10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合 B.解题提示: 求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用Venn 图来表示所给集合,将A 及C U A 填入即可得U解:借助Veen 图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用Veen 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a < x <a + 4 },若A B ,求实数a 的取值范围.解题提示: 注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.解题提示: 集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符方法一 数形结合思想 A 1-4a +aBA4a +aB5AA51-评点 方法二 分类讨论思想U A1 3,,5 7 9,,2468评点。

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

高一数学集合中补集知识点

高一数学集合中补集知识点

高一数学集合中补集知识点在高中数学的学习过程中,集合论是一个重要而且基础的概念。

而集合的补集是集合论中的一个重要知识点。

本文将简要介绍高一数学集合中补集的相关内容。

一、补集的定义在集合论中,给定一个集合A,其补集指的是包含了所有不属于集合A的元素的集合。

补集的符号通常用A'表示,读作"A的补集"。

二、补集的表示方式1. 元素法补集可以通过列举出所有不属于集合A的元素来表示。

例如,若集合A={1, 2, 3},那么A的补集可以表示为A'={4, 5, 6}。

2. 全集法在一些情况下,我们可以将全集作为参照物来表示补集。

全集通常用U来表示。

集合U是一个包含了所有可能元素的集合。

若A为U的一个子集,则A的补集可以用U-A来表示。

三、补集的性质1. 补集的元素全都在全集中对于一个集合A的补集A',补集中的元素必然属于全集。

换句话说,A'的所有元素都在全集U中。

2. 补集的交集为空集对于一个集合A的补集A',补集与原集合的交集为空集。

即A∩A' = ∅。

3. 补集的并集为全集同样对于一个集合A的补集A',补集与原集合的并集为全集。

即A∪A' = U。

四、补集的运算1. 补集的运算律补集运算满足德摩根定律,即补集的补集与原集合相同。

即(A')' = A。

2. 补集的交集运算对于两个集合A和B,它们的补集的交集可以用补集的并集来表示,即(A∩B)' = A'∪B'。

3. 补集的并集运算对于两个集合A和B,它们的补集的并集可以用补集的交集来表示,即(A∪B)' = A'∩B'。

五、补集的应用补集可以应用在很多实际问题中。

例如,在排列组合的问题中,我们可以利用补集的概念来求解。

当我们需要找满足某个条件的个体数量时,我们可以先求出不满足该条件的个体数量,然后用全体个体数量减去该数量,从而得到满足条件的个体数量。

高中数学第一章集合3.2全集与补集课件北师大版必修

高中数学第一章集合3.2全集与补集课件北师大版必修

已知∁RA={x|x≤-1或x≥1},B={x|x≤a}. (1)若A∩B=⌀,求a的取值范围; (2)若A∪B={x|x<1},求a的取值范围. 思路点拨 利用数轴可以直观、形象地表示出集合A,B,从而求出a的取值范围.
(1)设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},则(∁UA)∪(∁UB)=
;
(2)设全集为R,A={x|3≤x<7},B={x|2<x<10},则(∁RA)∩B=
;
(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},则∁U(A
答案 B
利用集合的运算性质求参数的值或范围 由集合的运算性质求解参数问题的方法: (1)当集合中元素个数有限时,可结合定义与集合知识求解; (2)当集合中元素是连续实数时,一般利用数轴分析法求解.
已知A={x|-1<x≤3},B={x|m≤x<1+3m}. (1)当m=1时,求A∪B; (2)若B⊆∁RA,求实数m的取值范围. 思路点拨 (1)将m=1代入集合B中 求出A∪B. (2)当B=⌀时,列不等式求出m的取值范围 值范围 确定m最终的取值范围. 解析 (1)当m=1时,B={x|1≤x<4}, ∴A∪B={x|-1<x<4}.
全集与补集
全集与补集 1.全集:在研究某些集合的时候,这些集合往往是某个给定集合的子集,这个 给定的集合叫作全集,常用符号U ① 全部元素 .
文字语言
符号语言 图形语言
设U是全集,A是U的一个子集(即A⊆U),则由U中所有② 不属于 A的元素 组成的集合,叫作U中子集A的补集(或余集),记作③ ∁UA
∪B)=

高一数学全集与补集知识点

高一数学全集与补集知识点

高一数学全集与补集知识点在高一数学中,全集与补集是重要的概念。

全集指的是特定问题所涉及的全部元素的集合,而补集则是全集中不属于某个子集合的元素的集合。

接下来,我们将详细介绍高一数学中的全集和补集的相关知识点。

1. 全集(Universal Set)全集是指一个问题所涉及的全部元素的集合,通常用大写字母U表示。

全集可以是有穷集合,也可以是无穷集合。

在解决问题时,我们需要明确全集,以确保所有的元素都能被考虑到。

2. 子集(Subset)子集是指全集中的一部分元素构成的集合。

如果集合A的所有元素都是集合B的元素,那么集合A是集合B的子集,用A⊆B 表示。

特别地,由于任何集合的元素都是它本身的子集,所以对于任意集合A而言,A⊆A恒成立。

3. 补集(Complement)补集是指在全集中不属于某个集合的元素构成的集合。

假设全集为U,集合A是U的子集,那么A在U中的补集,也称为相对补集,用A'表示。

可以将补集理解为“除了集合A中的元素,全集中的其他元素”。

4. 补集的性质- A∪A' = U,即集合A与其补集的并集等于全集U。

由于补集包含了全集中不属于A的元素,所以并集结果就是全集。

- A∩A' = φ,即集合A与其补集的交集等于空集φ。

由于补集包含了全集中不属于A的元素,所以交集结果为空集。

- (A')' = A,即A的补集的补集等于A本身。

即补集两次取反即可恢复为原集合。

- A⊆B当且仅当B'⊆A',即集合A是集合B的子集,当且仅当集合B的补集是集合A的补集。

这个性质可以通过对两个集合同时取补集来证明。

5. 补集的运算规律- De Morgan律是指关于补集的两个重要运算规律:- (A∪B)' = A'∩B',即集合A和B的并集的补集等于集合A的补集和集合B的补集的交集。

- (A∩B)' = A'∪B',即集合A和B的交集的补集等于集合A的补集和集合B的补集的并集。

子集、全集、补集

子集、全集、补集
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
新课讲授
真子集的定义:
如果A B,并且 A ≠B,则集合A是集合B 的真子集.
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
问题:集合与集合之间的关系如何建立?
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP

高一数学集合与子集、全集、补集人教版知识精讲

高一数学集合与子集、全集、补集人教版知识精讲

高一数学集合与子集、全集、补集人教版【同步教育信息】一. 本周教学内容集合与子集、全集、补集二. 教学目标1. 理解集合的概念,知道常用数集及其记法;2. 了解“属于”关系的意义;3. 了解有限集、无限集、空集的意义;4. 了解集合的包含、相等关系的意义;5. 理解子集、真子集、补集的概念以及全集的意义。

三. 重点和难点本讲重点是集合的基本概念与表示方法,子集与补集的概念。

难点是集合的两种常用表示方法即列举法与描述法的运用以及弄清元素与子集、属于与包含之间的区别与联系。

【例题讲解】[例1] 下列条件能够确定一个集合的是( )A. 比较小的正数的全体B. 由太阳、风、水、火组成的整体C. 充分接近2的实数全体D. 高一年级中身材较高的同学组成的整体 解:此题正确选项应为B 。

集合是由某些指定的对象集在一起而构成的。

它是一个原始的数学概念,我们只能给出它的一个描述性的定义。

集合具有三个重要性质,即集合中的元素具有确定性、互异性和无序性,这三个性质也称为集合的三要性。

根据集合的概念,集合中的元素的形式是没有限制的,即使元素之间没有关联,也可以形成一个集合,如选项B 。

集合的要点是它的元素必须是确定的,即任何一对象要么是某给定集合的元素,要么不是其元素,二者必居其一。

选项A 、C 、D 不能构成集合的原因是整体中的对象不明确,不满足集合中的元素的确定性原则。

[例2] 已知集合{}y x y x x A -⋅=,,与集合{}y x B ,,0=表示同一集合,求x 、y 的值。

解:(1)若0=x ,则{}y A -=,0,0,这与集合中元素的互异性矛盾,故0≠x 。

(2)若0=⋅y x ,由0≠x ,则0=y ,此时,{}0,,0x B =,与互异性矛盾,故0≠y 。

(3)若0=-y x ,则y x =,此时{}0,,2x x A =,{}x x B ,,0=故x x =2,解得1±=x 。

高中高一数学教案子集、全集、补集

高中高一数学教案子集、全集、补集

高中高一数学教案子集、全集、补集在数学中,一个全集是一组所有可能出现的元素的集合。

而子集则是这个全集的一个部分,它只包含来自原集合的一部分元素。

补集是指全集中不属于该集合的元素的集合。

在教学中,教师往往需要设计一些教案,以便对学生进行更有效的教学。

在高中一年级的数学中,教师们需要用到许多基本概念,其中包括子集、全集和补集。

什么是子集?在数学中,子集是指集合的一个部分,指的是此集合中的一些元素。

如果一个集合A的每一个元素都是B的元素,那么A是B的子集。

例如,当A为{1, 3}时,{1, 2, 3}是A的父集,{1, 3}是A的子集。

在高中数学中,教师可以利用现实中的例子来解释子集的概念。

例如,在一个班级里,学生的集合可以表示为全集,而一个小组则可以是班级的子集。

在教学中,教师可以使用练习题供学生进行练习。

例如,给出一个集合 S,要求学生列出它的所有子集。

这样可以帮助学生更好地理解子集的概念。

什么是全集?在数学中,全集是指一个集合包含了所有元素的集合。

通常,全集被指定为一个U。

例如,对于一个集合A,它的全集就是包含了所有A元素的集合。

在高中数学中,教师可以使用全集来表达一些重要的概念。

例如,在逻辑论证中,全集用于表示一个真值集合或一个所有命题的集合。

当教师在教学中想要将学生的注意力集中在全集的重要性上时,可以通过给出生活中的例子来解释全集。

例如,在一个学校里,学生的总人数可以表示为全集。

这样,学生便可以更加清晰地认识到全集的重要性。

什么是补集?在数学中,补集是指全集中不属于该集合的元素的集合。

通常,补集可以用一个小于号作为符号表示。

例如,对于一个集合A,它的补集表示为A’,包含了所有不属于A的元素。

在高中数学中,教师可以用类似于全集的例子来解释补集。

例如,在一个班级里,不属于小组的所有学生可以视为小组的补集。

在教学中,教师可以将补集的概念与其他数学概念,如交集和并集联系起来。

例如,当教师要求学生计算一个集合与其补集的交集时,学生必须确定集合中的元素与补集中的元素是否存在重叠的部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
捕鱼列有关行政主体的说法,正确的是()。A.只有行政机关才能成为行政主体B.行政主体还包括执行公务的国家公务员C.行政主体必须是能以自己名义实施行政管理的组织D.只要是行政机关任何时候都具有行政主体资格 [单选,A2型题,A1/A2型题]下列不符合先天性胆总管囊肿影像学检查特征的是()A.腹平片示右中上腹有一囊性占位性病变B.B超显示肝大,胆囊肿大淤胆C.B超显示右上腹囊性肿物,未见正常胆总管D.钡餐见十二指肠前移,前后径受压变窄E.IVP示右中上腹囊性肿物,右肾显影不清 [判断题]凡人民币票面被揭去一面的损伤,应按票面半额进行兑付。A.正确B.错误 [单选,A2型题,A1/A2型题]脑性瘫痪最常见的临床分型()A.不随意运动型B.强直型C.混合型D.痉挛型E.肌张力低下型 [名词解释]审美注意 [单选]婴儿期保健下列哪项是正确的()A.定期进行体格检查B.坚持户外活动C.完成基础免疫D.促进感知发育E.以上均正确 [单选,A2型题,A1/A2型题]咀嚼肌的运动神经发自()A.上颌神经B.面神经C.舌咽神经D.舌下神经E.下颌神经 [单选,A2型题,A1/A2型题]诊断缺铁最肯定的依据是()A.骨髓小粒可染铁消失B.血涂片见典型小细胞低色素性红细胞C.转铁蛋白饱和度降低D.血清铁降低E.有慢性失血史 [填空题]在站点施工时,严禁用()直接塞入插座内供电。 [单选,A2型题,A1/A2型题]下列腧穴中,与至阳穴相平的是()A.膈俞B.督俞C.心俞D.神堂E.肝俞 [问答题,简答题]经营(销售)医疗器械产品需具备什么资格? [单选]临床医师在全面康复中应做到()A.是康复二级预防的组织者和执行者B.是康复医疗的执行者C.是康复三级预防的组织者D.是负责住院患者的医疗康复者E.是全面康复的执行者 [名词解释]致死中量(LD50) [单选]中华人民共和国海洋环境保护法规定了违法者应承担法律责任,包括民事责任,行政责任和三类。A.纪律责任B.法律责任C.刑事责任D.道德谴责 [单选,A2型题,A1/A2型题]关于冷凝集素试验,下列哪项是正确的()A.冷凝集综合征患者阳性,效价在1:1000以上B.37℃凝集反应最强C.0~4℃凝集现象消失D.抗体IgGE.为不完全抗体 [单选,A1型题]关于小儿维生素D缺乏性佝偻病的预防,错误的一项是()A.孕母应多在家休息B.尽量母乳喂养C.及时添加辅食D.婴幼儿应多晒太阳E.应用维生素D预防 [单选,A1型题]肝颈静脉回流征阳性主要见于()。A.左心衰B.肝硬化C.心包积液D.急性心肌梗死E.肾功能不全 [单选]发展中国家税收中的征收成本较低的税是()A.进口关税B.所得税C.土地税D.农业税 [单选]用于连接不同网络的网络设置是()A.主机B.网卡C.网关D.集中器 [单选]患者眼前闪光,视力减退1周。结合超声声像图,最可能的诊断是()A.局限性脉络膜脱离B.局限性视网膜脱离C.完全性视网膜脱离D.玻璃体后脱离E.以上均不对 [单选,A1型题]中心静脉导管感染时的首要处理措施是()。A.应用抗真菌药物B.控制高热C.预防感染性休克D.广谱抗生素预防细菌性心内膜炎E.拔除静脉导管,导管尖端送细菌培养 [单选]某职工月工资为4800元,“工资”是()。A.品质标志B.数量标志C.变量值D.指标 [单选]根据WHO(2003)报告世界各国自杀率排位中国内地女性自杀率()A.16.8/10万B.16.1/10万C.14.8/10万D.14.1/10万E.13.4/10万 [单选]“书香门第”中的“书香”原意指什么:()A.书纸自然发出的清香B.书籍的油墨味C.书发霉后发出的怪味D.书中夹香草发出的香气E.读书人的自称 [单选]货运票据封套封口前,相关人员必须同时对票据封套记载的事项和实际运单、货票核对,保证运输票据()。A、整洁B、质量C、整齐D、齐全 [名词解释]芽的异质性 [单选]分包工程发包人没有将其承包的工程进行分包,在施工现场所设项目管理机构的①项目负责人、②技术负责人、③项目核算负责人、④质量管理人员、⑤安全管理人员不是工程承包人本单位人员的,视同()。A.肢解发包B.劳务分包C.再分包D.允许他人以本企业名义承揽工程 [单选]关于意外伤害保险描述正确的是()A.费率一般区分年龄、性别B.保险金可采用定额给付或费用补偿的方式C.责任准备金按当年保费收入的40%/50%计提D.保险事故须在责任期限内发生,在保险期限内达到理赔条件 [单选]高血压伴有低血钾最可能的病因是().A.原发性高血压服用利尿剂治疗B.原发性醛固酮增多症C.嗜铬细胞瘤D.肾动脉狭窄E.库欣综合征 [单选]安全审计是保障计算机系统安全的重要手段之一,其作用不包括()A.检测对系统的入侵B.发现计算机的滥用情况C.发现系统入侵行为和潜在的漏洞D.保证可信网络内部信息不外泄 [单选,A1型题]人体消灭结核杆菌主要依靠的细胞是()A.中性粒细胞B.嗜酸性粒细胞C.浆细胞D.B淋巴细胞E.巨噬细胞 [问答题,简答题]原始宗教产生的原因及其实质? [单选]2011年3月1日,甲公司与韩某签订劳动合同,约定合同期限1年,试用期1个月,每月15日发放工资。韩某3月10日上岗工作。甲公司与韩某建立劳动关系的起始时间是()。A.2011年3月1日B.2011年3月10日C.2011年3月15日D.2011年4月10日 [多选]涂尔干认为社会事实具有的特点有()A.外在性B.客观性&#61558;C.普遍性D.强制性 [单选,A2型题,A1/A2型题]月经过多是指月经量大于()A.40mlB.50mlC.60mlD.70mlE.80ml [单选]产后子宫重量逐渐减少,不恰当的是()A.产后2周约为200gB.分娩结束时约有1000gC.产后2周约为300gD.产后1周约为500gE.产后6周约为50g [单选]港口与航道工程的技术档案应当移交给()。A.设计单位B.质量监督部门C.建设单位D.政府行政主管部门 [问答题,简答题]喷洒技术 [单选,A2型题,A1/A2型题]患者男性,55岁,带状疱疹3天,查体见左侧腰腹部成簇串珠样排列的独立水疱,绿豆大小,带状分布,部分水疱破溃,基底红,疱群间皮肤正常,皮损处刺痛,该患者目前治疗不恰当的是()A.移动法超声波B.无热量超短波C.疱疹区毫米波D.超短波联合紫外线治疗E.病
相关文档
最新文档